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Abstract. A map ¢ : M,,(C) — M, (C) is decomposable if it is of the form ¢ = 1 + @2 where
1 is a CP map while ¢35 is a co-CP map. It is known that if m = n = 2 then every positive
map is decomposable. Given an extremal unital positive map ¢ : M2(C) — M (C) we construct
concrete maps (not necessarily unital) ¢1 and g2 which give a decomposition of ¢. We also show
that in most cases this decomposition is unique.

1. Introduction. If A is a C*-algebra and n € N then by M,,(A) we denote the C*-
algebra of square n x n-matrices with coefficients in A. In particular M, (C) is the algebra
of matrices with complex entries. For each m,n € N we have the following isomor-
phisms:

(1.1) My (My,(C)) 22 My (C) @ My (CT) = My (C).

It follows that M,,(M,(C)) has the natural structure of a C*-algebra. In particular
one defines the conjugation of A = [Aij]f?jzl € My, (M,(C)) (where A;; € M,(C) for

i,j = 1,...,m) by the formula A* = [A},]/",_;. Recall (see for example [6, 2|) that
A is positive in M,,(M,(C)) if and only if ZZ}:l it (vi, Aijuj) > 0 (i.e. the ma-

trix [(vi, Aijv)]7%—; is a positive element of M,,(C)) for every vy,...,v, € C" and
U1,y b € C. We say that A is block-positive if szjzl it (v, Aijv) > 0 (i.e. the ma-
trix [{v, A;jv)]7%_; is positive in M,,(C)) for every v € C" and p1, . .., i € C. For every
A = [Ay]721 € My (M, (C)) we define the partial transposition of A by AT = [A;]/"_;.

Note the difference between this operation and the usual transposition A — AT on the
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algebra M;,,,(C) (cf. (1.1)): the usual transposition preserves positivity of A while, for
n,m > 2, partial transposition does not!

A linear map ¢ : M,,,(C) — M, (C) is called a positive map if p(A) is a positive
matrix for every positive matrix A € M,,(C). If k € N then ¢ is called k-positive map
(respectively k-copositive map) whenever [@(Aij)]f’jzl (respectively [@(Aji)]ﬁjzl) is a
positive element in the algebra My (M, (C)) for every positive element [A;;]¥,_,
My (M, (C)). If ¢ is k-positive (respectively k-copositive) for every k € N then ¢ is
called completely positive or CP (respectively completely copositive or co-CP). A positive

from

map which is a sum of completely positive and completely copositive maps is called
decomposable 1.

Let {E;;}]"—; be a system of matrix units in M,,(C) and H, = [p(E)]]=; €
M, (M, (C)) be Choi matriz of ¢ with respect to the system {E;;} ([1], see also [4]).
Recall the following

THEOREM 1.1 ([1], see also [4]). Let ¢ : M,,(C) — M, (C) be a linear map. Then

1. the map ¢ is positive if and only if the matriz H, is block-positive;
2. the map @ is completely positive (respectively completely copositive) if and only if H,
(respectively HY, ) is a positive element of M,, (M, (C)).

We say that a positive map ¢ is unital if o(I) = I where I denotes the identity
matrix of the respective algebra. The set of all positive (respectively completely positive,
completely copositive, decomposable) maps from M,,(C) into M, (C) will be denoted
by P(m,n) (respectively CP(m,n), CcP(m,n), D(m,n)). We will write simply P, CP,
CcP and D instead of P(m,n), CP(m,n), CcP(m,n) and D(m,n) when no confusion can
arise. Observe that all of these sets have the structure of a convex cone. By P;, CP1,
CcP; and Dy we will denote the subsets of unital maps from respective cones. All of them
are convex subsets.

