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Abstract. Surjective isometries between unital C*-algebras were classified in 1951 by Kadison

[K]. In 1972 Paterson and Sinclair [PS] handled the nonunital case by assuming Kadison’s the-

orem and supplying some supplementary lemmas. Here we combine an observation of Paterson

and Sinclair with variations on the methods of Yeadon [Y] and the author [S1], producing a fun-

damentally new proof of the structure of surjective isometries between (nonunital) C*-algebras.

In the final section we indicate how our techniques may be applied to classify surjective isometries

of noncommutative Lp spaces, extending the main results of [S1] to 0 < p ≤ 1.

1. Introduction. The main goal of this paper is to give a new proof of the noncommu-

tative Banach-Stone theorem, by which we mean a description of the surjective isometries

between (possibly nonunital) C*-algebras. This is accomplished in Sections 2 and 3; Sec-

tion 4 indicates how the techniques of our proof can be used to produce new results about

noncommutative Lp spaces. We begin with a little of the relevant history.

The first theorem of this type was proved by Banach and is as follows.

Theorem 1.1 ([B, Theorem IX.4.3]). Let X and Y be compact metric spaces, C(X) and

C(Y ) the associated Banach spaces of real continuous functions equipped with the sup

norm. If T : C(X) → C(Y ) is a surjective isometry, then there are a homeomorphism

ϕ : Y → X and a function h ∈ C(Y ) with |h(y)| = 1 for all y ∈ Y , such that

(1.1) T (f) = h(f ◦ ϕ), ∀f ∈ C(X).

Banach’s result was improved by Stone [St] to handle the case where X and Y are

compact Hausdorff spaces, and this is the version commonly known as the “Banach-

Stone” theorem. Later authors extended the result to complex (and even vector-valued)

functions on more general spaces—see [FJ, Chapters 1 and 2] for some of the details.
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Abelian unital C*-algebras are exactly the (complex) algebras C(X), X compact

and Hausdorff. Removing the assumption of commutativity leads us to Kadison’s 1951

noncommutative Banach-Stone theorem.

Theorem 1.2 ([K, Theorem 7]). Let T : A → B be a surjective isometry between unital

C*-algebras. Then there are a surjective Jordan *-isomorphism J from A to B and a

unitary u ∈ B such that

(1.2) T (x) = uJ(x), ∀x ∈ A.

Other proofs of Theorem 1.2 exist, and by now Banach-Stone-type theorems have

been given for a full menagerie of algebraic structures: power algebras, Jordan algebras,

Hilbert C*-modules... see [W] and [FJ, Chapter 6] for examples and discussion of the

literature. (Perhaps the study of quantized Banach-Stone theorems is “noncommutative

geology”?) As for nonunital C*-algebras, the first satisfactory classification for surjective

isometries was obtained in 1972 by Paterson and Sinclair [PS]. (There is a related result

in the 1969 Ph.D. dissertation of Harris [H].) Paterson and Sinclair assumed Theorem

1.2 and added a few elegant observations, producing

Theorem 1.3 ([PS, Theorem 1]). Let T : A → B be a surjective isometry between C*-

algebras, and let M(B) be the multiplier algebra of B. Then there are a surjective Jordan

*-isomorphism J from A to B and a unitary u ∈M(B) such that

(1.3) T (x) = uJ(x), ∀x ∈ A.

In this paper we give a new proof of Theorem 1.3. We do not assume Theorem 1.2 or

make use of any of the techniques involved in its proofs, but we do benefit from a lemma

of [PS].

Our proof proceeds in the following manner. Given T : A → B a surjective isometry

between C*-algebras, we consider the induced surjective isometries T ∗ : B∗ → A∗, T ∗∗ :

A∗∗ → B∗∗. Since the second dual of a C*-algebra is isometric to a von Neumann algebra,

T ∗ is a surjective isometry of preduals of von Neumann algebras. We determine the

structure of T ∗, and this reveals the structure of T ∗∗. Then a lemma from [PS] allows us

to describe the restriction of T ∗∗ to A, which is nothing but T . We arrive precisely at

Theorem 1.3.

Thus the fundamental object here is T ∗, and the focus of this note is a new way of

deriving the structure of surjective isometries between von Neumann preduals. If one has

already proved Theorem 1.2, then the predual result follows easily, since the dual of a

surjective isometry between preduals is a surjective isometry between unital C*-algebras.

