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1. Introduction. There have been much interest in the irreversible dynamics of quan-
tum systems in recent years. Most of it, however, concentrated either on finite dimensional
systems described by matrix algebras (as for example in quantum optics [1]) or on the
standard quantum mechanics [2-6]. In the later case observables of the quantum system
are represented by self-adjoint operators acting on some Hilbert space and states are
described by positive normalized trace class operators, the so-called density matrices. In
both cases a number of the master equations which describe irreversible evolution of the
quantum system in the Markovian approximation have been discussed. However, many of
realistic physical systems like Bose or Fermi gases cannot be represented by such simple
objects. They are described by the GNS representations of some abstract C*-algebras. For
infinite spin systems, that is for canonical anticommutation relations (CAR) algebras, the
concept of the quantum Markov semigroup has been studied in a number of papers, see
for example [7-9]. The discussion of irreversible dynamics of canonical commutation rela-
tions (CCR) algebras is less advanced and concentrated mainly on the so-called quasi-free
dynamical semigroups [10, 11]. They are, however, interesting objects for physicists since
type III factors being the o-weak closure of the temperature representations of the CCR
algebras describe realistic Bose gases. In this paper we address the question how one can
construct a class of quasi-free dynamical semigroups both on the CCR algebras and the
corresponding von Neumann algebras.

2. Algebras of canonical commutation relations. The aim of this section is to
set up a formalism in which we can discuss systematically the canonical commutation
relations for a finite and infinite number of degrees of freedom. A comprehensive discussion
of this subject can be found in [12]. Suppose S is a real linear space equipped with a
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nondegenerate symplectic bilinear form o : S x .S — R. Moreover, we assume that there
exists a linear operator J on S with the following properties

o(Jf, 9) = —o(f, Jg), J* = —id.

By means of J and ¢ one can introduce a complex pre-Hilbert space with the scalar
multiplication and the scalar product defined by

(A1 + i) f = Mif + XJf, M ER,

(f, 9y =0o(f, Jg) + io(f, g),

where f, g € S. Its norm completion will be denoted by H. On S there is usually defined
its own topology 7, which is stronger than the norm topology and which makes S a real
locally convex topological vector space, for the definition see the next subsection. The case
in which S is infinite dimensional is typical for field theories and many-body problems,
whereas finite dimensional S corresponds to quantum mechanics of a finite number of
particles. Let A(S) be the space of formal linear combinations

A(S) = {ﬁiit:ezkw(fk)},

where 2z, € C, fr € S, and W(f;) being abstract symbols called the Weyl operators.
Clearly A(S) is a complex linear space. The product of two Weyl operators is defined as

W(f)W(g) =e “TI2W(f + g),

while the *-operation as W(f)* = W(—f), and they are next extended to A(S) by
linearity (anti-linearity) respectively. The completion Aq(S) of A(S) with respect to the
norm || >z W (fe)ll1 = > |2k| is a Banach *-algebra. We now define a new norm on
Aq(S) by

1B = sup[=(R)], R € Ai(S),

where the supremum is taken over all nondegenerate representations m of A;(S) for which
m(W(AS)), f € S, is continuous in A € R with respect to the o-weak topology on B(H,).
The completion of A(S) with respect to this norm is a C*-algebra, say W(S), which we
refer to as the C*-algebra of the canonical commutation relations [13]. It is worth noting
that such an algebra is simple.

