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Abstract. For linear combinations of quantum product averages in an arbitrary bipartite state,

we derive new quantum Bell-form and CHSH-form inequalities with the right-hand sides ex-

pressed in terms of a bipartite state. This allows us to specify bipartite state properties suffi-

cient for the validity of a classical CHSH-form inequality and the perfect correlation form of the

original Bell inequality for any bounded quantum observables. We also introduce a new general

condition on a bipartite state and quantum observables sufficient for the validity of the original

Bell inequality, in its perfect correlation or anticorrelation forms. Under this general sufficient

condition, a bipartite quantum state does not necessarily exhibit Bell’s perfect correlations or

anticorrelations.

1. Introduction. The Bell [1] and the Clauser-Horne-Shimony-Holt (CHSH ) [2] in-

equalities, derived originally in the frame of the Bell local hidden variable model, describe

the relations between the product expectation values under different joint measurements.

In the frame of classical probability, the product expectation values in every classical

state satisfy the CHSH inequality and the perfect correlation form of the original Bell

inequality (1) for any bounded classical observables.

In the frame of quantum probability, under joint quantum measurements on a bipartite

system, the product expectation values in a bipartite quantum state do not, in general,

satisfy the above inequalities. It is, however, well known [4, 5] that not only all separable

quantum states but also a variety of nonseparable quantum states satisfy the CHSH

inequality for any bounded quantum observables. We also proved in [3] (section 3.B.1,

2000 Mathematics Subject Classification: 81P15, 47A20, 47A63.

The paper is in final form and no version of it will be published elsewhere.

(1) The original proof [1] of the perfect correlation form of the Bell inequality is true only for
dichotomic classical observables admitting values ±λ. In appendix of [3], we proved the validity
of this inequality for any three bounded classical observables.
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item 1) that there exist (2) separable quantum states that satisfy the perfect correlation

form of the original Bell inequality for any bounded quantum observables (3).

At present, Bell-type inequalities are widely used in quantum information processing.

However, from the pioneering paper of R. Werner [4] up to now a general analytical

structure of bipartite quantum states satisfying a classical (4) CHSH-form inequality has

not been well formalized. Moreover, a structure of bipartite quantum states satisfying

the perfect correlation form of the original Bell inequality for any bounded quantum

observables has been analyzed [3] in the literature only in the separable case.

The aim of this paper is to introduce general analytical conditions sufficient for

a bipartite quantum state to satisfy a classical CHSH-form inequality and the per-

fect correlation form of the original Bell inequality for any bounded quantum observ-

ables.

In section 2.1, we introduce a new notion: a source-operator for a bipartite quantum

state and prove (proposition 1) that, for any bipartite state, source-operators exist. We

specify new notions: density source-operator (DSO) states and Bell class states, and

present examples of such bipartite states. We prove (proposition 2) that the nonseparable

Werner state (5) is a DSO state for any dimension d ≥ 2 and represents a Bell class state

if d ≥ 3.

In sections 2.2, 2.3, for an arbitrary bipartite state, we derive (propositions 3, 4) new

upper bounds of linear combinations of quantum product averages. These upper bounds

are expressed in terms of source-operators for a bipartite state, and this allows us to

specify analytically in section 3 the situations where a bipartite quantum state satisfies

a classical Bell-type inequality.

In section 3 :

(i) we prove (theorems 1, 2) that, for any bounded quantum observables (6), the

product expectation values in a density source-operator (DSO) state satisfy a classical

CHSH-form inequality;

(ii) we prove (theorem 3) that every Bell class state satisfies the perfect correlation

form of the original Bell inequality for any bounded quantum observables and does not

necessarily exhibit perfect correlations;

(iii) we introduce (theorem 4) a new general condition sufficient for a density source-

operator (DSO) state and three bounded quantum observables to satisfy the original Bell

inequality, in its perfect correlation or anticorrelation forms. A DSO state, satisfying this

general sufficient condition, does not necessarily exhibit (proposition 5) Bell’s perfect

correlations or anticorrelations [1].

(2) See Eq. (49) in [3].

(3) These separable quantum states do not necessarily exhibit Bell’s perfect correlations [1],
see the discussion in [3], section 3.B.1, item 1.

(4) Here, the term classical specifies the validity of some probabilistic constraint in the frame
of classical probability.

(5) This bipartite quantum state was introduced by R. Werner in [4] and is widely used in
quantum information processing.

(6) Everywhere in this paper, quantum observables may be of any spectral types.
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In section 4, we specify (theorems 5–7) the validity of classical Bell-type inequalities

under generalized quantum measurements of Alice and Bob.