And without reliance on Theorem 1.2, even nonsurjective isometries between preduals

have been described—see [Ki, Lemma 3.6] or [S2, Theorem 3.2]. Our technique in this

paper is unlike the two papers just mentioned, and there is some novelty in using the

predual result to recover Theorem 1.3. In this way we birth a Banach-Stone theorem

without explicitly using the geometry of the unit ball in a C*-algebra in order to pick

out distinguished classes of operators. (For example, Kadison characterized the extreme

points [K, Theorem 1].) The replacement, at the level of duals, is a certain orthogonality

relation.
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Our derivation of the predual result can be modified to extend the main theorems of

[S1]. There a description was obtained for surjective isometries of noncommutative Lp

spaces, 1 < p < ∞, p 6= 2, but actually a significant part of that proof was originally

done in a different manner. The “original” version requires special considerations for finite

type I summands, and was considered by the author to be less elegant overall, but it does

remain valid for p ≤ 1. In this paper we utilize the ideas of the original proof, applied

concretely to p = 1 and at least motivated for other values of p.

Let us be more explicit: for the benefit of readers who are primarily interested in

the Banach-Stone result, we have put off all discussion of noncommutative Lp spaces to

Section 4. Nonetheless the reader is apprised that some of the key steps in our proof

of Theorem 1.3 are the case p = 1 of known results about noncommutative Lp spaces.

Since von Neumann preduals are relatively easy to work with—compared with general

noncommutative Lp spaces—we supply or sketch direct proofs. Then in Section 4 we

indicate how the argument extends to p /∈ {1, 2}, allowing the main results of [S1] to be

generalized. As much as possible we avoid repeating arguments from [S1].

For better or worse, this paper operates at two levels of sophistication. On one hand

we attempt to prove the Banach-Stone theorem with as few prerequisites as possible. The

required von Neumann algebra theory is classical, and we supply explanations for most

of the nontrivial, post-1950s assertions which do not derive from [S1]. We would like to

think that an operator algebraist from the 1950s could digest the proof. But on the other

hand we also have in mind a reader familiar with [S1] (and the theory of noncommutative

Lp spaces). The techniques of that article have already found applications elsewhere (e.g.

[HRR]), so we expect that the extensions presented here will be useful.

2. Definitions, facts, lemmas

2.1. For a C*-algebra A, the multiplier algebra M(A) can be defined in several equiv-

alent ways. Abstractly, it can be described as the largest C*-algebra in which A embeds

as an essential ideal. For commutative C*-algebras, this is equivalent to embedding the

Gelfand spectrum in its Stone-Čech compactification.

M(A) can also be constructed as the algebra of double centralizers. For a concrete re-

alization, one takes a faithful nondegenerate *-representation π of A on a Hilbert space H.

Then

M(A) ≃ {x ∈ B(H) | xπ(A) ⊂ π(A), π(A)x ⊂ π(A)} ⊆ π(A)′′.

A special case of this construction occurs when π is the universal representation of A,

so that A ≃ π(A) ⊂ π(A)′′ can be isometrically identified by the 1954 Sherman-Takeda

theorem [Ta] with the canonical embedding A →֒ A∗∗. With this identification, M(A) is

the idealizer of A in A∗∗.

Multiplier algebras of C*-algebras have been around since the 1960s and are discussed

at length in [W-O, Chapter 2].M(A) is always unital and equals A when A is itself unital.

As an example, B(H) is the multiplier algebra of the C*-algebra of compact operators

on H.
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2.2. A linear map between operator algebras is Jordan when it preserves the Jordan

product (x, y) 7→ ( 1
2 )(xy + yx). This is equivalent to requiring that J commute with

squaring on self-adjoint (or all) elements, by distributivity and elementary algebra in-

volving (x + y)2. A fundamental 1951 result of Kadison [K, Theorem 10] says that a

surjective Jordan *-isomorphism between von Neumann algebras is the direct sum of a

*-isomorphism and a *-antiisomorphism.

2.3. We will need one of the two lemmas with which Paterson and Sinclair paved their

path from Theorem 1.2 to Theorem 1.3. For the reader’s convenience, we present a short

proof (directly adapted from the original article).

Lemma 2.1 ([PS, Lemma 2]). Let K : C → D be a Jordan *-monomorphism of C*-

algebras, and assume D is unital. If v is a unitary element of D such that vK(C) is a

C*-subalgebra of D, then K(C) = vK(C).

