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Abstra
t. A map ϕ : Mm(C)→Mn(C) is de
omposable if it is of the form ϕ = ϕ1 + ϕ2 where
ϕ1 is a CP map while ϕ2 is a 
o-CP map. It is known that if m = n = 2 then every positivemap is de
omposable. Given an extremal unital positive map ϕ : M2(C)→M2(C) we 
onstru
t
on
rete maps (not ne
essarily unital) ϕ1 and ϕ2 whi
h give a de
omposition of ϕ. We also showthat in most 
ases this de
omposition is unique.1. Introdu
tion. If A is a C∗-algebra and n ∈ N then by Mn(A) we denote the C∗-algebra of square n×n-matri
es with 
oe�
ients in A. In parti
ularMn(C) is the algebraof matri
es with 
omplex entries. For ea
h m,n ∈ N we have the following isomor-phisms:(1.1) Mm(Mn(C)) ∼= Mm(C) ⊗Mn(C) ∼= Mmn(C).It follows that Mm(Mn(C)) has the natural stru
ture of a C∗-algebra. In parti
ularone de�nes the 
onjugation of A = [Aij ]

m
i,j=1

∈ Mm(Mn(C)) (where Aij ∈ Mn(C) for
i, j = 1, . . . ,m) by the formula A

∗ = [A∗

ji]
m
i,j=1

. Re
all (see for example [6, 2℄) that
A is positive in Mm(Mn(C)) if and only if ∑m

i,j=1
µiµj〈vi, Aijvj〉 ≥ 0 (i.e. the ma-trix [〈vi, Aijvj〉]

m
i,j=1

is a positive element of Mm(C)) for every v1, . . . , vm ∈ Cn and
µ1, . . . , µm ∈ C. We say that A is blo
k-positive if ∑m

i,j=1
µiµj〈v,Aijv〉 ≥ 0 (i.e. the ma-trix [〈v,Aijv〉]

m
i,j=1

is positive inMm(C)) for every v ∈ Cn and µ1, . . . , µm ∈ C. For every
A = [Aij ]

m
i,j=1

∈Mm(Mn(C)) we de�ne the partial transposition of A by A
τ = [Aji]

m
i,j=1

.Note the di�eren
e between this operation and the usual transposition A 7→ A
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348 W. A. MAJEWSKI AND M. MARCINIAKalgebra Mmn(C) (
f. (1.1)): the usual transposition preserves positivity of A while, for
n,m ≥ 2, partial transposition does not!A linear map ϕ : Mm(C) → Mn(C) is 
alled a positive map if ϕ(A) is a positivematrix for every positive matrix A ∈ Mm(C). If k ∈ N then ϕ is 
alled k-positive map(respe
tively k-
opositive map) whenever [ϕ(Aij)]

k
i,j=1

(respe
tively [ϕ(Aji)]
k
i,j=1

) is apositive element in the algebra Mk(Mn(C)) for every positive element [Aij ]
k
i,j=1

from
Mk(Mm(C)). If ϕ is k-positive (respe
tively k-
opositive) for every k ∈ N then ϕ is
alled 
ompletely positive or CP (respe
tively 
ompletely 
opositive or 
o-CP). A positivemap whi
h is a sum of 
ompletely positive and 
ompletely 
opositive maps is 
alledde
omposable 1.Let {Eij}

m
i,j=1

be a system of matrix units in Mm(C) and Hϕ = [ϕ(Eij)]
m
i,j=1

∈

Mm(Mn(C)) be Choi matrix of ϕ with respe
t to the system {Eij} ([1℄, see also [4℄).Re
all the followingTheorem 1.1 ([1℄, see also [4℄). Let ϕ : Mm(C) →Mn(C) be a linear map. Then1. the map ϕ is positive if and only if the matrix Hϕ is blo
k-positive;2. the map ϕ is 
ompletely positive (respe
tively 
ompletely 
opositive) if and only if Hϕ(respe
tively H
τ
ϕ) is a positive element of Mm(Mn(C)).We say that a positive map ϕ is unital if ϕ(I) = I where I denotes the identitymatrix of the respe
tive algebra. The set of all positive (respe
tively 
ompletely positive,
ompletely 
opositive, de
omposable) maps from Mm(C) into Mn(C) will be denotedby P(m,n) (respe
tively CP(m,n), CcP(m,n), D(m,n)). We will write simply P, CP ,