2. Quantum upper bounds. General case. Let a bipartite quantum system be de-

scribed in terms of a separable complex Hilbert space H1 ⊗ H2. In this section, for an

arbitrary state (7) ρ on H1 ⊗H2, we derive new upper bounds of linear combinations of

quantum product averages:

tr[ρ(W
(a)
1 ⊗W

(b1)
2 )] − tr[ρ(W

(a)
1 ⊗W

(b2)
2 )],(1)

tr[ρ(W
(a1)
1 ⊗W

(b)
2 )] − tr[ρ(W

(a2)
1 ⊗W

(b)
2 )],

∑

n,m=1,2

γnmtr[ρ(W
(an)
1 ⊗W

(bm)
2 )].(2)

Here, W
(a)
1 , W

(b)
2 are any bounded quantum observables on H1 and H2, respectively,

and γnm, n,m = 1, 2, are any real coefficients. For clarity, we label (8) by indices ”a”

quantum observables on H1 and by ”b” on H2.

2.1. Source-operators for a bipartite state. In order to evaluate (1) and (2), we introduce

in a general setting a new notion.

Denote by K112 := H1 ⊗ H1 ⊗ H2 and K122 := H1 ⊗ H2 ⊗ H2 the extended tensor

product Hilbert spaces. Below, we use the notation tr
(k)
Hm

[·], k = 1, 2, 3, m = 1, 2, for the

partial trace over the elements of a Hilbert space Hm standing in the k-th place of tensor

products.

Definition 1. For a state ρ on H1⊗H2, let T112 on K112 and T122 on K122 be self-adjoint

trace class operators defined by the relations:

tr
(1)
H1

[T112] = ρ, tr
(2)
H1

[T112] = ρ;(3)

tr
(2)
H2

[T122] = ρ, tr
(3)
H2

[T122] = ρ.(4)

We call any of these dilations a source-operator for a bipartite state ρ.

Proposition 1. For a state ρ on H1⊗H2, there exist source-operators T122 and T112.

Proof. The spectral decomposition of a quantum state ρ on H1 ⊗H2 reads:

(5) ρ =
∑

i

αi|Ψi〉〈Ψi|, 〈Ψi,Ψj〉 = δij , ∀αi > 0,
∑

i

αi = 1.

Take an orthonormal basis {ϕn} in H2 and consider the Schmidt decomposition of an

eigenvector Ψi with respect to this basis:

(6) Ψi =
∑

n

Φ(i)
n ⊗ ϕn,

∑

n

〈Φ(i)
n ,Φ(j)

n 〉 = δij .

Substituting (6) into (5), we derive

ρ =
∑

n,m

ρnm ⊗ |ϕn〉〈ϕm|, where ρnm :=
∑

i

αi|Φ(i)
n 〉〈Φ(i)

m |, ∀n,m.

The operators ρnn are positive with
∑

n tr[ρnn] = 1.

(7) We consider only normal quantum states.

(8) In the physical literature, these labels correspond to ”Alice” and ”Bob” names.
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For any density operator σ on H2 and any self-adjoint trace class operator τ122 on

K122, with tr
(2)
H2

[τ122] = tr
(3)
H2

[τ122] = 0, the operator

T122 =
∑

n,m

ρnm ⊗ |ϕn〉〈ϕm| ⊗ σ +
∑

n,m

ρnm ⊗ σ ⊗ |ϕn〉〈ϕm|(7)

− trH2
[ρ] ⊗ σ ⊗ σ + τ122

represents a source-operator for the state (5). Here, trH2
[ρ] =

∑
n ρnn is the density oper-

ator on H1 reduced from ρ. The existence of a source-operator T112 is proved similarly.

Consider now the main properties of source-operators:

1. tr[T ] = 1, for any source-operator T .

2. As any self-adjoint trace class operator, a source-operator admits the decomposition

T = T (+) − T (−) via non-negative operators T (±) = 1
2 (|T | ± T ) and ||T ||1 =

tr[T (+)] + tr[T (−)]. For a source-operator, the latter relation and property 1 imply

||T ||1 = 1 + 2tr[T (−)].

3. Any positive source-operator T is a density operator and we refer to it as a density

source-operator (DSO). A source-operator is a DSO iff ‖T‖1 = 1.

Definition 2. If a bipartite state has a density source-operator then we call this state

a density source-operator state or a DSO state, for short.

Consider a separable state ρsep. Let
∑

m ξmρ
(m)
1 ⊗ρ(m)

2 , where ξm > 0,
∑

m ξm = 1, be

a separable representation of ρsep. Then, for example, T122 =
∑

m ξmρ
(m)
1 ⊗ ρ

(m)
2 ⊗ ρ

(m)
2

is a density source-operator for ρsep.

Hence, any separable state is a DSO state. However, the converse is not true and a

DSO state may be nonseparable. In section 2.1.1, we consider examples of nonseparable

DSO states, in particular, on an infinite dimensional Hilbert space.

If H1 = H2 = H then K122 = K112 = H⊗H⊗H and in order to distinguish between

source-operators T112 and T122 we further label (9) them as T◭ and T◮, respectively.

Moreover, if there exists a source-operator that satisfies both conditions in definition 1,

then we denote it by T◭◮. The latter source-operator has the special dilation property:

(8) tr
(1)
H [T◭◮] = tr

(2)
H [T◭◮] = tr

(3)
H [T◭◮] = ρ.