Proof. We will use that any C*-algebra E satisfies E2 = E (for example, by Cohen’s 1959

factorization theorem [C]). First,

(2.1) vK(C) = (vK(C))(vK(C)) = (K(C)v∗)(vK(C)) = (K(C))2.

Now any element in C is a linear combination of four squares (because positive elements

are squares). Since K commutes with squaring, (2.1) implies

(2.2) K(C) ⊆ span (K(C))2 = span vK(C) = vK(C).

We combine (2.1) and (2.2) to obtain the converse inclusion

vK(C) = (K(C))2 ⊆ (K(C))(vK(C)) = v∗(vK(C))(vK(C)) = v∗(vK(C)) = K(C),

which implies the desired equality.

2.4. Let M be a von Neumann algebra, and identify the predual M∗ with the normal

linear functionals on M. Then M∗ is an M−M bimodule, with actions defined by

(2.3) xρ(·) = ρ(·x), ρx(·) = ρ(x·), x ∈ M, ρ ∈ M∗.

Lemma 2.2. The two inclusions M →֒ B(M∗) as left or right multipliers are isometric,

and their images are commutants of each other in B(M∗).

Proof. Clearly

(2.4) ‖xρy‖ = sup
‖a‖=1

ρ(yax) ≤ ‖x‖‖ρ‖‖y‖, x, y ∈ M, ρ ∈ M∗,

so the inclusions are norm-decreasing.

To show the inclusion as right multipliers is isometric—the other inclusion being

analogous—choose generic x ∈ M and ε > 0. Let v|x| be the polar decomposition of x,

p be the nonzero spectral projection of |x| corresponding to [‖x‖ − ε, ‖x‖], and ϕ ∈ M+
∗

be a state with support ≤ p. Then

1 ≥ ‖ϕv∗‖ ≥ ϕv∗(v) ≥ ϕ(p) = 1 ⇒ ‖ϕv∗‖ = 1

and

‖(ϕv∗)x‖ = ‖ϕ|x|‖ ≥ ϕ(|x|) ≥ ϕ((‖x‖ − ε)p) = ‖x‖ − ε.
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Since ε is arbitrary, the operation of right multiplication by x on M∗ must have norm

‖x‖.

For the latter assertion, assume T ∈ B(M∗) commutes with the right action, and

calculate

[T (ρ)](x) = [T (ρ)x](1) = [T (ρx)](1) = [ρx](T ∗(1)) = [T ∗(1)ρ](x)

for all x ∈ M, ρ ∈ M∗, so that T is left multiplication by T ∗(1). Of course the commutant

of the left action can be calculated similary.

The previous lemma is generalized in [JS, Lemma 2.1 and Corollary 2.6], while the

following lemma is a special case of [JS, Lemma 2.3]. Recall that the strong topology is

the point-norm topology that M acquires from any faithful normal *-representation on

a Hilbert space.

Lemma 2.3. For a net {xα} in the unit ball of a von Neumann algebra M, the following

are equivalent:

(1) xα → 0 strongly;

(2) xα → 0 in the point-norm topology that M acquires from its left (or right) action

on M∗;

(3) (if M is σ-finite) xαψ → 0 in the norm topology of M∗, for a single faithful

ψ ∈ M+
∗ .

Proof. (1) ⇒ (2): Any normal linear functional on M is a linear combination of four

positive ones, so it suffices to consider an arbitrary state ϕ ∈ M+
∗ . Let {πϕ,Hϕ, ξϕ} be

the associated GNS representation. Then

‖xαϕ‖ = sup
‖y‖=1

|ϕ(yxα)| = sup
‖y‖=1

| < πϕ(xα)ξϕ | πϕ(y∗)ξϕ > | ≤ ‖πϕ(xα)ξϕ‖ → 0.

(2) ⇒ (1): Choose any ξ ∈ H, where {π,H} is a normal *-representation of M. Let

ϕξ ∈ M+
∗ be the associated vector functional, i.e. ϕξ(x) =< π(x)ξ | ξ >. Then

‖π(xα)ξ‖2 =< π(x∗αxα)ξ | ξ >= ϕξ(x
∗
αxα) = xαϕξ(x

∗
α) ≤ ‖xαϕξ‖ → 0.

(2) ⇒ (3): Trivial.

(3) ⇒ (2): We first claim that the subspace ψM ⊂ M∗ is norm dense. If not, Hahn-

Banach guarantees the existence of a nonzero linear functional which vanishes on ψM.

