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1. Introdu
tion. There have been mu
h interest in the irreversible dynami
s of quan-tum systems in re
ent years. Most of it, however, 
on
entrated either on �nite dimensionalsystems des
ribed by matrix algebras (as for example in quantum opti
s [1℄) or on thestandard quantum me
hani
s [2-6℄. In the later 
ase observables of the quantum systemare represented by self-adjoint operators a
ting on some Hilbert spa
e and states aredes
ribed by positive normalized tra
e 
lass operators, the so-
alled density matri
es. Inboth 
ases a number of the master equations whi
h des
ribe irreversible evolution of thequantum system in the Markovian approximation have been dis
ussed. However, many ofrealisti
 physi
al systems like Bose or Fermi gases 
annot be represented by su
h simpleobje
ts. They are des
ribed by the GNS representations of some abstra
t C∗-algebras. Forin�nite spin systems, that is for 
anoni
al anti
ommutation relations (CAR) algebras, the
on
ept of the quantum Markov semigroup has been studied in a number of papers, seefor example [7-9℄. The dis
ussion of irreversible dynami
s of 
anoni
al 
ommutation rela-tions (CCR) algebras is less advan
ed and 
on
entrated mainly on the so-
alled quasi-freedynami
al semigroups [10, 11℄. They are, however, interesting obje
ts for physi
ists sin
etype III fa
tors being the σ-weak 
losure of the temperature representations of the CCRalgebras des
ribe realisti
 Bose gases. In this paper we address the question how one 
an
onstru
t a 
lass of quasi-free dynami
al semigroups both on the CCR algebras and the
orresponding von Neumann algebras.2. Algebras of 
anoni
al 
ommutation relations. The aim of this se
tion is toset up a formalism in whi
h we 
an dis
uss systemati
ally the 
anoni
al 
ommutationrelations for a �nite and in�nite number of degrees of freedom. A 
omprehensive dis
ussionof this subje
t 
an be found in [12℄. Suppose S is a real linear spa
e equipped with a2000 Mathemati
s Subje
t Classi�
ation: 46L57, 47D06.The paper is in �nal form and no version of it will be published elsewhere.
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340 P. ŁUGIEWICZ AND R. OLKIEWICZnondegenerate symple
ti
 bilinear form σ : S × S → R. Moreover, we assume that thereexists a linear operator J on S with the following properties
σ(Jf, g) = −σ(f, Jg), J2 = −id.By means of J and σ one 
an introdu
e a 
omplex pre-Hilbert spa
e with the s
alarmultipli
ation and the s
alar produ
t de�ned by

(λ1 + iλ2)f = λ1f + λ2Jf, λi ∈ R,

〈f, g〉 = σ(f, Jg) + iσ(f, g),where f, g ∈ S. Its norm 
ompletion will be denoted by H. On S there is usually de�nedits own topology τ , whi
h is stronger than the norm topology and whi
h makes S a reallo
ally 
onvex topologi
al ve
tor spa
e, for the de�nition see the next subse
tion. The 
asein whi
h S is in�nite dimensional is typi
al for �eld theories and many-body problems,whereas �nite dimensional S 
orresponds to quantum me
hani
s of a �nite number ofparti
les. Let ∆(S) be the spa
e of formal linear 
ombinations
∆(S) =

{

finite
∑

zkW (fk)
}

,where zk ∈ C, fk ∈ S, and W (fk) being abstra
t symbols 
alled the Weyl operators.Clearly ∆(S) is a 
omplex linear spa
e. The produ
t of two Weyl operators is de�ned as
W (f)W (g) = e−iσ(f, g)/2W (f + g),while the ∗-operation as W (f)∗ = W (−f), and they are next extended to ∆(S) bylinearity (anti-linearity) respe
tively. The 
ompletion ∆1(S) of ∆(S) with respe
t to thenorm ‖