Definition 3. If, for a density source-operator (DSO) state on H ⊗ H, there exists a

density source-operator with the special dilation property (8) then we refer to this DSO

state as a Bell class state.

The Bell class includes both separable and nonseparable states. Separable states on

H⊗H of the special form (49) introduced in [3], namely, of the form:
∑

m ξmρ
(m) ⊗ρ(m),

ξm > 0,
∑

m ξm = 1, constitute examples of separable Bell class states.

2.1.1. Examples of DSO and Bell class states. In this section, we present examples of

nonseparable DSO and Bell class states on H⊗H.
Consider the nonseparable Werner state [4]

(9) ρ
(d)
W =

d+ 1

d3
ICd⊗Cd − 1

d2
Vd

(9) These labels indicate a ”direction” of dilation.
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on Cd ⊗ Cd, ∀d ≥ 2. Here, Vd is the permutation operator: Vd(ψ1 ⊗ ψ2) := ψ2 ⊗ ψ1,

∀ψ1, ψ2 ∈ C
d. This operator is self-adjoint and has the properties: (Vd)

2 = ICd⊗Cd ,

tr[Vd] = d.

Proposition 2. The nonseparable Werner state ρ
(d)
W , ∀d ≥ 2, represents a DSO state

and is of the Bell class for any d ≥ 3.

Proof. Introduce on Cd ⊗ Cd ⊗ Cd, ∀d ≥ 3, the orthogonal projection

Q
(−)
d (ψ1 ⊗ ψ2 ⊗ ψ3) :=

1

6
{ψ1 ⊗ ψ2 ⊗ ψ3 − ψ2 ⊗ ψ1 ⊗ ψ3 − ψ1 ⊗ ψ3 ⊗ ψ2(10)

− ψ3 ⊗ ψ2 ⊗ ψ1 + ψ2 ⊗ ψ3 ⊗ ψ1 + ψ3 ⊗ ψ1 ⊗ ψ2},

∀ψ1, ψ2, ψ3 ∈ Cd. This projection has the form:

6Q
(−)
d = ICd⊗Cd⊗Cd − Vd ⊗ ICd − ICd ⊗ Vd − (ICd ⊗ Vd)(Vd ⊗ ICd)(ICd ⊗ Vd)(11)

+ (ICd ⊗ Vd)(Vd ⊗ ICd) + (Vd ⊗ ICd)(ICd ⊗ Vd)

and admits a representation:

6Q
(−)
d = ICd⊗Cd⊗Cd −

∑

n,m

|en〉〈em| ⊗ |em〉〈en| ⊗ ICd −
∑

n,m

ICd ⊗ |en〉〈em| ⊗ |em〉〈en|(12)

−
∑

n,m

|en〉〈em| ⊗ ICd ⊗ |em〉〈en| +
∑

n,m,k

|en〉〈em| ⊗ |em〉〈ek| ⊗ |ek〉〈en|

+
∑

n,m,k

|em〉〈en| ⊗ |ek〉〈em| ⊗ |en〉〈ek|

in an orthonormal basis {en} in Cd (notice that Vd =
∑d

n,m=1 |en〉〈em| ⊗ |em〉〈en| ).

We have: tr
(j)

Cd [Q
(−)
d ] = d−2

6 (ICd⊗Cd−Vd), ∀j = 1, 2, 3. Hence, for the state ρ
(d)
W , ∀d ≥ 3,

the operator

(13) R
(d)
◭◮ =

1

d4
ICd⊗Cd⊗Cd +

6

d2(d− 2)
Q

(−)
d

represents a density source-operator with the special dilation property (8), that is:

tr
(j)

Cd [R
(d)
◭◮] = ρ

(d)
W , ∀j = 1, 2, 3. If d = 2, then

(14) R
(2)
◮ =

1

4
IC2⊗C2⊗C2 − 1

8
V2 ⊗ IC2 − 1

8
(IC2 ⊗ V2)(V2 ⊗ IC2)(IC2 ⊗ V2)

is a density source-operator for ρ
(2)
W . The existence of the density source-operators (13)

and (14) proves the statement.