Such a functional arises from an element of M, so we have a nonzero x ∈ M satisfying

ψy(x) = 0 for all y ∈ M. Letting x = v|x| be the polar decomposition and setting y = v∗,

we arrive at ψ(|x|) = 0, contradicting the faithfulness of ψ.

Now choose any ρ ∈ M∗ and ε > 0. Find y ∈ M with ‖ρ− ψy‖ < ε. Then

‖xαρ‖ ≤ ‖xαρ− xαψy‖ + ‖xαψy‖ ≤ ‖ρ− ψy‖ + ‖xαψ‖‖y‖,

which is eventually less than ε.

Each ρ ∈ M∗ has a unique polar decomposition as v|ρ|, where |ρ| ∈ M+
∗ and v is a

partial isometry in M with v∗v = s(|ρ|), the support of |ρ|. The left (resp. right) support

of ρ is denoted by sℓ(ρ) (resp. sr(ρ)) and is equal to vv∗ (resp. v∗v). This goes back to

1950s work of Sakai, as do the earlier assertions in this subsection about preduals and

independence of the strong topology.
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We will need the case p = 1 of the equality condition in the Clarkson inequality (see

Theorem 4.1), which we prove here using elementary techniques. For positive functionals,

Lemma 2.4 is shown in [T, Theorem III.4.2(ii)].

Lemma 2.4. For a von Neumann algebra M and ρ, σ ∈ M∗, we have

(2.5) ‖ρ+ σ‖ = ‖ρ‖ + ‖σ‖ = ‖ρ− σ‖ ⇐⇒ sℓ(ρ) ⊥ sℓ(σ), sr(ρ) ⊥ sr(σ).

Proof. Let ρ = v|ρ| and σ = w|σ| be the polar decompositions. If we assume the right-

hand side of (2.5), then v∗w = vw∗ = 0. The left-hand side follows by evaluating ρ ± σ

at v∗ ± w∗, which has norm 1.

Now assume the left-hand side of (2.5). Necessarily we have x, y in the unit ball of

M with

(ρ+ σ)(x) = ‖ρ‖ + ‖σ‖ = (ρ− σ)(y).

This implies

‖ρ‖ = ρ(x) = |ρ|(s(|ρ|)xvs(|ρ|)) ⇒ s(|ρ|)xvs(|ρ|) = s(|ρ|) ⇒ sr(ρ)xsℓ(ρ) = v∗,

where the last implication follows by multiplying on the right by v∗. Similarly

sr(ρ)ysℓ(ρ) = v∗, sr(σ)xsℓ(σ) = w∗, sr(σ)ysℓ(σ) = −w∗.

Write

(2.6) x = sr(ρ)xsℓ(ρ) + (1 − sr(ρ))xsℓ(ρ) + sr(ρ)x(1− sℓ(ρ)) + (1 − sr(ρ))x(1− sℓ(ρ)).

Now sr(ρ)xsℓ(ρ) = v∗, so the inequalities

‖sr(ρ)xx
∗sr(ρ)‖ ≤ 1, ‖sℓ(ρ)x

∗xsℓ(ρ)‖ ≤ 1,

force the two middle terms in (2.6) to drop out. This leaves

(2.7) x = v∗ + (1 − sr(ρ))x(1 − sℓ(ρ)).

Similarly

(2.8) y = v∗ + (1 − sr(ρ))y(1 − sℓ(ρ)).

We may deduce from (2.7) and (2.8) that

(2.9) sr(ρ)x = v∗ = sr(ρ)y,

and by an entirely analogous argument,

(2.10) xsℓ(σ) = w∗ = −ysℓ(σ).

Finally (2.9) and (2.10) imply

sr(ρ)xsℓ(σ) = v∗sℓ(σ) = sr(ρ)ysℓ(σ) = −sr(ρ)w
∗ = −sr(ρ)xsℓ(σ).

Then all terms in this equation are zero, and examination of the second and fourth terms

gives the conclusion.

Following [S1], we say that functionals ρ, σ satisfying (2.5) are orthogonal, and we

write ρ ⊥ σ. From Lemma 2.4 it follows that orthogonality is preserved by isometries

between von Neumann preduals. Relations of this type have been exploited to study

isometries in a variety of contexts, starting with Banach [B] and developed especially by

Lamperti [L].
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We use the notion ⊥ to define orthocomplements as well: for a set S ⊂ M∗, S
⊥ is the

set of elements orthogonal to every element in S.

