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Abstract. We provide explicit formulas for linearizing coefficients for some class of orthogonal
polynomials.

Introduction. Let {P,}°2, be a sequence of monic polynomials, deg P,, = n, which are
orthogonal with respect to a probability measure p on R with infinite support. Then,
under the convention that P_; = 0, they satisfy the recurrence relation

(1) {E.Pn(l') - PnJrl(x) + ﬁnpn(x) + PYnfanfl(x)a n 2 ]-v
with Py(z) = 1, 7, > 0 and (3, real (see [Ch]). We denote by L the linear functional on
R|[z] given by L(P) := [ P(x)du(x).
Now we define the linearization coefficients by the relation
(2) Py(a) Pr(w) =Y e(j,m,n) Pj(x).
J
We say that {P,}52, admits nonnegative product linearization if all these coefficients
¢(k,m,n) are nonnegative. In this case one can define a hypergroup in the following way:
Choose xg such that P, (zg) > 0 for every m (this holds if and only if ¢ > sup(suppp))
and put
c(k, m,n)Py(z0)
O % Opy 1= —_———— .
; Pm(ﬂfo)Pn(ﬂfo)

Extending this to convex combinations one obtains an associative and commutative oper-

ation on the class of probability measures on the set {0,1,2,...} (see [BH], [Ko|). Many
of the classical orthogonal polynomials do admit nonnegative product linearization (see
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[BH]). On the other hand, there are some general criteria stated in terms of the coefficients
Bnsn, which imply this property (see [As, Sz1, Sz2, MS]).

The main result. Let us denote L(k,m,n) := L(PyPnP,). Then multiplying both
sides of (2) by Py and applying £ we get L(k,m,n) = c(k,m,n)L(PZ), so from now on
we will be studying the numbers L(k,m,n) instead of ¢(k,m,n). We will be using the
following properties:

(3) L(k,m,k+m) =7 Vetm-1,
(4) L(ki,ko,k3) = L(ko,, koy, koy) for every permutation o of the set {1,2,3},

(5) L(k,m,n) =0 whenever n >k +m,
and
(6) L(k,m,n) =Lk —1,m,n+1)+ (8n — Br—1)L(k —1,m,n)

+Yn-1L(k—1,m,n—1) — y_oL(k — 2,m,n)

for every k,m,n.

To prove them we first note that if deg P < n then L(P - P,,) = 0 because P can be
expressed as a linear combination of Py, P, ..., P,_1. In particular, putting P = P, P,,
we prove (5).

We use this remark again to note that

L(xPy_1PyPrim) = L(k,m, k +m)
and
L(xPy_1PyPyym) = Lk—1,m+ 1,k +m),
so we obtain L(k,m,m +n) = L(k —1,m+ 1,m + n). Hence it is sufficient to prove (3)
in the case when k& = 0. Now, by orthogonality we have
E(PmPM) = E(:EPm_le) = ’Ym_1£(Pm_1Pm_1),
which completes the proof of (3).

For the last formula one only needs to compare the right hand sides of the equalities:

L(xPy_1PyP,) = L(k,m,n) + Br—1L(k — 1,m,n) + yg—2L(k — 2,m,n),

L(xPy_1PynPy) =Lk—1,mn+1)+ G, L(k—1,m,n)+v,—1L(k—1,m,n—1).
Note in passing that in view of (6) the coefficients L(k, m,n) can be expressed as a sum
of weights of so-called Motzkin paths on the plane connecting points (0,m) and (k,n).
Namely, the step from the point (i—1,5+1), (i—1,7), (i—1,7—1) or (i—2, j), respectively,
to (4, ) is equal to 1, 8; — Bi—1, yj—1 or —Y;—_2, respectively, and the weight of a path is
the product of weights of its steps (see [MS]).

From now on we will assume that

a ifn =0, u ifn=0,
Yo =4 b if nis odd, Bn=<v ifnisodd,

¢ ifn >0 is even, w if n > 0 is even.
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This class contains orthogonal polynomials related to some interesting distributions which
appear in noncommutative probability (see |[BLS]). In the case when b = c and v = w
the corresponding measure was thoroughly studied in [SY].