Let C be a convex cone and ¢ € C. We say that c is an extreme point of C' if for every
c1, o € C the equality ¢ = ¢; 4 ¢o implies ¢; = Ac and ¢3 = (1 — X)c for some 0 < )\ < 1.
The generalization of the notion of extremality leads to the face structure of the cone C.
Namely, we say that a convex subcone F' C C'is a face of C if for every c1,co € C the
condition ¢; 4+ ¢o € F implies ¢1,co € F. Kye in [3] gave an interesting characterization
of maximal faces of the cone P(m,n)

THEOREM 1.2 ([3]). A convez subset F' C P(m,n) is a mazimal face of P(m,n) if and
only if there are vectors £ € C™ and n € C" such that F' = F¢, where

(1.2) Fep={p € P(m,n): p(P)n=0}

and Pe denotes the one-dimensional orthogonal projection in M,,(C) onto the subspace
generated by the vector &.

n this paper we follow the definition of decomposability given by Stgrmer in [5]. Note that
there is no connection of this notion with decomposable maps considered by U. Haagerup in the
theory of operator spaces (see [2]).
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2. The case m = n = 2. In this section we analyze in detail the case m = n = 2. In [5]
the following characterization of extremal points of P; is given:

THEOREM 2.1. A positive unital map ¢ : Ma(C) — M3(C) is an extremal point of P
if and only if there are unitary operators V,W € U(2) such that the Choi matriz of the
map oy,w : A Vo(WAW*)V has the form

(2.1)

where the coefficients fulfil the following relations:

1.b>0,u>0andb+u=1,
2. [t|? = 2b(u — |y|* — |2|?) in the case when b # 0, and |y| =1 or |2| = 1 when b= 0.

By {e1,e2} we denote the canonical basis in C2. Let ¢ be an extremal positive unital
map as in Theorem 2.1. One can observe that ¢ € Fy,, for { = Wey and 1 = Ve; where
V, W are the unitary operators from Theorem 2.1. Suppose that ¢ = @1 + o where ¢
is a completely positive map while 5 is a completely copositive one. Then both ¢, and
2 should be elements of F¢ , because F , is a face (cf. Theorem 1.2).

REMARK 2.2. There are extremal maps of the form (2.1) which are neither completely
positive nor completely copositive (see Example 2.6 below). On the other hand theorem
of Woronowicz (see [7]) asserts that every map from P(2,2) is decomposable. Hence, the
maps 1 and @9 giving the decomposition of an extremal element of P;(2,2) do not need
be scalar multiples of unital maps.

In the sequel we will use the following lemmas.

LEMMA 2.3. Let v € F¢,, for some {,n € C2?, and V and W be unitary operators from
M (C) such that £ = Wey and n = Vey. Then the Choi matriz of the map Yv,w has the

form

(2.2)

for some a,b,u >0 and c,y, z,t € C. Moreover, the following conditions hold:

1. |e|* < ab,
2. [t|? < bu,
3. (lyl +120)* < aw.

Proof. Let us write briefly ¢’ instead of ¢y . The Choi matrix of the map ¢’ has the
form
_ |Y(En) ¢(Ei2)
H - / !/
V' (Ean) ¢'(E2)



350 W. A. MAJEWSKI AND M. MARCINIAK

From the condition (1.2) we get
V' (E)er = V(W EyuaW*)Vey = V*h(Pe)n = 0.
Because 1)'(Ea2) is a positive element of M (C) we have 1)/ (Fa2) = uFas for some u > 0.

Hence ¢/ (Fa) = {O

0 u} . Positivity of ¢’ implies also that ¢)'(E11) is a hermitian matrix

of the general form v/ (E1;) = [ C] with a,b > 0 and det¢/(Ey;) = ab— [¢|? > 0, so

b

+~ @ ol 2

we have (1). Let ¢/ (Eq2) = [f ] for some x,y, z,t € C. Because ¢ is positive we have
z

;] . By Theorem 1.1 H is block-positive, hence the

< 8l

¥ (Ba) = (Bly) = (Bua) = |
matrix
[(el, (En;eﬁ <€1,¢(E12)61>} _ [a m]

(e, (Ear)er) (e1, ' (Eaz)er) T 0

is positive and consequently z = 0. Thus we arrived at the form (2.2). Another application
of block-positivity of H leads to the conclusion that the matrix

[(627¢/(El1)€2> <€2,¢'(E12)62>} _ [b t}
(e2,9(Ea1)ea) (e2,V'(Ex)es)| |1 w
is positive, hence we get inequality (2).