Finally, we use the notations P for “projections of” and Z for “center of”, so for

example P(Z(M)) is the set of central projections in M. We also use c(·) for “central

support of”, applied to operators or elements in the predual.

3. Proof of Theorem 1.3. Let T : A → B be a surjective isometry of C*-algebras.

For brevity we set N = A∗∗, M = B∗∗, Φ = T ∗, so that Φ : M∗ → N∗ is a surjective

isometry between von Neumann preduals.

Main Claim. There are a unitary w ∈ N and a surjective Jordan *-isomorphism K :

M → N such that

(3.1) Φ(ρ) = w(ρ ◦K−1), ρ ∈ M∗.

Our proof of the Main Claim has three steps. First we show that we may consider

separately the finite type I summand of M. Then we prove the claim for finite type I

algebras, starting with lines laid down by Yeadon [Y]. Finally we prove the claim for

algebras with no finite type I summand, this time using a variation on the methods

of [S1].

Step 1

Lemma 3.1. Let Φ be as above. If z ∈ P(Z(M)), then

(3.2) Φ(M∗z) = N∗z
′ for some z′ ∈ P(Z(N )).

The map z 7→ z′ induces a surjective *-isomorphism from Z(M) to Z(N ).

The proof is identical to Lemma 4.1 in [S1]. We continue to use the apostrophe for

the isomorphism map between centers.

Notice that Lemma 3.1 implies that c(Φ(ρ)) = c(ρ)′ for any ρ ∈ M∗. Now for z a

central projection in an arbitrary von Neumann algebra R, define

N(z) = sup{n | ∃ρ1, ρ2, . . . ρn ∈ R∗ with c(ρj) = z, ρj ⊥ ρk for j 6= k}.

Coming back to our context, we have that N(z′) = N(z).

If zk is the central projection onto the Ik summand in M, zk is exactly characterized

as the largest central projection such that N(z) = k, ∀z ≤ zk. It follows that (zk)′ is the

central projection onto the Ik summand in N . Denoting the finite type I summand of

M as MI, fin, then, we have that Φ restricts to a surjective isometry from (MI, fin)∗ to

(NI, fin)∗.

Step 2. Yeadon [Y, Theorem 2] determined the form of all (not necessarily surjective)

isometries between noncommutative Lp spaces (1 ≤ p <∞, p 6= 2) associated to semifinite

von Neumann algebras. The first half of Step 2 is a variation of his method.

Let Φ : M∗ → N∗ be a surjective isometry between preduals of finite type I von

Neumann algebras. Temporarily assume that M is σ-finite, and fix a faithful normal
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trace τM on M. For each projection p ∈ P(M), let wpϕp be the polar decomposition of

Φ(τMp). We have that

w1ϕ1 = Φ(τM) = Φ(τMp) + Φ(τM(1 − p)) = wpϕp + w(1−p)ϕ(1−p).

Since τMp and τM(1−p) are orthogonal, so are their images. Thus wpϕ(1−p) = w(1−p)ϕp =

0, and

w1ϕ1 = (wp + w(1−p))(ϕp + ϕ(1−p)).

Moreover wp + w(1−p) is still a partial isometry, as the summands have orthogonal left

and right supports, so uniqueness of the polar decomposition implies

(3.3) wp + w(1−p) = w1, ϕ1 = ϕp + ϕ(1−p).

Define

K : P(M) → P(N ); p 7→ sr(Φ(τMp)) = s(ϕp).

We have by (3.3) that

(3.4) K(p)ϕ1 = ϕp = ϕ1K(p) and Φ(τMp) = w1ϕ1K(p), p ∈ P(M).

We already know that K is additive on orthogonal projections; extend K to real lin-

ear combinations of orthogonal projections, then by continuity to arbitrary self-adjoint

operators, then by complex linearity to all of M. Because of (3.4) we have

(3.5) K(x)ϕ1 = ϕ1K(x) and Φ(τMx) = w1ϕ1K(x), x ∈ M,

which guarantees that K is a well-defined injective linear map. By construction K is

*-preserving and commutes with squaring on self-adjoint elements, so it is also Jordan.

The density of τMM in M∗ implies the density of w1ϕ1K(M) in N∗. Since every

element of w1ϕ1K(M) vanishes on (1− sℓ(w1)), we must have sℓ(w1) = 1. The finiteness

of N then means that w1 is unitary and ϕ1 is faithful.