Consider now examples of DSO and Bell class states on an infinite dimensional Hilbert

space H⊗H. Take the quantum states

ρ1 =
1

4
|ψ1 ⊗ ψ1 + ψ2 ⊗ ψ2〉〈ψ1 ⊗ ψ1 + ψ2 ⊗ ψ2|(15)

+
1

4
(|ψ1〉〈ψ1| + |ψ2〉〈ψ2|) ⊗ |ψ1〉〈ψ1|
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and

ρ2 =
1

6
|ψ1 ⊗ ψ1 + ψ2 ⊗ ψ2〉〈ψ1 ⊗ ψ1 + ψ2 ⊗ ψ2|(16)

+
1

6
(|ψ1〉〈ψ1| + |ψ2〉〈ψ2|) ⊗ |ψ1〉〈ψ1|

+
1

6
|ψ1〉〈ψ1| ⊗ (|ψ1〉〈ψ1| + |ψ2〉〈ψ2|),

where ψ1, ψ2 are any mutually orthogonal unit vectors in H. The partial transpose ρT1
1

has the negative eigenvalue λ = 1
8 (1−

√
5), corresponding to the eigenvector ψ = c(ψ1 ⊗

ψ2 + 1−
√

5
2 ψ2 ⊗ ψ1). Therefore, due to the Peres separability criterion [6], the state ρ1 is

nonseparable. Nonseparability of ρ2 is proved similarly. The operators

R◮ =
1

4
|ψ1 ⊗ ψ1 + ψ2 ⊗ ψ2〉〈ψ1 ⊗ ψ1 + ψ2 ⊗ ψ2| ⊗ |ψ1〉〈ψ1|(17)

+
1

4
|ψ1 ⊗ ψ1 ⊗ ψ1 + ψ2 ⊗ ψ1 ⊗ ψ2〉〈ψ1 ⊗ ψ1 ⊗ ψ1 + ψ2 ⊗ ψ1 ⊗ ψ2|

and

R◭◮ =
1

6
|ψ1 ⊗ ψ1 + ψ2 ⊗ ψ2〉〈ψ1 ⊗ ψ1 + ψ2 ⊗ ψ2| ⊗ |ψ1〉〈ψ1|(18)

+
1

6
|ψ1 ⊗ ψ1 ⊗ ψ1 + ψ2 ⊗ ψ1 ⊗ ψ2〉〈ψ1 ⊗ ψ1 ⊗ ψ1 + ψ2 ⊗ ψ1 ⊗ ψ2|

+
1

6
| ψ1 ⊗ ψ1 ⊗ ψ1 + ψ1 ⊗ ψ2 ⊗ ψ2〉〈ψ1 ⊗ ψ1 ⊗ ψ1 + ψ1 ⊗ ψ2 ⊗ ψ2|

represent density source-operators for ρ1 and ρ2, respectively. Moreover, the DSO (18)

has the special dilation property (8). Hence: (i) the state ρ1 is a nonseparable DSO state;

(ii) the state ρ2 is a nonseparable Bell class state.

2.2. Quantum Bell-form inequalities. Based on the new notion of a source-operator in-

troduced in section 2.1, consider now upper bounds of linear combinations (1) of quantum

product averages in an arbitrary state ρ on H1 ⊗H2.

Let T122 and T112 be any source-operators for a state ρ. According to proposition 1,

for any bipartite state ρ, these operators exist. In view of definition 1, we have:

tr[ρ(W
(a)
1 ⊗W

(b1)
2 −W

(a)
1 ⊗W

(b2)
2 )]

= tr[T122(W
(a)
1 ⊗W

(b1)
2 ⊗ IH2

−W
(a)
1 ⊗ IH2

⊗W
(b2)
2 )],

(19)

tr[ρ(W
(a1)
1 ⊗W

(b)
2 −W

(a2)
1 ⊗W

(b)
2 )]

= tr[T112(W
(a1)
1 ⊗ IH1

⊗W
(b)
2 − IH1

⊗W
(a2)
1 ⊗W

(b)
2 )],

and these representations allow us to prove the following general statement.

Proposition 3. Let W
(a)
1 and W

(b)
2 be any bounded quantum observables on H1 and H2,

respectively, with operator norms || · || ≤ 1. An arbitrary state ρ on H1 ⊗H2 satisfies the

inequalities

|tr[ρ(W (a)
1 ⊗W

(b1)
2 )] − tr[ρ(W

(a)
1 ⊗W

(b2)
2 )]|(20)

≤ ‖T122‖1{1 − tr[σT122
(W

(b1)
2 ⊗W

(b2)
2 )]}
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and

|tr[ρ(W (a1)
1 ⊗W

(b)
2 )] − tr[ρ(W

(a2)
1 ⊗W

(b)
2 )]|(21)

≤ ‖T112‖1{1 − tr[σT112
(W

(a1)
1 ⊗W

(a2)
1 )]},

where T122 and T112 are any source-operators for ρ and

(22) σT122
:=

1

‖T122‖1
tr

(1)
H1

[|T122|], σT112
:=

1

‖T112‖1
tr

(3)
H2

[|T112|]

are density operators on H2 ⊗H2 and H1 ⊗H1, respectively.

In the right-hand side of (20) (or (21)), the observables can be interchanged.