Let w be a linear functional on M;(C). By Corollary 8.4 in [5] w is a positive functional
if and only if w(Eu) 2 0, w(EQQ) Z 0., W(E21) = W(Elg) and |w(E12)|2 S w(En)w(Egg).
Let us denote @ = w(E11), 8 = w(F22) and v = w(F12). Obviously w o ¢’ is a positive

functional for every positive w. From another application of this result of Stgrmer we get
that the inequality

(2.3) vy + 7z + 6t° < Bu(aa+ Bb + 2R(vc))

holds whenever a > 0, 8> 0 and |y|?> < af. Inequality (2.3) can be written in the form
(2.4) vy +72 + B2t + 2R((vy + 72)01) < Bu(aa + Bb+ 2R(yc)).

Putting here —v instead of v we get

(2.5) vy +721% + B%|t* — 2R[(vy +72)B] < Bu(aa + Bb — 2R(c)).

If we add (2.4) and (2.5) and divide the result by 2, then we get

(2.6) vy + 727 + B2t < Bulaa + pb).

This can be rewritten equivalently as

(2.7) V2 (lyl? + [27) + 2R(y=7?) + B2t < Bu(aa + 5b)

Let € > 0 and take o = ¢!, 3 = € and  such that |y| = 1 and yz7? = |y||z|. Then (2.7)
has the form

(2.8) (19l +12D)? < au+2(bu— [t]?)

Because ¢ can be chosen arbitrarily small, we get the inequality (3) and the proof is

finished. m
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LEMMA 2.4. A map ) € F¢, is completely positive if and only if the coefficients of the
matriz H from (2.2) fulfil the following conditions:

(A1) z =0,
(A2) |y* < au,

(A3) [t]? < bu,

(A4) |c|® < ab,

(A5) alt|? + ulc|? < blau — |y|?) + 2R(cty).

Analogously, 1 is completely copositive if and only if the following conditions hold:

(B1) y =0,
(B2) |2 < au,

(B3) [t < bu,

(B4) |c|? < ab,

(B5) alt|* + ule|? < blau — |2|?) + 2R(ctz).

Proof. By Theorem 1.1 and properties of unitary equivalence 1 is completely positive

if and only if the matrix H is positive. This is equivalent to the fact that all principal
minors of H are nonnegative. Conditions (A2), (A3) and (A4) follow from the fact that

@I >, l_) > 0 and ’c_L lc) > 0. (A1) is a consequence of the equality det H =
y o u c

a ¢ vy
—|2|?(au — |y|?) and (A2). Inequality in (A5) is equivalent to [¢ b ¢|>0.

7t ou

The second part of the lemma follows in the similar way from positivity of the matrix
H" in the case when 1)’ is completely copositive. m

REMARK 2.5. If ¢ is an extremal positive unital map described in Theorem 2.1 with the
Choi matrix (2.1) then by condition (3) from Lemma 2.3 |y| 4 |2| < u!'/2. Lemma 8.11 in
[5] claims that in the case b > 0 a stronger condition holds. Namely,

(2.9) ol + 1] = ul/2.
Moreover, it follows from Lemma 8.8 in [5] that in this case
(2.10) t2 = —4(1 — u)yz.
EXAMPLE 2.6. Consider the map 9 : M3(C) — M3(C) with the Choi matrix
1 0 0 35
0 1—s? 1s is(1—s?)1/2
0 35 0 0
%s —is(1 — 52)1/2 0 52

where 0 < s < 1. It follows from Theorem 2.1 (compare also with (2.9) and (2.10)) and
Lemma 2.4 that ) is an extremal positive unital map which is neither completely positive
nor completely copositive.