3. Promeasures on locally convex topological vector spaces. Suppose F is a
locally convex topological vector space over R, i.e. such that its topology is defined by
a family of seminorms separating points. It is clear that the topology of a locally convex
space is always Hausdorff. Such spaces appear naturally in physical applications as spaces
of test functions like, for example, the space of smooth functions with compact support.
By E’ we denote the topological dual, and by E* the algebraic dual of the space E.
Let I be the set of all closed linear subspaces V in E such that dim(E/V) < oo, and
let py : E — E/V be the canonical projection. We say that V. < W, VW € I, if
W C V. For any V < W we define a surjective linear map pyw : E/W — E/V by
pvw (owf) =pvf, f € E. Then (E/V, pyw, I) is a projective net of finite dimensional
locally convex (and hence locally compact) topological vector spaces. The projective
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limit of this net is canonically isomorphic to the topological space E’* equipped with
the o(E"™, E')-topology. Let M(E/V) denote the set of all complex measures on E/V
with finite variations. M (E/V), when equipped with the natural sum and multiplication
by scalars, the multiplication given by convolution #*, and the norm ||uy || = |pv|(E/V),
is a Banach algebra. As a Banach space M(E/V) is the dual space to Co(E/V), the
Banach space of continuous functions on E/V vanishing at infinity with the sup-norm.
By definition, see [14], a promeasure on E is an arbitrary projective net (uy, (pvw)«, 1),
where py is a positive finite measure on E/V, (pyw )« : M(E/W) — M(E/V) is the
induced algebraic homomorphism, and (pyw).«(pw) = py for all V. < W. It is worth
noting that in general the projective limit lim._ puy may not exist on E’*. However, if
dimE < oo, then any promeasure on E can be identified with a measure in an obvious
way. To simplify notation we shall denote a promeasure by (uy )yer or just by p, if there
is no risk of confusion. Because for all V < W,

v (E/V) = (pvw)sbw (E/V) = pw (pyyy (B/V)) = pw (E/W),

we have [|uy, || = ||pv, || for all V1, V5 € I. This common value uniquely associated with
the promeasure u = (uy)ver, is called its total mass and will be denoted by ||g|. If the
total mass is equal to one, we shall say that (uy)yer is a probability promeasure on E.

Suppose now that (uy)ver and (vy)yer are promeasures on E. Since

(pvw)«(pw *vw) = (Dvw )« (w) * (Pvw )« (vw) = py * vy

w*v = (uy *vy)yer is again a promeasure on E, which we shall call the convolution of
promeasures (v )ver and (vy)yer. It is clear that convolution of probability promeasures
is also a probability promeasure. If T': E — FE is R-linear and continuous, then for any
V €I also T~1(V) € I and so the linear operator

Tv: E/T"Y(V) = E/V, Tv(pr-10nf) =pv(Tf),

[ € E, is well defined. Moreover, it is injective. Let (Ty ). : M(E/T~Y(V)) — M(E/V)
be the induced homomorphism of measure algebras. Proofs of the following simple facts
can be found in [15].

PROPOSITION 1. Suppose (uy)ver is a promeasure on E. Thenv = (vy)yer, where vy =
(Tv )« (pr-1(v), is also a promeasure on E, which we shall denote by T.(u). Moreover,

1Tl = llpell-

Suppose now that 2’ € E’. If u = (uy)ver is a promeasure on E, then p,r = (2/).(p)
is a finite measure on R. Hence

F) = [ ctpaar),
— 0o
is a function on E’ which we shall call the Fourier transform of the promeasure p. It
is a positive definite function which is continuous on every finite dimensional subspace
of E’ [14]. Let us recall that E’ as the topological dual space is equipped with the
o(E', FE)-topology.
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PROPOSITION 2. If u = (uv)ver and v = (vv)yer are promeasures on E, then for all
7 e F,
Flpxv)(a) = F(u)(@') - Fv)(a').

ProrosiTION 3. If T : E — FE is R-linear and continuous, then for any promeasure p
on E, F(T.(n)) = F(p) oT', where T' : E' — E' is the dual operator.

Combining Propositions 2 and 3 we obtain the following:

(1) Flux (Tu) = Fu) - (Fw) o T').

4. Perturbed convolution semigroups of promeasures. Suppose that (S¢);> is a
semigroup of R-linear and continuous operators in F, i.e. Sp = id and Sy 0 S5 = Siys
for all s, t > 0. Let py = (uv(t))ver, t > 0, be a family of probability promeasures on
E. We shall say that p; is an Si-perturbed convolution semigroup if jg = 05, where 5
denotes the point measure concentrated in the zero vector in E, and for all s, t > 0,

(2) pie * [(Se)spts] = pstts
i.e. for all V' € I the following equality holds

(3) v (8) % (St )bt 1 (8)] = v (s + 1),
Let r, s, t > 0. The calculations

Ptts * [(Sts)stir] = [pre % (St)uprs] * [(St)x(Ss)wpir]

= fu * [(St)w (b5 * (Ss)uptr)] = pe * [(Se) sttstr]
show that this notion is well defined. Construction of perturbed semigroups is similar to
that of typical convolution semigroups. For example, one can prove the following.
THEOREM 4. Suppose that fo € E, Q is a quadratic positive form on E’, v is a probability
promeasure on E and a > 0. Moreover, suppose that
a) S} . E' — E' is locally Q integrable, i.e. for any ©' € E' and all t > 0 the following
integral

¢
Qu(2') = /0 Q(S.z")dr exists,

b) t — Sy fo is weakly locally integrable,
c)t — (Stvv)*’/s,fl(v) € M(EJV), where Siy : E/S;YV) — E/JV is weakly*-
measurable for all V € 1.