Our aim is to provide explicit formulas for the coefficients L(k, m,n) in this case.
Note, that by (4) and (5) we can assume that k < m <n < k+n. Set I'(s) := Hf;& Vi
If s > 1then I'(s) =T'(s — 1)b if s is even and I'(s) = I'(s — 1)c if s is odd.

THEOREM. Assume that 0 < k <m <n < k+m and put s := [(k +m + n)/2]. Then

L(k,m,n) is equal to:

el) T'(s) if n =k +m,

e2) I(s—1)(b+c—a+ (w—u)(w—v)) if k,m,n are even, s is odd,

e3) I'(s—1)(b+c—a) if only one of the numbers k,m,n is even, s is even and n < k+m,

ed) T'(s = 1)(2c — a) if n < k+ m and either k,m,n,s are all even or only one of the
numbers k, m,n is even, s is odd,

ol) I'(s — 1)(a(w —v) + c(v — w)) if k,m,n are odd, s is even

02) T'(s)(v —wu) if k,m,n are odd, s is odd,

03) T'(s)(w — u) if only one of the numbers k,m,n is odd.

Note that in cases (el)—(e4) the sum k +m + n is even, while in cases (01)—(03) it is
odd.

Proof. We will proceed by induction on k. First we examine a few particular cases. For
n = k+m the formula is a consequence of (3) so we will assume that £k > 1 and n < k+m.
If k=1 < m then (6) yields
'(m)(v—wu) if mis odd,
L(1,m,m) = (Bm — u)L(0,m,m) = (m)( )
T'(m)(w —wu) if m is even,

which completes the proof for k = 1.

Now let us consider the special case when n =k+m —1,k > 2. Then k+ m+n =
2(k+m—-1)+1isodd, s=k+m—1=nand L(k—1,m,n+1) = L(k—2,m,n) =0.
Moreover, if m is even then 3, — Bx_1 = 0 so we get

Lk,m,k4+m—1) =vpem_ol'(k+m—2)(w—u) =T(k+m—1)(w —u).

If m is odd, k is even then n is even so

Lkmk+m—1)=(w—-v)'(k+m—-1)+bI'(k+m—2)(v—u)
=T(k+m—1)(w—u),
and if k, m are odd then n is odd, hence
Lk,m,k+m—1)=(v—w)l'(k+m—1)+cl'(k+m—2)(w—u)
=T(k+m—1)(v—u).
Now let us check the case k = 2 and n = m. If m is even, we have
L(2,m,m) = L(1,m,m+ 1)+ (w—wv)L(1,m,m)+bL(1,m,m — 1) —aL(0,m,m)
=T(m+1)+T(m)(w—u)(w—ov)+T(m)b—T(m)a
— T(m)(c+ (w - u)(w —v) +b—a),
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while if m odd then 3, — Bx—1 = v — v = 0 and we get
L(2,m,m) =L(,m,m+ 1)+ cL(1,m,m — 1) — al'(0,m, m)
=T(m+ 1)+ cl'(m) —al'(m) =T(m)(b+ ¢ — a).

Therefore we have completed the case k = 2.
From now on we assume that 2 < kK <m < k+m — 1. We will consider four cases.

I. Assume that k,n are even. Then
L(k,m,n) = L(k—1,m,n+1)+(w—v)L(k—1,m,n)+bL(k—1,m,n—1)—cL(k—1,m,n).

a) If m, s are even then the sum of the first, second and forth summand is zero and

we get
L(k,m,n)=T(s—1)(b+c—a)+ (w—v)I'(s —1)(w—u) + bI'(s — 3)b(2c — a)
—cl(s=2)(b+c—a+ (w—u)(w—v)) =L(s—2)b(2c —a)

b) If m is even and s is odd then the first summand cancels with the fourth one
(including the special case n =k +m — 2) so
L(k,m,n) = (w—v)I'(s—1)(w—u)+bI'(s—2) (b+c—a) = ['(s—1) (b+c—a+(w—u)(w—v)).