Proof. In order to prove (20), we notice that in (19):

W
(a)
1 ⊗W

(b1)
2 ⊗ IH2

= (W
(a)
1 ⊗ IH2

⊗ IH2
)(IH1

⊗W
(b1)
2 ⊗ IH2

),
(23)

W
(a)
1 ⊗ IH2

⊗W
(b2)
2 = (W

(a)
1 ⊗ IH2

⊗ IH2
)( IH1

⊗ IH2
⊗W

(b2)
2 ),

and the bounded quantum observables

(24) W
(a)
1 ⊗ IH2

⊗ IH2
, IH1

⊗W
(b1)
2 ⊗ IH2

, IH1
⊗ IH2

⊗W
(b2)
2

on K122 mutually commute. From the von Neumann theorem ([7], page 221) it follows

that there exist:

(i) a bounded quantum observable V
(b1,b2)
a on K122;

(ii) bounded Borel real-valued functions ϕ
(a)
1 , ϕ

(b1)
2 , ϕ

(b2)
3 on (R, BR), with supremum

norms ||ϕ(a)
1 ||, ||ϕ(b1)

2 ||, ||ϕ(b2)
3 || ≤ 1;

such that

W
(a)
1 ⊗ IH2

⊗ IH2
= ϕ

(a)
1 (V (b1,b2)

a ), IH1
⊗W

(b1)
2 ⊗ IH2

= ϕ
(b1)
2 (V (b1,b2)

a ),
(25)

IH1
⊗ IH2

⊗W
(b2)
2 = ϕ

(b2)
3 (V (b1,b2)

a ).

Let P
V

(b1,b2)
a

(·), where P
V

(b1,b2)
a

(R) = IK122
, be the projection-valued measure correspond-

ing uniquely to V
(b1,b2)
a due to the spectral theorem. In view of (19) and (25),

tr[ρ(W
(a)
1 ⊗W

(b1)
2 )] =

∫

R

ϕ
(a)
1 (ξ)ϕ

(b1)
2 (ξ)ν(b1,b2)

a (dξ;T122),

(26)

tr[ρ(W
(a)
1 ⊗W

(b2)
2 )] =

∫

R

ϕ
(a)
1 (ξ)ϕ

(b2)
3 (ξ)ν(b1,b2)

a (dξ;T122),

where we denote by ν
(b1,b2)
a (·;Y ) a σ-additive bounded real-valued measure on (R, BR),

defined by the relation

(27) ν(b1,b2)
a (·;Y ) := tr[Y P

V
(b1,b2)

a
(·)], ν(b1,b2)

a (R;Y ) = tr[Y ],

for any self-adjoint trace class operator Y on K122. For a source-operator T122, the measure

ν
(b1,b2)
a (·;T122) is normalized but not, in general, positive. Due to property 2, section 2.1,

(28) ν(b1,b2)
a (·;T122) = ν(b1,b2)

a (·;T (+)
122 ) − ν(b1,b2)

a (·;T (−)
122 ),

where ν
(b1,b2)
a (·;T (±)

122 ) are unnormalized positive measures with

ν(b1,b2)
a (R;T

(+)
122 ) + ν(b1,b2)

a (R;T
(−)
122 ) = ν(b1,b2)

a (R; |T122|) = ‖T122‖1.(29)
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Using (26), (28), the bound ||ϕ(a)
1 || ≤ 1, and the inequality |x− y| ≤ 1−xy, valid for any

real numbers |x| ≤ 1, |y| ≤ 1, we derive:

|tr[ρ(W (a)
1 ⊗W

(b1)
2 −W

(a)
1 ⊗W

(b2)
2 )]|(30)

≤ ν(b1,b2)
a (R; |T122|) −

∫

R

ϕ
(b1)
2 (ξ)ϕ

(b2)
3 (ξ)ν(b1,b2)

a (dξ; |T122|).

Due to (25) and (27),
∫

R

ϕ
(b1)
2 (ξ)ϕ

(b2)
3 (ξ)ν(b1,b2)

a (dξ; |T122|) = ‖T122‖1tr[σT122
(W

(b1)
2 ⊗W

(b2)
2 )],(31)

where σT122
:=

tr
(1)
H1

[|T122|]
||T122||1 is a density operator on H2 ⊗ H2. Substituting (29) and (31)

into (30), we finally have:

|tr[ρ(W (a)
1 ⊗W

(b1)
2 −W

(a)
1 ⊗W

(b2)
2 )]| ≤ ‖T122‖1 {1 − tr[σT122

(W
(b1)
2 ⊗W

(b2)
2 )]}.(32)

The derivation of the inequality (21) is quite similar.

Corollary 1. Let W
(a)
1 and W

(b)
2 be any bounded quantum observables with operator

norms || · || ≤ 1. For any state ρ on H1 ⊗H2, the inequalities

|tr[ρ(W (a)
1 ⊗W

(b)
2 )]| ≤ 1

2
‖T122‖1{1 + tr[σT122

(W
(b)
2 ⊗W

(b)
2 )]},

(33)

|tr[ρ(W (a)
1 ⊗W

(b)
2 )]| ≤ 1

2
‖T112‖1{1 + tr[σT112

(W
(a)
1 ⊗W

(a)
1 )]}

hold with arbitrary source-operators T122 and T112 for ρ in the right hand sides.