Now, we are ready to formulate our main theorem.
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THEOREM 2.7. Assume that ¢ is an extremal positive unital map with the Choi matriz
giwen in (2.1) and uw > 0, y # 0, z # 0. Then there are 1,y € F¢, such that ¢y is
completely positive, o is completely copositive and ¢ = p1+p2. Moreover, the pair v1, 2
is uniquely determined, and Chot matrices Hy, Hy of maps ¢1, w2 have the following

form:
lylu=!/2 ¢ } 0y
¢ — —1/2 1
(2.11) H, — c |2](1 — w)u 0 st ’
0 0 0 0
y i 0 fyfu?
|z|u=1/? —c ‘ 0 0
_C 1— —-1/2 = 1
(2.12) H, = ¢ WlA-wu z ot
0 z 0 0
0 it 0 |zlut/?

where u,y, z,t are the coefficients of the matriz (2.1) and c¢ is a complex number such
that ¢ = —(1 — u)u~lyz.

REMARK 2.8. The uniqueness of the decomposition of ¢ onto ¢; and @2 does not hold
if the assumptions of the above theorem are not fulfilled. To see this let us consider the
following cases:

1. w = 0. Then the Choi matrix of the map ¢ has the following form

and ¢ is completely positive and completely copositive.
2. y = 0. The Choi matrix of ¢ has the form

1 0 0 0

H— 0 1—|22 z 0
0 z 0 0
0 0 0 |z?

and the map ¢ is completely copositive.
3. z = 0. The Choi matrix of ¢ has the form
1 0 | 0 y
12

H— 0 1-—1y 0 0
0 0 0 0
g 0 0 Jy?

and the map ¢ is completely positive.
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Turning to non-uniqueness of the decomposition of ¢, let € > 0 and put

Then, it follows from Lemma 2.4 that A. determines the map 1. which is completely
positive and completely copositive. Moreover, in each of the above three cases the equality
H = H- A.) + A, describes the decomposition onto CP and co-CP parts for every
sufficiently small €.

Proof of Theorem 2.7. The existence of the decomposition follows from [4, 5] and the
discussion after Theorem 2.1. To show that the decomposition is unique (and has the
required form) assume that it is given by H = H; 4+ Hy, where

a ¢ ‘ 0 vy as —c ‘ 0 O
c b 0 t1 —C by z t9
2.13 H, = H, =
(2.13) ! 0 0|0 0] 2 0 = 0 0
@ E 0 Ul 0 E 0 u2

Then the above coefficients fulfil the following set of relations:

(2.14) a1 +as =1,

(2.15) b+ by =1—u,

(2.16) ty 4ty =t,

(2.17) Uy + ug = u,

(2.18) lyl> < ajuy,

(2.19) t1]? < brug,

(2.20) c|? < a1by,

(2.21) arlt1]? +uile)? < bylarur — |y?) + 2R(ct17),
(2.22) \z|2 < asus,

(2.23) |ta]? < bous,

(2.24) c|? < agba,

(2.25) aslta]? + usle)? < balagug — |2|%) — 2R (ct27).

We divide the rest of the proof into some lemmas.
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LEMMA 2.9. The coefficients a1, as,u1,us have the following form

(2.26) ar = [ylu'?,
(2.27) az = |zlu=t?,
(2.28) uy = Jylu'/?,
(2.29) up = |z|ul/?.

Proof. From (2.9) we have |ylu=2 + |zju='/? = 1. Let p = |ylu="?, ¢ = a; and
r =wuju~!. Then (2.18) gives

(2.30) p? <qr

while (2.9), (2.22), (2.14) and (2.17) lead to

(231) (- < (- g)(1-7)
The system of inequalities (2.30) and (2.31) is equivalent to

2 1— 2
AP Gt )y
q l—q
By simple calculations one can show that the inequality between the first and the last

(2.32)

terms in (2.32) is equivalent to (¢ —p)? < 0, so ¢ = p. So, putting p instead of g in (2.32)
we obtain also r = p. Hence, we have

a1 =q=p=lylu"/?