For a bounded net {xα} ⊂ M, the convergence of τMxα is equivalent to the conver-

gence of ϕ1K(xα). Lemma 2.3 tells us thatK is strongly continuous on the unit ball of M,

so that the unit ball of K(M) is strongly and weakly closed in N . By the Krein-Smullyan

theorem K(M) is weakly closed in N .

We claim that K(M) is also weakly dense in N and so must equal N . It is enough to

show that each element of N∗ attains its norm when restricted to K(M), and by density

of ϕ1K(M) in N∗ it suffices to prove this for a functional of the form ϕ1K(x), x ∈ M.

In fact the norm is attained at K(v∗), where x = v|x| is the polar decomposition:

[ϕ1K(x)](K(v∗)) = ϕ1(K(x)K(v∗))
(3.5)
= ϕ1

(

K(x)K(v∗) +K(v∗)K(x)

2

)

= ϕ1

(

K

(

xv∗ + v∗x

2

))

= ϕ1

(

K

(

|x∗| + |x|

2

))

=

∥

∥

∥

∥

ϕ1K

(

|x∗| + |x|

2

)
∥

∥

∥

∥

N∗

=

∥

∥

∥

∥

w1ϕ1K

(

|x∗| + |x|

2

)
∥

∥

∥

∥

N∗

=

∥

∥

∥

∥

τM

(

|x∗| + |x|

2

)
∥

∥

∥

∥

M∗

= ‖τMx‖M∗
= ‖ϕ1K(x)‖N∗

.

This establishes that K is surjective.
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By (3.5), ϕ1 is therefore a finite faithful trace on N . Actually ϕ1 = τM ◦K−1, since

for any h ∈ N+,

τM(K−1(h)) = ‖τMK−1(h)‖M∗
= ‖Φ(τMK−1(h))‖N∗

= ‖w1ϕ1h‖N∗
= ϕ1(h).

We have therefore that

Φ(τMx) = w1(τM ◦K−1)K(x) = w1((τMx) ◦K−1), x ∈ M.

(The second equality uses again that the Jordan product of two operators has the same

trace as the usual product.) By density of τMM we may conclude (3.1) for all ρ ∈ M∗,

taking w = w1.

If M is not σ-finite, we apply the above argument to each of its σ-finite central

summands. Since the isometries agree on their intersections, so do the associated Jordan

*-isomorphisms and unitaries (partial isometries in M). It follows that there are a global

Jordan *-isomorphism and unitary of which these are restrictions, and (3.1) holds in

general.

Step 3. Now we assume that Φ : M∗ → N∗ is a surjective isometry between preduals

of algebras which have no finite type I summand. We start with a useful

Definition 3.2 ([S1]). Let M be a von Neumann algebra. A subspace of M∗ is called a

corner if it is of the form q1M∗q2 for some q1, q2 ∈ P(M). Corners with q1 = 1 (resp.

q2 = 1) are called columns (resp. rows). Notice that a corner has a unique representation

in which c(q1) = c(q2). A corner of the form M∗z, z ∈ P(Z(M)), is called a central

summand (as is the algebra Mz).

Statements (3)-(5) of the following lemma are also included in [S1, Lemma 3.1].

Lemma 3.3. Let M and N be von Neumann algebras.

(1) When q1, q2 ∈ P(M) satisfy c(q1) = c(q2), then (q1M∗q2)
⊥ = (1 − q1)M∗(1 − q2).

(2) A corner in M∗ has orthocomplement {0} if and only if it can be (re)written as

M∗r1z+r2M∗(1−z), where z ∈ P(Z(M)), r1, r2 ∈ P(M), and c(r1z+r2(1−z)) =

1.

(3) If Φ : M∗ → N∗ is a surjective isometry and S ⊂ M∗, then Φ(S⊥) = Φ(S)⊥.

(4) The intersection of any collection of corners in M∗ is a corner.

(5) For any set S ⊂ M∗, S
⊥ is a corner.

(6) The closure of the union of an increasing net of corners in M∗ is a corner.

Proof. The first statement is obvious and implies the second. By (2.5), Φ and Φ−1 pre-

serve orthogonality, proving the third statement. For the fourth, let {pα}, {qα} ⊂ P(M);

then
⋂

pαM∗qα = (∧pα)M∗(∧qα).