Then the family us, t > 0, given by

(4) pe = pl xopg x ol

s an Sy-perturbed convolution semigroup on E, where

t t
b = 5( / Srfodr>7 | sefdr e B,
0 0
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th 1s the Gaussian promeasure associated with Q;, i.e. the unique promeasure on E such
that F(ul)(a') = e Q@)/2 | gnd

¢
puf =e exp {a/ (S,«)*Vdr]
0

1s the Poisson promeasure associated with the promeasure fg(ST)*z/dr.

Proof. Because the convolution of Si-perturbed convolution semigroups is also an Si-
perturbed convolution semigroup, it is enough to prove that each factor in equation (4)
is an S;-perturbed convolution semigroup. We check this property for the last case, i.e.
for uf’. To this end we proceed by steps.

Step 1. Because the function t — (St.v)*stl(V) is weakly*-measurable and
’ t

||(Sth)*”S;1(V)|| =1 for all ¢ > 0, there exists a measure vy (t) € M(E/V) such that for
any f € Co(E/V),

w00) = [ (S)ws (s

We show that vy = (vy(t))ver is a promeasure on E. Let V' < W. Then, for any ¢ > 0,
t

t
(pvw)svw (1) = (pvw)- [/O (Ss,w)*l/ssnw)ds} :/0 (Pvw © Ss,w)«Vg 1 (yyds

t

¢
= (Ss,v Opsgl(V)Sgl(W))*ngl(W)ds = (SS’V)*I/S?(V)ds = vy (t).
0 0

Step 2. If v is a promeasure on FE, then p = (uy)ver given by py = e’V is also a
promeasure on E. By definition,

vy * vy
MV:(sGJrVV + ol + ...
Because ||vy * vi|| = ||vy||?, the series is norm convergent in M(E/V). Suppose that
V < W. Because (pyw )« is norm continuous,
n k
. vw
(pvw)epw = lim (pyw ). kz% ( k:!) = pv-

Step 3. For a probability promeasure v on E we define

t
pf =e exp {a/ (SS)*VdS],
0

where a > 0. By steps 1 and 2, ,uf is a probability promeasure on E such that uég = 05
We show that (uf);>o is an S;-perturbed convolution semigroup. Let V' € I. Then (we
omit the upper index P)

v () % [(Sev Vet 1y (8)] = €=+ expla(vy (8) + (St )avis 1 (5))]

t s
= e*a(tJrS) exp |:a</0 (STaV)*VS;l(V)dT + /0 (Sth)*(Sr,S,I(V))*VSTI(SfV)dT)}

Because Sy o Sr,s;l(v) = Sp4+,v, we have

pv (8) * [(Se,v )strg=1 () (5)]
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t s
— oalt+s) exp {a(/o (Snv)*I/ST—l(V)d’r + /0 (St+T7V)*l/St—+1T(V)dT>:|

t+s
= e t+s) oxp [a(/ (Sr,v)*l/sgl(v)drﬂ =pv(t + s).
0

Guided by the theory of stochastic processes we shall call such a semigroup the Poisson
Si-perturbed convolution semigroup. m

5. Stochastic dynamics on CCR algebras. In order to construct a quantum dynam-
ical semigroup on W = W(S) we combine a deterministic evolution given by a semigroup
of injective algebraic homomorphisms of W and a stochastic evolution represented by a
perturbed convolution semigroup of probability promeasures. Let (S;);>0 be a semigroup
of R-linear and continuous operators on (S, 7) such that o(S:f, Stg) = o(f, g) for all
fyg € Sand all t > 0. It was shown in [16] that with such a semigroup one can associate a
semigroup of algebraic and unital *-homomorphisms a; : W — W which extend the maps
ar(W(f)) = W(S.f), f € S. It is worth pointing out that since W is simple, all a; are
injective. It is clear that such a semigroup generalizes the notion of automorphic evolu-
tion. Since all iy are injective and map unitary operators from )V into unitary operators
we shall say that (a);>o represents a deterministic evolution of the system.