az=1—a; =1—|ylu="? = |z[u""/2,
uy = ru = pu = |ylu'/?,
U = u—ug = (u/? — Jy)u'/? = |z|u'/?. =
LEMMA 2.10. The following relations hold:
(2.33) ly|t, = yeul/?,
(2.34) 2|ty = —Zcul/?.
Proof. Observe that application of (2.26)-(2.29) reduces inequalities (2.21) and (2.25) to
(2.35) lylu™ "2t ]* + |ylu'/?|e]® = 2R(ct1y) <0
and
(2.36) |2|u™ 2|t |2 4 |2|ut e + 2R(ctyZ) < 0

respectively. Let y1, 21 € C be such that y? = y and 2? = 2. Then (2.35) and (2.36) can
be rewritten in the form
|y—1u71/4t1 _ y1u1/45‘2 < 0

and
|z_1u*1/45 + zlu1/46|2 <0.

These inequalities are equivalent to mu_l/‘ltl = y1u1/4E and Zru /41, = —zu'/%e. Mul-

1/4

tiplication of both sides of the first equality by y;u'/* leads to (2.33) while multiplication

of the second one by zu'/* gives (2.34). u
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COROLLARY 2.11. [t1| = [ta| > 1]¢|.

Proof. The equality follows from (2.33) and (2.34) while the inequality is a consequence
of (2.16) and the triangle inequality. m

LEMMA 2.12. The following relations hold:
(2.37) by = |z|(1 — w)u~2,

(2.38) by = [y|(1 — u)u=/2
Proof. From (2.10), (2.19), (2.23), (2.28), (2.29) and Corollary 2.11 we have the following
inequalities
(1= wlyllzl = 31 < [l < brus = g0y
and
(1= w)lyllzl = 71t < [tal? < bous = [2fu/2bs.
From the first inequality we obtain
by > |2)(1 — w)u~Y/?
while from the second one and (2.15) we have
by=1—u—by<1l—u—lyl(l-—uwu 2=
= @~y —w)u™? = [2[(1 - w)u” V2,
Thus we obtain (2.37). In a similar way we get (2.38). m
LEMMA 2.13. [t;] = [ta] = $1¢].
Proof. Tt follows from (2.19), Lemma 2.12, (2.28) and (2.10) that
07 < by = |1 — )™yl = (1= w)lylJ2] = 7]t
The converse inequality is included in Corollary 2.11. =

COROLLARY 2.14. t; = t9 = =t

1
5t.
Proof. 1t easily follows from (2.16) and Lemma 2.13. =
LEMMA 2.15. ¢2 = —(1 —u)u~lyz.

Proof. From (2.34) and Corollary 2.14 we obtain ¢ = —%z|z|f1tu*1/2. Thus, (2.10) im-

plies ¢ = —2%[2| 7% - (1 —w)yzu™' = —(1 —w)u"'yz. =

The coefficient ¢ in (2.11) and (2.12) is uniquely determined. It can be described in
the following way. Let y;,2; € C be such that y? =y, 27 = z and t = 2i(1 —u)Y/?y; 71

(cf. (2.10)). The numbers y;, z; are not uniquely determined by these conditions but the
expression y1 21 is. Then, by (2.34)

(2.39) c=—i(1- u)l/ZU’1/2y1Z1-

Combining the results of Lemmas 2.9, 2.12, 2.15 and Corollary 2.10 we end the proof
of Theorem 2.7. m
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COROLLARY 2.16. If ¢ is extremal positive unital map with the Choi matriz of the form
(2.1) and assumptions of Theorem 2.7 are fulfilled then p(A) = U AUT + U ATUS for
every A € My(C), where Uy, Uy € My(C) are of the form

U — yru /4 0 Us = 2u— /4 0
= Zz_l(]_ 7u)1/2u71/4 mul/gl ) 2 72%(1 7u)1/2u71/4 Z_1u1/4 ’

where y1 and z, are as in the proof of Theorem 2.7.
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