CcP and D instead of P(m,n), CP(m,n), CcP(m,n) and D(m,n) when no 
onfusion 
anarise. Observe that all of these sets have the stru
ture of a 
onvex 
one. By P1, CP1,
CcP1 and D1 we will denote the subsets of unital maps from respe
tive 
ones. All of themare 
onvex subsets.Let C be a 
onvex 
one and c ∈ C. We say that c is an extreme point of C if for every
c1, c2 ∈ C the equality c = c1 + c2 implies c1 = λc and c2 = (1− λ)c for some 0 ≤ λ ≤ 1.The generalization of the notion of extremality leads to the fa
e stru
ture of the 
one C.Namely, we say that a 
onvex sub
one F ⊂ C is a fa
e of C if for every c1, c2 ∈ C the
ondition c1 + c2 ∈ F implies c1, c2 ∈ F . Kye in [3℄ gave an interesting 
hara
terizationof maximal fa
es of the 
one P(m,n)Theorem 1.2 ([3℄). A 
onvex subset F ⊂ P(m,n) is a maximal fa
e of P(m,n) if andonly if there are ve
tors ξ ∈ C

m and η ∈ C
n su
h that F = Fξ,η where(1.2) Fξ,η = {ϕ ∈ P(m,n) : ϕ(Pξ)η = 0}and Pξ denotes the one-dimensional orthogonal proje
tion in Mm(C) onto the subspa
egenerated by the ve
tor ξ.

1In this paper we follow the de�nition of de
omposability given by Størmer in [5℄. Note thatthere is no 
onne
tion of this notion with de
omposable maps 
onsidered by U. Haagerup in thetheory of operator spa
es (see [2℄).



POSITIVE MAPS 3492. The 
ase m = n = 2. In this se
tion we analyze in detail the 
ase m = n = 2. In [5℄the following 
hara
terization of extremal points of P1 is given:Theorem 2.1. A positive unital map ϕ : M2(C) → M2(C) is an extremal point of P1if and only if there are unitary operators V,W ∈ U(2) su
h that the Choi matrix of themap ϕV,W : A 7→ V ∗ϕ(WAW ∗)V has the form
(2.1) 







1 0 0 y

0 b z t

0 z 0 0

y t 0 u









where the 
oe�
ients ful�l the following relations:1. b ≥ 0, u ≥ 0 and b+ u = 1,2. |t|2 = 2b(u− |y|2 − |z|2) in the 
ase when b 6= 0, and |y| = 1 or |z| = 1 when b = 0.By {e1, e2} we denote the 
anoni
al basis in C2. Let ϕ be an extremal positive unitalmap as in Theorem 2.1. One 
an observe that ϕ ∈ Fξ,η for ξ = We2 and η = V e1 where
V,W are the unitary operators from Theorem 2.1. Suppose that ϕ = ϕ1 + ϕ2 where ϕ1is a 
ompletely positive map while ϕ2 is a 
ompletely 
opositive one. Then both ϕ1 and
ϕ2 should be elements of Fξ,η be
ause Fξ,η is a fa
e (
f. Theorem 1.2).Remark 2.2. There are extremal maps of the form (2.1) whi
h are neither 
ompletelypositive nor 
ompletely 
opositive (see Example 2.6 below). On the other hand theoremof Woronowi
z (see [7℄) asserts that every map from P(2, 2) is de
omposable. Hen
e, themaps ϕ1 and ϕ2 giving the de
omposition of an extremal element of P1(2, 2) do not needbe s
alar multiples of unital maps.In the sequel we will use the following lemmas.Lemma 2.3. Let ψ ∈ Fξ,η for some ξ, η ∈ C

2, and V and W be unitary operators from
M2(C) su
h that ξ = We2 and η = V e1. Then the Choi matrix of the map ψV,W has theform
(2.2) 







a c 0 y

c b z t

0 z 0 0

y t 0 u









for some a, b, u ≥ 0 and c, y, z, t ∈ C. Moreover, the following 
onditions hold:1. |c|2 ≤ ab,2. |t|2 ≤ bu,3. (|y| + |z|)2 ≤ au.Proof. Let us write brie�y ψ′ instead of ψV,W . The Choi matrix of the map ψ′ has theform
H =

[

ψ′(E11) ψ′(E12)

ψ′(E21) ψ′(E22)

]

.