∑

zkW (fk)‖1 =
∑

|zk| is a Bana
h ∗-algebra. We now de�ne a new norm on
∆1(S) by

‖R‖ = sup
π

‖π(R)‖, R ∈ ∆1(S),where the supremum is taken over all nondegenerate representations π of ∆1(S) for whi
h
π(W (λf)), f ∈ S, is 
ontinuous in λ ∈ R with respe
t to the σ-weak topology on B(Hπ).The 
ompletion of ∆(S) with respe
t to this norm is a C∗-algebra, say W(S), whi
h werefer to as the C∗-algebra of the 
anoni
al 
ommutation relations [13℄. It is worth notingthat su
h an algebra is simple.3. Promeasures on lo
ally 
onvex topologi
al ve
tor spa
es. Suppose E is alo
ally 
onvex topologi
al ve
tor spa
e over R, i.e. su
h that its topology is de�ned bya family of seminorms separating points. It is 
lear that the topology of a lo
ally 
onvexspa
e is always Hausdor�. Su
h spa
es appear naturally in physi
al appli
ations as spa
esof test fun
tions like, for example, the spa
e of smooth fun
tions with 
ompa
t support.By E′ we denote the topologi
al dual, and by E∗ the algebrai
 dual of the spa
e E.Let I be the set of all 
losed linear subspa
es V in E su
h that dim(E/V ) < ∞, andlet pV : E → E/V be the 
anoni
al proje
tion. We say that V ≤ W , V, W ∈ I, if
W ⊂ V . For any V ≤ W we de�ne a surje
tive linear map pV W : E/W → E/V by
pV W (pW f) = pV f , f ∈ E. Then (E/V, pV W , I) is a proje
tive net of �nite dimensionallo
ally 
onvex (and hen
e lo
ally 
ompa
t) topologi
al ve
tor spa
es. The proje
tive
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anoni
ally isomorphi
 to the topologi
al spa
e E′∗ equipped withthe σ(E′∗, E′)-topology. Let M(E/V ) denote the set of all 
omplex measures on E/Vwith �nite variations. M(E/V ), when equipped with the natural sum and multipli
ationby s
alars, the multipli
ation given by 
onvolution ∗, and the norm ‖µV ‖ = |µV |(E/V ),is a Bana
h algebra. As a Bana
h spa
e M(E/V ) is the dual spa
e to C0(E/V ), theBana
h spa
e of 
ontinuous fun
tions on E/V vanishing at in�nity with the sup-norm.By de�nition, see [14℄, a promeasure on E is an arbitrary proje
tive net (µV , (pV W )∗, I),where µV is a positive �nite measure on E/V , (pV W )∗ : M(E/W ) → M(E/V ) is theindu
ed algebrai
 homomorphism, and (pV W )∗(µW ) = µV for all V ≤ W . It is worthnoting that in general the proje
tive limit lim← µV may not exist on E′∗. However, ifdimE < ∞, then any promeasure on E 
an be identi�ed with a measure in an obviousway. To simplify notation we shall denote a promeasure by (µV )V ∈I or just by µ, if thereis no risk of 
onfusion. Be
ause for all V ≤ W ,
µV (E/V ) = (pV W )∗µW (E/V ) = µW (p−1

V W (E/V )) = µW (E/W ),we have ‖µV1
‖ = ‖µV2

‖ for all V1, V2 ∈ I. This 
ommon value uniquely asso
iated withthe promeasure µ = (µV )V ∈I , is 
alled its total mass and will be denoted by ‖µ‖. If thetotal mass is equal to one, we shall say that (µV )V ∈I is a probability promeasure on E.Suppose now that (µV )V ∈I and (νV )V ∈I are promeasures on E. Sin
e
(pV W )∗(µW ∗ νW ) = (pV W )∗(µW ) ∗ (pV W )∗(νW ) = µV ∗ νV

µ ∗ ν = (µV ∗ νV )V ∈I is again a promeasure on E, whi
h we shall 
all the 
onvolution ofpromeasures (µV )V ∈I and (νV )V ∈I . It is 
lear that 
onvolution of probability promeasuresis also a probability promeasure. If T : E → E is R-linear and 
ontinuous, then for any
V ∈ I also T−1(V ) ∈ I and so the linear operator

TV : E/T−1(V ) → E/V, TV (pT−1(V )f) = pV (Tf),

f ∈ E, is well de�ned. Moreover, it is inje
tive. Let (TV )∗ : M(E/T−1(V )) → M(E/V )be the indu
ed homomorphism of measure algebras. Proofs of the following simple fa
ts
an be found in [15℄.Proposition 1. Suppose (µV )V ∈I is a promeasure on E. Then ν = (νV )V ∈I , where νV =

(TV )∗(µT−1(V )), is also a promeasure on E, whi
h we shall denote by T∗(µ). Moreover,
‖T∗(µ)‖ = ‖µ‖.Suppose now that x′ ∈ E′. If µ = (µV )V ∈I is a promeasure on E, then µx′ = (x′)∗(µ)is a �nite measure on R. Hen
e

F(µ)(x′) =

∫ ∞

−∞

eitµx′(dt),is a fun
tion on E′ whi
h we shall 
all the Fourier transform of the promeasure µ. Itis a positive de�nite fun
tion whi
h is 
ontinuous on every �nite dimensional subspa
eof E′ [14℄. Let us re
all that E′ as the topologi
al dual spa
e is equipped with the
σ(E′, E)-topology.