The fifth follows from noting that {ρ}⊥ = (1 − sℓ(ρ))M∗(1 − sr(ρ)) and applying the

fourth to the expression

S⊥ =
⋂

ρ∈S

{ρ}⊥.
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To prove the sixth, assume that {pα}, {qα} are increasing nets in P(M). Necessarily

we have the strong convergences pα → p = (sup pα), qα → q = (sup qα). Then for any

ρ ∈ M∗, (2.4) and Lemma 2.3 imply

‖pρq − pαρqα‖ ≤ ‖pρ(q − qα)‖ + ‖[(p− pα)ρ]qα‖ ≤ ‖ρ(q − qα)‖ + ‖(p− pα)ρ‖ → 0.

It follows that
⋃

pαM∗qα = pM∗q

as required.

A version of the next lemma was proved in [S1, Lemma 4.3] for noncommutative Lp

spaces, 1 < p <∞ only, using different techniques.

Lemma 3.4. Assume M and N have no finite type I summand, and let Φ : M∗ → N∗

be a surjective isometry.

(1) Φ takes corners to corners.

(2) If q ∈ P(M) satisfies c(q) = c(1 − q) = 1, then

Φ(M∗q) = N∗q1z
′ + q2N∗(1 − z′),

for some q1, q2 ∈ P(N ), z′ ∈ P(Z(N )), with q1z
′ + q2(1− z

′) strictly between 0 and

1 on every central summand. (More technically, c(q1z
′ + q2(1− z′)) = c(1− (q1z

′ +

q2(1 − z′)) = 1.)

Proof. Let p1M∗p2 be a corner with c(p1) = c(p2), and first assume that c(1 − p1) =

c(1 − p2). In this case Lemma 3.3(1,3,5) tells us that p1M∗p2 and (1 − p1)M∗(1 − p2)

are orthocomplements of each other, their images are orthocomplements as well, and

therefore the images are corners.

If c(p1) = c(p2) but c(1−p1) 6= c(1−p2), then the corner contains a nonzero column or

row. Since there is no finite type I summand, such a corner can be written as the closure

of an increasing union of corners covered by the first paragraph. By Lemma 3.3(6), the

image is a corner.

The second statement is a consequence of the first part and Lemmas 3.3(2) and 3.1.

Since M∗q contains no central summand and (M∗q)
⊥ = {0}, the same holds for its

image, whence q1z
′ + q2(1− z′) is strictly between 0 and 1 on every central summand.

At this point we can apply the same arguments as those given in Section 4 of [S1],

from Lemma 4.4 until the end. These arguments are self-contained, except for references

to [JS] which are covered in our context by Lemma 2.2 of this paper, and one assertion

mentioned in the second item below. The main points are these:

• Any choice of q in Lemma 3.4(2) produces the same central projection z′.

• On M∗z, Φ takes columns to columns; this induces an orthogonality-preserving

map π between projection lattices via Φ(M∗zq) = N∗z
′π(q). The map π extends

to a *-isomorphism between Mz and N z′ which is also an intertwiner:

Φ(ρx) = Φ(ρ)π(x), ρ ∈ M∗z, x ∈ Mz.

(In the context of [S1] the fact that π preserves orthogonality of projections is

justified by properties of the semi-inner product which do not apply here. Instead
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one can use that Φ preserves orthogonality of predual vectors to obtain that π

preserves orthogonality of σ-finite projections, then pass to general projections by

considering increasing nets.)

• On M∗z, the map Φ can be decomposed as

Φ(ρ) = w1(ρ ◦ π
−1), ρ ∈ M∗z,

where w1 is a unitary in Mz.

• On M∗(1 − z), Φ takes columns to rows, the analogous map π̄ extends to a *-

antiisomorphism, and

Φ(ρ) = w2(ρ ◦ π̄
−1), ρ ∈ M∗(1 − z),

for a unitary w2 in M(1 − z).

• Taking w = w1 + w2, K = π ⊕ π̄, we obtain (3.1).

This ends Step 3. The Main Claim is therefore established by considering the restric-

tions of Φ to the finite type I summand of M and its complement, then adding the Jordan

isomorphisms and unitaries. (The unitaries in the two summands add to a unitary in M.)

Having proved the Main Claim, decompose the surjective Jordan *-isomorphism K

as the sum of the *-isomorphism K1 on Mz and the *-antiisomorphism K2 on M(1− z).