In particular, for a Bell class state ρ on H⊗H, the relations (33) imply:

|tr[ρ(W1 ⊗W2)]| ≤
1

2
{1 + tr[ρ(W2 ⊗W2)]},

(34)

|tr[ρ(W1 ⊗W2)]| ≤
1

2
{1 + tr[ρ(W1 ⊗W1)]},

for any W1 and W2 on H.

2.3. Quantum CHSH-form inequalities. Consider now upper bounds for a linear combi-

nation (2).

Proposition 4. Let W
(an)
1 and W

(bm)
2 , n,m = 1, 2, be any bounded quantum observables

with operator norms ||·|| ≤ 1 and γnm, n,m = 1, 2, be any real coefficients with |γnm| ≤ 1.

An arbitrary quantum state ρ on H1 ⊗H2 satisfies the inequality

(35)
∣∣∣

∑

n,m=1,2

γnmtr[ρ(W
(an)
1 ⊗W

(bm)
2 )]

∣∣∣ ≤ 2‖T122‖1,

whenever γ11γ12 = −γ21γ22, and the inequality

(36)
∣∣∣

∑

n,m=1,2

γnmtr[ρ(W
(an)
1 ⊗W

(bm)
2 )]

∣∣∣ ≤ 2‖T112‖1,

whenever γ11γ21 = −γ12γ22. Here, T122 and T112 are any source-operators for a state ρ.
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Proof. Due to the upper bounds (20) and (21), we have:
∣∣∣

∑

n,m=1,2

γnmtr[ρ(W
(an)
1 ⊗W

(bm)
2 )]

∣∣∣(37)

≤ ‖T122‖1{2 + (γ11γ12 + γ21γ22)tr[σT122
(W

(b1)
2 ⊗W

(b2)
2 )]},

∣∣∣
∑

n,m=1,2

γnmtr[ρ(W
(an)
1 ⊗W

(bm)
2 )]

∣∣∣(38)

≤ ‖T112‖1{2 + (γ11γ21 + γ12γ22)tr[σT112
(W

(a1)
1 ⊗W

(a2)
1 )]},

and these relations prove the statement.

3. Validity of classical Bell-type inequalities in the quantum case. Propositions

3 and 4 clearly indicate the cases where a bipartite quantum state satisfies a classical

CHSH-form inequality and the original Bell inequality for any bounded quantum observ-

ables. Notice that, in our setting, bounded quantum observables may be of any spectral

types.

Theorem 1 (DSO states and the CHSH inequality). A density source-operator (10)

(DSO) state ρ on H1 ⊗H2 satisfies the original CHSH inequality [2]:

(39) |tr[ρ(W (a1)
1 ⊗W

(b1)
2 +W

(a1)
1 ⊗W

(b2)
2 +W

(a2)
1 ⊗W

(b1)
2 −W

(a2)
1 ⊗W

(b2)
2 )]| ≤ 2,

for any bounded quantum observables W
(an)
1 ,W

(bm)
2 , n,m = 1, 2, with operator norms

|| · || ≤ 1.

If a DSO state on H ⊗H is symmetric then, for this state, density source-operators

R◮ and R◭ exist simultaneously, and from proposition 4 there follows:

Theorem 2. Let γnm, n,m = 1, 2, be any real coefficients with |γnm| ≤ 1 such that

γ11γ12 = −γ21γ22 or γ11γ21 = −γ12γ22.

A symmetric DSO state ρ on H⊗H satisfies the extended CHSH inequality [3]:

(40)
∣∣∣

∑

n,m=1,2

γnmtr[ρ(W
(an)
1 ⊗W

(bm)
2 )]

∣∣∣ ≤ 2,

for any bounded quantum observables W
(an)
1 , W

(bm)
2 , n,m = 1, 2, with operator norms

|| · || ≤ 1.

Due to proposition 3, we have the following general statement on Bell class states (11).

Theorem 3 (Bell class states and the Bell inequality). A Bell class state ρ on H ⊗ H
satisfies the perfect correlation form of the original Bell inequality [1]:

(10) See definition 2, section 2.1.

(11) See definition 3, section 2.1.
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|tr[ρ(W1 ⊗W2)] − tr[ρ(W1 ⊗ W̃2)]|
≤ 1 − tr[ρ(W2 ⊗ W̃2)],

(41)
|tr[ρ(W1 ⊗W2)] − tr[ρ(W̃1 ⊗W2)]|

≤ 1 − tr[ρ(W1 ⊗ W̃1)],

for any bounded quantum observables W1, W̃1, W2, W̃2 on H with operator norms ||·|| ≤ 1.

Corollary 2. Any Bell class state ρ on H ⊗ H satisfies the extended CHSH inequal-

ity (40).

In the right-hand sides of the inequalities (41), the quantum observables can be in-

terchanged.