350 W. A. MAJEWSKI AND M. MARCINIAKFrom the 
ondition (1.2) we get
ψ′(E22)e1 = V ∗ψ(WE22W

∗)V e1 = V ∗ψ(Pξ)η = 0.Be
ause ψ′(E22) is a positive element of M2(C) we have ψ′(E22) = uE22 for some u ≥ 0.Hen
e ψ′(E22) =

[

0 0

0 u

]. Positivity of ψ′ implies also that ψ′(E11) is a hermitian matrixof the general form ψ′(E11) =

[

a c

c b

] with a, b ≥ 0 and detψ′(E11) = ab − |c|2 ≥ 0, sowe have (1). Let ψ′(E12) =

[

x y

z t

] for some x, y, z, t ∈ C. Be
ause ψ′ is positive we have
ψ′(E21) = ψ′(E∗

12
) = ψ′(E12)

∗ =

[

x z

y t

]. By Theorem 1.1 H is blo
k-positive, hen
e thematrix
[

〈e1, ψ
′(E11)e1〉 〈e1, ψ

′(E12)e1〉

〈e1, ψ
′(E21)e1〉 〈e1, ψ

′(E22)e1〉

]

=

[

a x

x 0

]

is positive and 
onsequently x = 0. Thus we arrived at the form (2.2). Another appli
ationof blo
k-positivity of H leads to the 
on
lusion that the matrix
[

〈e2, ψ
′(E11)e2〉 〈e2, ψ

′(E12)e2〉

〈e2, ψ
′(E21)e2〉 〈e2, ψ

′(E22)e2〉

]

=

[

b t

t u

]

is positive, hen
e we get inequality (2).Let ω be a linear fun
tional onM2(C). By Corollary 8.4 in [5℄ ω is a positive fun
tionalif and only if ω(E11) ≥ 0, ω(E22) ≥ 0, ω(E21) = ω(E12) and |ω(E12)|
2 ≤ ω(E11)ω(E22).Let us denote α = ω(E11), β = ω(E22) and γ = ω(E12). Obviously ω ◦ ψ′ is a positivefun
tional for every positive ω. From another appli
ation of this result of Størmer we getthat the inequality(2.3) |γy + γz + βt|2 ≤ βu(αa+ βb+ 2ℜ(γc))holds whenever α ≥ 0, β ≥ 0 and |γ|2 ≤ αβ. Inequality (2.3) 
an be written in the form(2.4) |γy + γz|2 + β2|t|2 + 2ℜ[(γy + γz)βt] ≤ βu(αa+ βb+ 2ℜ(γc)).Putting here −γ instead of γ we get(2.5) |γy + γz|2 + β2|t|2 − 2ℜ[(γy + γz)βt] ≤ βu(αa+ βb− 2ℜ(γc)).If we add (2.4) and (2.5) and divide the result by 2, then we get(2.6) |γy + γz|2 + β2|t|2 ≤ βu(αa+ βb).This 
an be rewritten equivalently as(2.7) |γ|2(|y|2 + |z|2) + 2ℜ(yzγ2) + β2|t|2 ≤ βu(αa+ βb)Let ε > 0 and take α = ε−1, β = ε and γ su
h that |γ| = 1 and yzγ2 = |y||z|. Then (2.7)has the form(2.8) (|y| + |z|)2 ≤ au+ ε2(bu− |t|2)Be
ause ε 
an be 
hosen arbitrarily small, we get the inequality (3) and the proof is�nished.