We have, for any ρ ∈ M∗, y ∈ N ,

Φ(ρ)(y) = [w(ρ ◦K−1)](y)(3.6)

= ρ(K−1
1 (ywz′) +K−1

2 (yw(1 − z′)))

= ρ((K−1
1 (wz′) +K−1

2 (w(1 − z′)))(K−1
1 (w∗ywz′) +K−1

2 (y(1 − z′)))

= ρ(uJ(y)).

Here u is the unitary (K−1
1 (wz′) + K−1

2 (w(1 − z′))) in M, and J : M → N is the

surjective Jordan *-isomorphism K−1 ◦ Ad (wz′ + (1 − z′)).

Now we return to the original map T : A → B. From (3.6) we have that

ρ(Φ∗(y)) = [Φ(ρ)](y) = [(ρu) ◦ J ](y) = ρ(uJ(y)), ρ ∈ M∗, y ∈ N ,

so that T ∗∗(y) = Φ∗(y) = uJ(y). Of course T = T ∗∗ |A.

We apply Lemma 2.1, taking C = A, D = B∗∗, v = u, and K = J |A. Since uJ(A) =

T ∗∗(A) = T (A) = B is a C*-subalgebra of B∗∗, we conclude by the lemma that J(A) =

uJ(A), whence uB = u(uJ(A)) = uJ(A) = B. We also have that Bu = [u∗B]∗ =

[u∗(uB)]∗ = B, so that u is a multiplier of B. The proof of Theorem 1.3 is complete.

4. Extension to noncommutative Lp spaces. The main vehicle in our proof of The-

orem 1.3 is the description of surjective isometries of preduals given in the Main Claim.

As mentioned in the introduction, the description itself is not new. But our method of

proof for preduals (noncommutative L1 spaces) can be adapted to describe surjective

isometries of noncommutative Lp spaces, 0 < p <∞, p 6= 2, and this is new when p < 1.

In this section we briefly describe the necessary changes and corresponding results. We

do not define noncommutative Lp spaces formally; the reader seeking background may

wish to consult the recent exposition [PX].
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In Subsection 2.4, all statements about M∗ have obvious translations in terms of

Lp(M), except that the bimodule structure is not as simple as (2.3), and Lemma 2.4

becomes

Theorem 4.1 (Equality condition in the noncommutative Clarkson inequality). For ξ, η

∈ Lp(M), 0 < p <∞, p 6= 2,

(4.1) ‖ξ + η‖p + ‖ξ − η‖p = 2(‖ξ‖p + ‖η‖p) ⇔ ξη∗ = ξ∗η = 0.

Theorem 4.1 is due to Raynaud and Xu [RX, Theorem A.1], extending earlier non-

commutative theorems of Yeadon [Y, Theorem 1] and Kosaki [Ko, Theorem 6.6]. Because

of it, the orthogonality relation is preserved by isometries, and the “calculus of corners”

does not depend on the value of p.

The proof in Section 3 also proceeds as before, changing M∗ to Lp(M). However, (3.1)

can be stated for positive Lp elements only. (And this is enough to describe a linear map,

as any Lp element is a linear combination of four positive ones.) Positive Lp elements

may be viewed as pth roots of positive L1 elements, and using this as a basis for notation,

(3.1) becomes

(4.2) Φ(ϕ1/p) = w(ϕ ◦K−1)1/p, ϕ ∈ M+
∗ .

The Main Claim extends [S1, Theorem 1.2], which only covered p > 1, as follows:

Theorem 4.2 (Noncommutative Lp Banach-Stone theorem). Let T : Lp(M) → Lp(N )

be a surjective isometry, where M and N are von Neumann algebras and 0 < p < ∞,

p 6= 2. Then there are a surjective Jordan *-isomorphism J : M → N and a unitary

u ∈ N such that

(4.3) T (ϕ1/p) = u(ϕ ◦ J−1)1/p, ∀ϕ ∈ M+
∗ .

It is also possible to deduce the corresponding extension of [S1, Theorem 1.1], which

was previously stated for p ≥ 1:

Theorem 4.3. Let M and N be von Neumann algebras, and 0 < p ≤ ∞, p 6= 2. The

following are equivalent:

(1) M and N are Jordan *-isomorphic;

(2) Lp(M) and Lp(N ) are isometrically isomorphic as Banach spaces (or p-Banach

spaces, when p < 1).
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