It is necessary to underline that, in the physical literature, the validity of the per-

fect correlation form of the original Bell inequality for a bipartite state on H ⊗ H has

been always linked with Bell’s assumption of perfect correlations if the same quantum

observable is measured on both sides (cf. in [1]).

In [3] (section 3.B.1, item 1) we proved that separable states of the special form (12)

(49) in [3] satisfy (41) for any bounded quantum observables and do not necessarily

exhibit perfect correlations. Theorem 3 generalizes this result of [3] and indicates that

there exists a whole class of bipartite states, separable and nonseparable, where each

state satisfies the perfect correlation form of the original Bell inequality for any three

bounded quantum observables and does not necessarily exhibit perfect correlations.

In case of, for example, a dichotomic observable W2, with eigenvalues ±1, the latter

means that a Bell class state ρ satisfies (41) even if the correlation function tr[ρ(W2 ⊗
W2)] 6= 1.

Due to theorem 3 and proposition 2, the nonseparable Werner state (9) on C
d ⊗ C

d,

∀d ≥ 3, satisfies the perfect correlation form of the original Bell inequality for any bounded

quantum observables and does not necessarily exhibit perfect correlations.

The upper bounds in proposition 3 allow us to introduce also a condition sufficient for

the validity of the original Bell inequality for a bipartite state and some three quantum

observables.

Theorem 4 (General sufficient condition). If, for a DSO state ρ on H⊗H, there exists

a density source-operator R◮ such that

(42) tr[σR◮
(W2 ⊗ W̃2)] = ±tr[ρ(W2 ⊗ W̃2)], σR◮

= tr
(1)
H [R◮],

for bounded quantum observables W2, W̃2 on H with operator norms || · || ≤ 1 then this

DSO state ρ and these quantum observables W2, W̃2 satisfy the original Bell inequality

[1]:
∣∣∣tr[ρ(W1 ⊗W2)] − tr[ρ(W1 ⊗ W̃2)]

∣∣∣ ≤ 1 ∓ tr[ρ(W2 ⊗ W̃2)],(43)

in its perfect correlation or anticorrelation form (minus or plus sign in (43), respectively).

Here, W1 is any bounded quantum observable on H with ||W1|| ≤ 1.

(12) As we discussed in section 2.1, these separable states belong to the Bell class.
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Notice that, in theorem 3, the sufficient condition concerns only a bipartite state

property and refers only to the perfect correlation form of the Bell inequality. A Bell

class state satisfies the plus sign condition (42) for any quantum observables W2, W̃2.

In theorem 4, the sufficient condition (42) establishes the restriction on the combi-

nation: quantum observables and a DSO state, and concerns both forms of the original

Bell inequality. In general, a DSO state satisfying the condition (42) does not necessarily

either belong to the Bell class or satisfy (42) for any W2, W̃2.

For a symmetric DSO state, let us now prove that the sufficient condition (42) is more

general than Bell’s perfect correlation/anticorrelation restriction (44) and includes the

latter only as a particular case.

Proposition 5. If a symmetric DSO state ρ on H⊗H satisfies the Bell perfect correla-

tion or anticorrelation restriction

(44) tr[ρ(W2 ⊗W2)] = ±1

then this DSO state satisfies the sufficient condition (42). The converse is not true.

Proof. If a DSO state ρ on H⊗H is symmetric then it has both density source-operators,

R◭ and R◮. We have:

tr[σR◮
(W2 ⊗ W̃2)] = tr[R◮(IH ⊗W2 ⊗ W̃2)],

tr[ρ(W2 ⊗ W̃2)] = tr[R◮(W2 ⊗ IH ⊗ W̃2)],(45)

tr[ρ(W2 ⊗W2)] = tr[R◮(W2 ⊗W2 ⊗ IH)].

Using the arguments based on the von Neumann theorem [7] and quite similar to those

in proposition 3, we derive:

tr[σR◮
(W2 ⊗ W̃2)] =

∫

R

ϕ2(ξ)ϕ3(ξ)ν(dξ;R◮),

tr[ρ(W2 ⊗ W̃2)] =

∫

R

ϕ1(ξ)ϕ3(ξ)ν(dξ;R◮),(46)

tr[ρ(W2 ⊗W2)] =

∫

R

ϕ1(ξ)ϕ2(ξ)ν(dξ;R◮),

where:

(i) ν(·;R◮) := tr[R◮PV (·)] is a probability distribution on (R, BR), induced ((13))

by the projection-valued measure PV of a quantum observable V on H⊗H⊗H (corre-

sponding, due to the von Neumann theorem, to three mutually commuting observables

W2 ⊗ IH ⊗ IH, IH ⊗W2 ⊗ IH, IH ⊗ IH ⊗ W̃2);

(ii) ϕ1, ϕ2, ϕ3 are bounded Borel real-valued functions on (R, BR), with supremum

norms ||ϕn|| ≤ 1, such that ϕ1(V ) = W2 ⊗ IH ⊗ IH, ϕ2(V ) = IH ⊗ W2 ⊗ IH and

ϕ3(V ) = IH ⊗ IH ⊗ W̃2.