POSITIVE MAPS 351Lemma 2.4. A map ψ ∈ Fξ,η is 
ompletely positive if and only if the 
oe�
ients of thematrix H from (2.2) ful�l the following 
onditions:(A1) z = 0,(A2) |y|2 ≤ au,(A3) |t|2 ≤ bu,(A4) |c|2 ≤ ab,(A5) a|t|2 + u|c|2 ≤ b(au− |y|2) + 2ℜ(cty).Analogously, ψ is 
ompletely 
opositive if and only if the following 
onditions hold:(B1) y = 0,(B2) |z|2 ≤ au,(B3) |t|2 ≤ bu,(B4) |c|2 ≤ ab,(B5) a|t|2 + u|c|2 ≤ b(au− |z|2) + 2ℜ(ctz).Proof. By Theorem 1.1 and properties of unitary equivalen
e ψ is 
ompletely positiveif and only if the matrix H is positive. This is equivalent to the fa
t that all prin
ipalminors of H are nonnegative. Conditions (A2), (A3) and (A4) follow from the fa
t that
∣

∣

∣

∣

a y

y u

∣

∣

∣

∣

≥ 0, ∣

∣

∣

∣

b t

t u

∣

∣

∣

∣

≥ 0 and ∣

∣

∣

∣

a c

c b

∣

∣

∣

∣

≥ 0. (A1) is a 
onsequen
e of the equality detH =

−|z|2(au− |y|2) and (A2). Inequality in (A5) is equivalent to ∣

∣

∣

∣

∣

∣

a c y

c b t

y t u

∣

∣

∣

∣

∣

∣

≥ 0.The se
ond part of the lemma follows in the similar way from positivity of the matrix
H

τ in the 
ase when ψ′ is 
ompletely 
opositive.Remark 2.5. If ϕ is an extremal positive unital map des
ribed in Theorem 2.1 with theChoi matrix (2.1) then by 
ondition (3) from Lemma 2.3 |y|+ |z| ≤ u1/2. Lemma 8.11 in[5℄ 
laims that in the 
ase b > 0 a stronger 
ondition holds. Namely,(2.9) |y| + |z| = u1/2.Moreover, it follows from Lemma 8.8 in [5℄ that in this 
ase(2.10) t2 = −4(1 − u)yz.Example 2.6. Consider the map ψ : M2(C) →M2(C) with the Choi matrix












1 0 0 1

2
s

0 1 − s2 1

2
s is(1 − s2)1/2

0 1

2
s 0 0

1

2
s −is(1 − s2)1/2 0 s2













where 0 < s < 1. It follows from Theorem 2.1 (
ompare also with (2.9) and (2.10)) andLemma 2.4 that ψ is an extremal positive unital map whi
h is neither 
ompletely positivenor 
ompletely 
opositive.Now, we are ready to formulate our main theorem.



352 W. A. MAJEWSKI AND M. MARCINIAKTheorem 2.7. Assume that ϕ is an extremal positive unital map with the Choi matrixgiven in (2.1) and u > 0, y 6= 0, z 6= 0. Then there are ϕ1, ϕ2 ∈ Fξ,η su
h that ϕ1 is
ompletely positive, ϕ2 is 
ompletely 
opositive and ϕ = ϕ1+ϕ2. Moreover, the pair ϕ1, ϕ2is uniquely determined, and Choi matri
es H1, H2 of maps ϕ1, ϕ2 have the followingform:
(2.11) H1 =











|y|u−1/2 c 0 y

c |z|(1 − u)u−1/2 0 1

2
t

0 0 0 0

y 1

2
t 0 |y|u1/2











,

(2.12) H2 =











|z|u−1/2 −c 0 0

−c |y|(1 − u)u−1/2 z 1

2
t

0 z 0 0

0 1

2
t 0 |z|u1/2











where u, y, z, t are the 
oe�
ients of the matrix (2.1) and c is a 
omplex number su
hthat c2 = −(1 − u)u−1yz.Remark 2.8. The uniqueness of the de
omposition of ϕ onto ϕ1 and ϕ2 does not holdif the assumptions of the above theorem are not ful�lled. To see this let us 
onsider thefollowing 
ases:1. u = 0. Then the Choi matrix of the map ϕ has the following form
H =









1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0









and ϕ is 
ompletely positive and 
ompletely 
opositive.2. y = 0. The Choi matrix of ϕ has the form
H =









1 0 0 0

0 1 − |z|2 z 0

0 z 0 0

0 0 0 |z|2









and the map ϕ is 
ompletely 
opositive.3. z = 0. The Choi matrix of ϕ has the form
H =









1 0 0 y

0 1 − |y|2 0 0

0 0 0 0

y 0 0 |y|2









and the map ϕ is 
ompletely positive.