Now let E = S’, where S’ is the topological dual space to (S, 7). S” with the o(S5’, S)-
topology is a locally convex topological vector space over R such that S” = S. Since the
topology 7 is stronger than the norm topology, the inclusion S C H C S’ holds, where
H =S, see sec. 2. Let (S})i>0, S : S — ', the dual semigroup. By definition, S; are
R-linear and continuous operators on S’ such that (S})" = S;.

THEOREM 5. Suppose that (pu)i>0 is an S;-perturbed convolution semigroup of probability
promeasures on S'. Then there exists a unique quantum dynamical semigroup (T})i>o,

T, W — W, such that

(5) TW(f) = F(pue) (f )W (Se.f),
forall f€S.

Proof. Let TPW (f) = Tu(f)W(f), where I'(f) = F(u:)(f), and f € S. We show that
the operator 77 can be extended to a completely positive norm contractive and unital
operator on W. By linearity, 7 : A(S) — A(S). The space S when equipped with
the discrete topology is an Abelian group whose dual group (the group of characters)
S equipped with the Gelfand topology is a commutative compact group. The pairing
between S and S we denote by (f, f), f € S and f € S. Let us recall that the Gelfand
topology on S is defined by the system of neighborhoods of the neutral element

{O(f1, s fu;r): 7>0,n €N, f; € S},
where
O(fts s fo:r)={fe€S: (f;, feU.Vi=1,...n},
and U, ={z € C: |1 —z| <r}. With a character f one can associate a *-automorphism
B of A(S) defined by B:W(f) = (f, /)W (f), and then extended by linearity to A(S).
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—,

Since T'; is a positive definite function on the group S and I';(0) = 1, for any ¢ > 0 there
exists a probability Borel measure fi; on S such that

ry(f) = /S (f. Pin(df),

see for example [17]. Hence, for any z € A(S),

) 0= [ 8@

Because [|3(z)| = [|z]|, we have |72 (2)|| < ||z||, and T can be extended to a contractive
operator on the algebra W. Tt is also clear that T (1) = 1. Since the formula (6) holds
for any A € W, for all Aq,..., A, and By, ..., B, from W we get

Z B (TP (A5 A))B; = Z B*Uﬂf -)ﬂt(df)]B

= [(X s )(Zﬁf B)iu(df) >

Thus 7T} is completely positive for all ¢t > 0.

Let us now define T, : W — W, T; = oy o TP, t > 0. By definition, T} is a norm
contractive completely positive and unital operator on W. Let us check that (7});>¢ is
a semigroup. Clearly, it is enough to show the semigroup property on Weyl operators.
Suppose that s, t > 0 and f € S. Then

(Ts o TYW(f) = (as 0 T)(ae 0 TYYW(f) = (a5 0 T)(Le (/)W (Sef))
= (ST (Sef)W (Ssyif)-

Because (p¢)¢>0 is an Si-perturbed convolution semigroup on S’, by formula (1) we have
Ly(/)Ts(Sef) = Tspe(f). Hence (T o Ty)W(f) = Tsr e W(f). m

6. Extension of T} to m(W)". Suppose that S; = e*# H = H*: S — S, and
H: S—S5.

REMARK. For a regular representation m of YW the mapping 7(W(f)) — 7(W (e f))

extends to a one-parameter group of 7-inner automorphisms of w(W)".

Foranyt >0 and f €S

Flun)(f) = / (f. Pin(df),

S

where [i; is a probability Borel measure on S. For any f € S there exists an automorphism
a; of W given by a;W(f) = (f, /)W(f). The automorphism a of W is called 7-
extendable if there exists an automorphism a; : m(W)"” — m(W)" such that

Aflaowy = moajor .

From the very definition one can show the following.
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THEOREM 6. If for any t > 0 there exists a Borel set By C S such that

a) Vf € B, o is m-extendable,
b) /lt(Bt) == 1 Vt> 0,

1

then moTyor™t . w(W) — w(W) has a unique extension to a quantum Markov semigroup

on m(W)".

REMARK. Automorphisms associated to characters f — €79 f) are m-extendable for
all 7.
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