If ρ satisfies the Bell restriction (44) then, due to (46),

(47)

∫

R

ϕ1(ξ)ϕ2(ξ)ν(dξ;R◮) = ±1.

(13) See proposition 3.
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The latter implies ϕ1(ξ)ϕ2(ξ) = ±1, ν-a.e. Since ||ϕ1||, ||ϕ2|| ≤ 1, we have ϕ1(ξ) =

±ϕ2(ξ), ν-a.e., and, hence,

tr[σR◮
(W2 ⊗ W̃2)] ∓ tr[ρ(W2 ⊗ W̃2)] =

∫

R

{ϕ2(ξ) ∓ ϕ1(ξ)}ϕ3(ξ)ν(dξ;R◮) = 0.(48)

The converse statement is not true and a DSO state, satisfying (48), does not necessarily

satisfy (47).

Thus, a DSO state, satisfying the general sufficient condition (42) and, therefore, the

original Bell inequality (43), does not necessarily exhibit Bell’s perfect correlations or

anticorrelations.

4. Generalized quantum measurements of Alice and Bob. In the physical litera-

ture, joint measurements on a bipartite system are usually referred to as measurements of

Alice and Bob. Theorems 1–4 and proposition 5 specify the relations between the product

expectation values under projective quantum measurements of Alice and Bob.

To analyze the situation under generalized joint quantum measurements on a bipartite

quantum state, let us recall that an Alice/Bob joint generalized quantum measurement,

with real-valued outcomes λ1 ∈ Λ1, λ2 ∈ Λ2 of any type, is described by the positive

operator-valued (POV ) measure

(49) M (a,b)(B1 ×B2) = M
(a)
1 (B1) ⊗M

(b)
2 (B2), ∀B1 ⊆ Λ1, ∀B2 ⊆ Λ2,

where ”a” and Λ1 refer to a setting and an outcome set on the side of Alice while ”b”

and Λ2 on the side of Bob. For simplicity, we further suppose |λ1| ≤ 1, |λ2| ≤ 1.

For a quantum state ρ on H1 ⊗H2, the formula (14)

〈λ1λ2〉(a,b)
ρ :=

∫

Λ1×Λ2

λ1λ2tr[ρ(M
(a)
1 (dλ1) ⊗M

(b)
2 (dλ2))](50)

= tr[ρ(W
(a)
1 ⊗W

(b)
2 )]

represents the expectation value of the product λ1λ2 of outcomes observed by Alice and

Bob. Here,

(51) W
(a)
1 :=

∫

Λ1

λ1M
(a)
1 (dλ1), W

(b)
2 :=

∫

Λ2

λ2M
(b)
2 (dλ2)

are bounded quantum observables with operator norms ‖ · ‖ ≤ 1 on H1 and H2, respec-

tively.

Theorems 1–3 and the representation (50) imply:

Theorem 5. The product expectation values in a DSO state ρ on H1 ⊗ H2 satisfy the

original CHSH inequality:

(52) |〈λ1λ2〉(a1,b1)
ρ + 〈λ1λ2〉(a1,b2)

ρ + 〈λ1λ2〉(a2,b1)
ρ − 〈λ1λ2〉(a2,b2)

ρ | ≤ 2,

under any generalized quantum measurements (49) of Alice and Bob with outcomes |λ1| ≤
1, |λ2| ≤ 1 of any type.

(14) See also [3], section 3.A.
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Theorem 6. Let γnm, n,m = 1, 2, be any real coefficients with |γnm| ≤ 1 and γ11γ12 =

−γ21γ22 or γ11γ21 = −γ12γ22. If a DSO state ρ on H ⊗ H is either symmetric or of

the Bell class then the product expectation values in this ρ satisfy the extended CHSH

inequality:

(53)
∣∣∣

∑

n,m=1,2

γnm〈λ1λ2〉(an,bm)
ρ

∣∣∣ ≤ 2,

under any generalized quantum measurements (49) of Alice and Bob with outcomes |λ1| ≤
1, |λ2| ≤ 1 of any type.

Theorem 7. If, under joint generalized quantum measurements (49) of Alice and Bob,

(54)

∫

Λ1

λ1M
(b1)
1 (dλ1) =

∫

Λ2

λ2M
(b1)
2 (dλ2)

then, for any Bell class state ρ on H⊗H, the product expectation values satisfy the perfect

correlation form of the original Bell inequality:

(55) |〈λ1λ2〉(a,b1)
ρ − 〈λ1λ2〉(a,b2)

ρ | ≤ 1 − 〈λ1λ2〉(b1,b2)
ρ .

The operator relation (54) does not necessarily imply the perfect correlations of out-

comes on the sides of Alice and Bob and is always true in case of projective Alice and

Bob measurements of the same quantum observable on both sides.

Theorem 4 can be also easily generalized to the case of joint generalized quantum

measurements of Alice and Bob.
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