342 P. ŁUGIEWICZ AND R. OLKIEWICZProposition 2. If µ = (µV )V ∈I and ν = (νV )V ∈I are promeasures on E, then for all
x′ ∈ E′,

F(µ ∗ ν)(x′) = F(µ)(x′) · F(ν)(x′).Proposition 3. If T : E → E is R-linear and 
ontinuous, then for any promeasure µon E, F(T∗(µ)) = F(µ) ◦ T ′, where T ′ : E′ → E′ is the dual operator.Combining Propositions 2 and 3 we obtain the following:(1) F(µ ∗ (T∗ν)) = F(µ) · (F(ν) ◦ T ′).4. Perturbed 
onvolution semigroups of promeasures. Suppose that (St)t≥0 is asemigroup of R-linear and 
ontinuous operators in E, i.e. S0 = id and St ◦ Ss = St+sfor all s, t ≥ 0. Let µt = (µV (t))V ∈I , t ≥ 0, be a family of probability promeasures on
E. We shall say that µt is an St-perturbed 
onvolution semigroup if µ0 = δ~0, where δ~0denotes the point measure 
on
entrated in the zero ve
tor in E, and for all s, t ≥ 0,(2) µt ∗ [(St)∗µs] = µs+t,i.e. for all V ∈ I the following equality holds(3) µV (t) ∗ [(St,V )∗µS−1

t
(V )(s)] = µV (s + t).Let r, s, t ≥ 0. The 
al
ulations

µt+s ∗ [(St+s)∗µr] = [µt ∗ (St)∗µs] ∗ [(St)∗(Ss)∗µr]

= µt ∗ [(St)∗(µs ∗ (Ss)∗µr)] = µt ∗ [(St)∗µs+r]show that this notion is well de�ned. Constru
tion of perturbed semigroups is similar tothat of typi
al 
onvolution semigroups. For example, one 
an prove the following.Theorem 4. Suppose that f0 ∈ E, Q is a quadrati
 positive form on E′, ν is a probabilitypromeasure on E and a > 0. Moreover, suppose thata) S′t : E′ → E′ is lo
ally Q integrable, i.e. for any x′ ∈ E′ and all t > 0 the followingintegral
Qt(x

′) =

∫ t

0

Q(S′rx
′)dr exists ,b) t → Stf0 is weakly lo
ally integrable,
) t → (St,V )∗νS−1

t
(V ) ∈ M(E/V ), where St,V : E/S−1

t (V ) → E/V is weakly∗-measurable for all V ∈ I.Then the family µt, t ≥ 0, given by(4) µt = µD
t ∗ µQ

t ∗ µP
tis an St-perturbed 
onvolution semigroup on E, where

µD
t = δ

(
∫ t

0

Srf0 dr

)

,

∫ t

0

Srf0 dr ∈ E′∗,
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µQ

t is the Gaussian promeasure asso
iated with Qt, i.e. the unique promeasure on E su
hthat F(µQ
t )(x′) = e−Qt(x

′)/2, and
µP

t = e−at exp

[

a

∫ t

0

(Sr)∗νdr

]

is the Poisson promeasure asso
iated with the promeasure ∫ t

0
(Sr)∗νdr.Proof. Be
ause the 
onvolution of St-perturbed 
onvolution semigroups is also an St-perturbed 
onvolution semigroup, it is enough to prove that ea
h fa
tor in equation (4)is an St-perturbed 
onvolution semigroup. We 
he
k this property for the last 
ase, i.e.for µP

t . To this end we pro
eed by steps.Step 1. Be
ause the fun
tion t → (St,V )∗νS−1

t
(V ) is weakly∗-measurable and

‖(St,V )∗νS−1

t
(V )‖ = 1 for all t ≥ 0, there exists a measure νV (t) ∈ M(E/V ) su
h that forany f ∈ C0(E/V ),

νV (t)(f) =

∫ t

0

(Ss,V )∗νS−1
s (V )(f)ds.We show that νt = (νV (t))V ∈I is a promeasure on E. Let V ≤ W . Then, for any t ≥ 0,

(pV W )∗νW (t) = (pV W )∗

[
∫ t

0

(Ss,W )∗νS−1
s (W )ds

]