POSITIVE MAPS 353Turning to non-uniqueness of the de
omposition of ϕ, let ε > 0 and put
Aε =









0 0 0 0

0 ε 0 0

0 0 0 0

0 0 0 0









.

Then, it follows from Lemma 2.4 that Aε determines the map ψε whi
h is 
ompletelypositive and 
ompletely 
opositive. Moreover, in ea
h of the above three 
ases the equality
H = (H − Aε) + Aε des
ribes the de
omposition onto CP and 
o-CP parts for everysu�
iently small ε.Proof of Theorem 2.7. The existen
e of the de
omposition follows from [4, 5℄ and thedis
ussion after Theorem 2.1. To show that the de
omposition is unique (and has therequired form) assume that it is given by H = H1 + H2, where
(2.13) H1 =









a1 c 0 y

c b1 0 t1

0 0 0 0

y t1 0 u1









, H2 =









a2 −c 0 0

−c b2 z t2

0 z 0 0

0 t2 0 u2









.

Then the above 
oe�
ients ful�l the following set of relations:(2.14) a1 + a2 = 1,(2.15) b1 + b2 = 1 − u,(2.16) t1 + t2 = t,(2.17) u1 + u2 = u,(2.18) |y|2 ≤ a1u1,(2.19) |t1|
2 ≤ b1u1,(2.20) |c|2 ≤ a1b1,(2.21) a1|t1|

2 + u1|c|
2 ≤ b1(a1u1 − |y|2) + 2ℜ(ct1y),(2.22) |z|2 ≤ a2u2,(2.23) |t2|

2 ≤ b2u2,(2.24) |c|2 ≤ a2b2,(2.25) a2|t2|
2 + u2|c|

2 ≤ b2(a2u2 − |z|2) − 2ℜ(ct2z).We divide the rest of the proof into some lemmas.



354 W. A. MAJEWSKI AND M. MARCINIAKLemma 2.9. The 
oe�
ients a1, a2, u1, u2 have the following form
a1 = |y|u−1/2,(2.26)
a2 = |z|u−1/2,(2.27)
u1 = |y|u1/2,(2.28)
u2 = |z|u1/2.(2.29)Proof. From (2.9) we have |y|u−1/2 + |z|u−1/2 = 1. Let p = |y|u−1/2, q = a1 and

r = u1u
−1. Then (2.18) gives(2.30) p2 ≤ qrwhile (2.9), (2.22), (2.14) and (2.17) lead to(2.31) (1 − p)2 ≤ (1 − q)(1 − r).The system of inequalities (2.30) and (2.31) is equivalent to(2.32) p2

q
≤ r ≤ 1 −

(1 − p)2

1 − q
.By simple 
al
ulations one 
an show that the inequality between the �rst and the lastterms in (2.32) is equivalent to (q− p)2 ≤ 0, so q = p. So, putting p instead of q in (2.32)we obtain also r = p. Hen
e, we have

a1 = q = p = |y|u−1/2,

a2 = 1 − a1 = 1 − |y|u−1/2 = |z|u−1/2,

u1 = ru = pu = |y|u1/2,

u2 = u− u1 = (u1/2 − |y|)u1/2 = |z|u1/2.Lemma 2.10. The following relations hold:(2.33) |y|t1 = ycu1/2,(2.34) |z|t2 = −zcu1/2.Proof. Observe that appli
ation of (2.26)-(2.29) redu
es inequalities (2.21) and (2.25) to(2.35) |y|u−1/2|t1|
2 + |y|u1/2|c|2 − 2ℜ(ct1y) ≤ 0and(2.36) |z|u−1/2|t2|
2 + |z|u1/2|c|2 + 2ℜ(ct2z) ≤ 0respe
tively. Let y1, z1 ∈ C be su
h that y2