¢) Now assume that m is odd and s is even. Then

L(k,m,n) =T(s = 1)(a(w —v) + c(v —u)) + (w — v)I'(s — 1)(b+ c — a)
+l(s—1)(v—u) —cl(s— 1)(w—u) + (s — D)b(w — u) = T'(s)(w — u)
d) Finally, assume that m, s are odd. Then
L(k,m,n) =T(s)(v—u) + (w—v)['(s — 2)b(2¢c — a)
4+ (s — 2) (a(w — v) + c(v —u)) — (s — 1)(w — u) + ['(s — D)e(w — u) = T(s)(w — u).
IL. If k is even and n is odd then G, — Bx_1 =v—v =0, Yp_1 = Yk_2 = ¢ and
L(k—=1,m,n—1) = L(k —2,m,n) (unless n = k + m — 2), which leads
L(k,m,n)=L(k—1,m,n+1).
In the case n =m + k — 2 we get
Lk,mn+k—2)=T(k+m-—1)+cl'(k+m—4)b(2c — a) — cI'(k+m — 2)
=Tk+m—-2)(b+c—a).

ITI. Similarly, if k is odd and n is even then 8, —Bx_1 =w—w =0, V1 = Vg_2 =10
and L(k —1,m,n —1) = L(k — 2,m,n) (again, unless n = k + m — 2), which, similarly
as before, leads

L(k,m,n) =Lk —1,m,n+ 1),
and for n =k +m — 2 we get
Lk,m,k+m—2)=T(k+m—1)+bl'(k+m —3)(b+c—a) —bI'(k+m — 2)
=T(k+m—2)(2c—a).

IV. Finally, assume that k,n are odd. Then

L(k,m,n) = L(k—1,m,n+1)+(v—w)L(k—1,m,n)+cL(k—1,m,n—1)—bL(k—2,m,n).
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a) If m, s are even then, similarly as in the case (Ib), the first summand cancels with
the fourth one:

L(k,m,n) = (v—w)I'(s—1)(w—u)+cl(s—2) (b+c—a+(w—u)(w—v)) =T(s—1)(b+c—a).

b) The case when m is even and s is odd is analogous to case (Ia), i.e. the sum of the
first, second and forth summand is zero:

L(k,m,n) =T(s = 1)(b+c—a+ (w—u)(w—v))
(v —w)T(s—1)(w —u) + (s — 3)b(2c — a) — bT(s — 2)(b+c — a) = T'(s — 2)b(2c — a).

¢) Now assume that m is odd and s is even. Then

L(k,m,n) =T(s)(w —u) + (v—w)[(s — 1)(b+ c—a)

+cl(s = 1)(w—u) = bI'(s — 1)(v —u) =T(s — 1) (a(w — v) + c(v — u)).

d) Finally, if m, s are odd then

L(k,m,n) =T(s)(w —u) + (v —w)['(s — 2)b(2c — a)

+el(s = 1)(w = u) = l'(s — 2)(alw = v) + (v —u)) = T(s)(v — u),

which completes the whole proof. =

COROLLARY. The sequence { P, }52, admits nonnegative product linearization if and only
if:
a<b+e, a<2c a<b+c+ (w-—u)(w—uv),

u<wv, wu<w, and 0<a(w—v)+c(v—u) =

For example, if either w = v or w = u then {P,}3%, admits nonnegative product
linearization if and only if a < b+ ¢, a < 2c and u < v.

Finally let us specify our results to orthogonal polynomials related to limit measures
with respect to conditionally free indendence introduced by Bozejko, Leinert and Speicher
[BLS].

1. The central limit theorem (Theorem 4.3 in [BLS|): a = a?, b=c= 3% u=v =
w = 0. Here {P,,}%°_, admit nonnegative product linearization if and only if a? < 232
and this holds if and only if the corresponding measure has no atom.

2. The Poisson limit theorem (Theorem 4.4 in [BLS]): a = a2, b = ¢ = 32, u = o2,
v = w = 3%+1 (these recurrence coefficients are not calculated explicitly in [BLS] but they
can be derived from the final formula in [M]). Here the necessary and sufficient condition
for nonnegative product linearization for these polynomials { R, }°, is a? < 3% + 1 and
a? <232

3. Let us now consider the symmetrization of the Poisson measure. It means that we
are dealing with polynomials {Q,, }5°, which are related to {R,,}2° o by R, (2?) = Qa2 (z),
sowe get a =a?, b=1,c= % and u = v = w = 0. Here the corresponding condition is
the same as in the previous case: a® < 32 + 1 and o? < 232
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