=

∫ t

0

(pV W ◦ Ss,W )∗νS−1
s (W )ds

=

∫ t

0

(Ss,V ◦ pS−1
s (V )S−1

s (W ))∗νS−1
s (W )ds =

∫ t

0

(Ss,V )∗νS−1
s (V )ds = νV (t).Step 2. If ν is a promeasure on E, then µ = (µV )V ∈I given by µV = eνV is also apromeasure on E. By de�nition,

µV = δ~0 + νV +
νV ∗ νV

2!
+ ...Be
ause ‖νV ∗ νV ‖ = ‖νV ‖2, the series is norm 
onvergent in M(E/V ). Suppose that

V ≤ W . Be
ause (pV W )∗ is norm 
ontinuous,
(pV W )∗µW = lim

n→∞
(pV W )∗

n
∑

k=0

(νW )k

k!
= µV .Step 3. For a probability promeasure ν on E we de�ne

µP
t = e−at exp

[

a

∫ t

0

(Ss)∗νds

]

,where a > 0. By steps 1 and 2, µP
t is a probability promeasure on E su
h that µP

0 = δ~0.We show that (µP
t )t≥0 is an St-perturbed 
onvolution semigroup. Let V ∈ I. Then (weomit the upper index P )

µV (t) ∗ [(St,V )∗µS−1

t
(V )(s)] = e−a(t+s) exp[a(νV (t) + (St,V )∗νS−1

t
(V )(s))]

= e−a(t+s) exp

[

a

(
∫ t

0

(Sr,V )∗νS−1
r (V )dr +

∫ s

0

(St,V )∗(Sr,S−1

t
(V ))∗νS−1

r (S−1

t
V )dr

)]

.Be
ause St,V ◦ Sr,S−1

t
(V ) = Sr+t,V , we have

µV (t) ∗ [(St,V )∗µS−1

t
(V )(s)]
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= e−a(t+s) exp

[

a

(
∫ t

0

(Sr,V )∗νS−1
r (V )dr +

∫ s

0

(St+r,V )∗νS−1

t+r
(V )dr

)]

= e−a(t+s) exp

[

a

(
∫ t+s

0

(Sr,V )∗νS−1
r (V )dr

)]

= µV (t + s).Guided by the theory of sto
hasti
 pro
esses we shall 
all su
h a semigroup the Poisson
St-perturbed 
onvolution semigroup.5. Sto
hasti
 dynami
s on CCR algebras. In order to 
onstru
t a quantum dynam-i
al semigroup on W = W(S) we 
ombine a deterministi
 evolution given by a semigroupof inje
tive algebrai
 homomorphisms of W and a sto
hasti
 evolution represented by aperturbed 
onvolution semigroup of probability promeasures. Let (St)t≥0 be a semigroupof R-linear and 
ontinuous operators on (S, τ ) su
h that σ(Stf, Stg) = σ(f, g) for all
f, g ∈ S and all t ≥ 0. It was shown in [16℄ that with su
h a semigroup one 
an asso
iate asemigroup of algebrai
 and unital ∗-homomorphisms αt : W → W whi
h extend the maps
αt(W (f)) = W (Stf), f ∈ S. It is worth pointing out that sin
e W is simple, all αt areinje
tive. It is 
lear that su
h a semigroup generalizes the notion of automorphi
 evolu-tion. Sin
e all αt are inje
tive and map unitary operators from W into unitary operatorswe shall say that (α)t≥0 represents a deterministi
 evolution of the system.Now let E = S′, where S′ is the topologi
al dual spa
e to (S, τ ). S′ with the σ(S′, S)-topology is a lo
ally 
onvex topologi
al ve
tor spa
e over R su
h that S′′ = S. Sin
e thetopology τ is stronger than the norm topology, the in
lusion S ⊂ H ⊂ S′ holds, where
H = S̄, see se
. 2. Let (S′t)t≥0, S′t : S′ → S′, the dual semigroup. By de�nition, S′t are
R-linear and 
ontinuous operators on S′ su
h that (S′t)

′ = St.Theorem 5. Suppose that (µt)t≥0 is an S′t-perturbed 
onvolution semigroup of probabilitypromeasures on S′. Then there exists a unique quantum dynami
al semigroup (Tt)t≥0,
Tt : W → W, su
h that(5) TtW (f) = F(µt)(f)W (Stf),for all f ∈ S.Proof. Let T 0

t W (f) = Γt(f)W (f), where Γ(f) = F(µt)(f), and f ∈ S. We show thatthe operator T 0
t 
an be extended to a 
ompletely positive norm 
ontra
tive and unitaloperator on W . By linearity, T 0

t : ∆(S) → ∆(S). The spa
e S when equipped withthe dis
rete topology is an Abelian group whose dual group (the group of 
hara
ters)
Ŝ equipped with the Gelfand topology is a 
ommutative 
ompa
t group. The pairingbetween S and Ŝ we denote by (f, f̂), f ∈ S and f̂ ∈ Ŝ. Let us re
all that the Gelfandtopology on Ŝ is de�ned by the system of neighborhoods of the neutral element