1
= y and z2

1
= z. Then (2.35) and (2.36) 
anbe rewritten in the form

|y1u
−1/4t1 − y1u

1/4c|2 ≤ 0and
|z1u

−1/4t2 + z1u
1/4c|2 ≤ 0.These inequalities are equivalent to y1u−1/4t1 = y1u

1/4c and z1u−1/4t2 = −z1u
1/4c. Mul-tipli
ation of both sides of the �rst equality by y1u1/4 leads to (2.33) while multipli
ationof the se
ond one by z1u1/4 gives (2.34).



POSITIVE MAPS 355Corollary 2.11. |t1| = |t2| ≥
1

2
|t|.Proof. The equality follows from (2.33) and (2.34) while the inequality is a 
onsequen
eof (2.16) and the triangle inequality.Lemma 2.12. The following relations hold:(2.37) b1 = |z|(1 − u)u−1/2,(2.38) b2 = |y|(1 − u)u−1/2.Proof. From (2.10), (2.19), (2.23), (2.28), (2.29) and Corollary 2.11 we have the followinginequalities

(1 − u)|y||z| =
1

4
|t|2 ≤ |t1|

2 ≤ b1u1 = |y|u1/2b1and
(1 − u)|y||z| =

1

4
|t|2 ≤ |t2|

2 ≤ b2u2 = |z|u1/2b2.From the �rst inequality we obtain
b1 ≥ |z|(1 − u)u−1/2while from the se
ond one and (2.15) we have

b1 = 1 − u− b2 ≤ 1 − u− |y|(1 − u)u−1/2 =

= (u1/2 − |y|)(1 − u)u−1/2 = |z|(1 − u)u−1/2.Thus we obtain (2.37). In a similar way we get (2.38).Lemma 2.13. |t1| = |t2| = 1

2
|t|.Proof. It follows from (2.19), Lemma 2.12, (2.28) and (2.10) that

|t1|
2 ≤ b1u1 = |z|(1 − u)u−1/2 · |y|u1/2 = (1 − u)|y||z| =

1

4
|t|2.The 
onverse inequality is in
luded in Corollary 2.11.Corollary 2.14. t1 = t2 = 1

2
t.Proof. It easily follows from (2.16) and Lemma 2.13.Lemma 2.15. c2 = −(1 − u)u−1yz.Proof. From (2.34) and Corollary 2.14 we obtain c = − 1

2
z|z|−1tu−1/2. Thus, (2.10) im-plies c2 = −z2|z|−2 · (1 − u)yzu−1 = −(1 − u)u−1yz.The 
oe�
ient c in (2.11) and (2.12) is uniquely determined. It 
an be des
ribed inthe following way. Let y1, z1 ∈ C be su
h that y2

1
= y, z2

1
= z and t = 2i(1 − u)1/2y1z1(
f. (2.10)). The numbers y1, z1 are not uniquely determined by these 
onditions but theexpression y1z1 is. Then, by (2.34)(2.39) c = −i(1 − u)1/2u−1/2y1z1.Combining the results of Lemmas 2.9, 2.12, 2.15 and Corollary 2.10 we end the proofof Theorem 2.7.



356 W. A. MAJEWSKI AND M. MARCINIAKCorollary 2.16. If ϕ is extremal positive unital map with the Choi matrix of the form
(2.1) and assumptions of Theorem 2.7 are ful�lled then ϕ(A) = U1AU

∗

1
+ U2A

TU∗

2
forevery A ∈M2(C), where U1, U2 ∈M2(C) are of the form

U1 =

[

y1u
−1/4 0

iz1(1 − u)1/2u−1/4 y1u
1/4

]

, U2 =

[

z1u
−1/4 0

−iy1(1 − u)1/2u−1/4 z1u
1/4

]

,where y1 and z1 are as in the proof of Theorem 2.7.A
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