{O(f1, ..., fn; r) : r > 0, n ∈ N, fi ∈ S},where
O(f1, ..., fn : r) = {f̂ ∈ Ŝ : (fi, f̂) ∈ Ur ∀i = 1, ..., n},and Ur = {z ∈ C : |1− z| < r}. With a 
hara
ter f̂ one 
an asso
iate a ∗-automorphism

βf̂ of ∆(S) de�ned by βf̂W (f) = (f, f̂)W (f), and then extended by linearity to ∆(S).
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e Γt is a positive de�nite fun
tion on the group S and Γt(~0) = 1, for any t ≥ 0 thereexists a probability Borel measure µ̂t on Ŝ su
h that
Γt(f) =

∫

Ŝ

(f, f̂)µ̂t(df̂),see for example [17℄. Hen
e, for any x ∈ ∆(S),(6) T 0
t (x) =

∫

Ŝ

βf̂ (x)µ̂t(df̂).Be
ause ‖βf̂ (x)‖ = ‖x‖, we have ‖T 0
t (x)‖ ≤ ‖x‖, and T 0

t 
an be extended to a 
ontra
tiveoperator on the algebra W . It is also 
lear that T 0
t (1) = 1. Sin
e the formula (6) holdsfor any A ∈ W , for all A1, ..., An and B1, ..., Bn from W we get

n
∑

i,j=1

B∗j (T 0
t (A∗jAi))Bi =

n
∑

i,j=1

B∗j

[
∫

Ŝ

βf̂ (Aj)
∗βf̂ (Ai)µ̂t(df̂)

]

Bi

=

∫

Ŝ

(

n
∑

j=1

βf̂ (Aj)Bj

)∗(
n

∑

i=1

βf̂ (Ai)Bi

)

µ̂t(df̂) ≥ 0.Thus T 0
t is 
ompletely positive for all t ≥ 0.Let us now de�ne Tt : W → W , Tt = αt ◦ T 0

t , t ≥ 0. By de�nition, Tt is a norm
ontra
tive 
ompletely positive and unital operator on W . Let us 
he
k that (Tt)t≥0 isa semigroup. Clearly, it is enough to show the semigroup property on Weyl operators.Suppose that s, t ≥ 0 and f ∈ S. Then
(Ts ◦ Tt)W (f) = (αs ◦ T 0

s )(αt ◦ T 0
t )W (f) = (αs ◦ T 0

s )(Γt(f)W (Stf))

= Γt(f)Γs(Stf)W (Ss+tf).Be
ause (µt)t≥0 is an S′t-perturbed 
onvolution semigroup on S′, by formula (1) we have
Γt(f)Γs(Stf) = Γs+t(f). Hen
e (Ts ◦ Tt)W (f) = Ts+tW (f).6. Extension of Tt to π(W)′′. Suppose that St = eitH , H = H∗ : S̄ → S̄, and
H : S → S.Remark. For a regular representation π of W the mapping π(W (f)) → π(W (eitHf))extends to a one-parameter group of π-inner automorphisms of π(W)′′.For any t ≥ 0 and f ∈ S

F(µt)(f) =

∫

Ŝ

(f, f̂)µ̂t(df̂),where µ̂t is a probability Borel measure on Ŝ. For any f̂ ∈ Ŝ there exists an automorphism
αf̂ of W given by αf̂W (f) = (f, f̂)W (f). The automorphism αf̂ of W is 
alled π-extendable if there exists an automorphism ᾱf̂ : π(W)′′ → π(W)′′ su
h that

ᾱf̂ |π(W) = π ◦ αf̂ ◦ π−1.From the very de�nition one 
an show the following.



346 P. ŁUGIEWICZ AND R. OLKIEWICZTheorem 6. If for any t > 0 there exists a Borel set Bt ⊂ Ŝ su
h thata) ∀f̂ ∈ Bt αf̂ is π-extendable,b) µ̂t(Bt) = 1 ∀t > 0,then π◦Tt◦π−1 : π(W) → π(W) has a unique extension to a quantum Markov semigroupon π(W)′′.Remark. Automorphisms asso
iated to 
hara
ters f → eiσ(g, f) are π-extendable forall π.A
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