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Abstract. In the framework of the symmetric Fock space over L2(R+), the details of the ap-

proximation of the four fundamental quantum stochastic increments by the four appropriate

spin-matrices are studied. Then this result is used to prove the strong convergence of a quantum

random walk as a map from an initial algebra A into A⊗B (Fock (L2(R+))) to a *-homomorphic

quantum stochastic flow.

1. Introduction. As a sequel to the early works of Parthasarathy [Par 1987] and of

Lindsay and Parthasarathy [L-P 1988], Attal and Pautrat [A-P 2006] revived the idea of

quantum random walk and showed the weak convergence of a sequence of unitaries to

the unitary process solution of a Hudson-Parthasarathy equation with constant bounded

operator coefficients in an initial Hilbert space. However, unlike in [Par 1987], they work in

one Hilbert space, viz. the symmetric (Bosonic) Fock space, with the ‘walks’ taking place

in an infinite dimensional ‘toy Fock space’ which is a subspace of the Fock space. However,

in both cases the authors only prove weak convergence. They therefore cannot conclude

unitarity of the limiting operator process and thus do not have the homomorphic property

for the resulting mapping process. For the motivation from classical Markov chains set in

algebraic language, we refer the reader to the work of Lindsay and Parthasarathy [L-P

1988]; we also use mostly their notations and work only in the Heisenberg picture, i.e.

with the processes as maps on the algebra of the observables of the system [A-F-L 1982].

Here we consider only the case with bounded coefficients of the stochastic process

coming in a natural way from the one-step quantum random walk. However, we have
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found it useful to separate the two issues in the study of quantum stochastic diffusion

processes viz. the one on the existence of a solution of a quantum stochastic differential

equation (q.s.d.e.) and other on *-homomorphic property of the solution as a map on the

algebra of observables. In fact, we assume the existence of a strongly continuous solution

of the q.s.d.e. for the diffusion, and also assume the existence of a one-step quantum

walk given by *-homomorphisms depending on the step-size which in a suitable sense

approximates the coefficients driving the diffusion as the step-size converges to zero.

Here we work with bounded coefficients so that the assumption on existence of solutions

holds, by standard quantum stochastic theory.

The motivation behind such a separation of assumptions is that in the case of un-

bounded coefficients one may be able to find a solution of the q.s.d.e. by some other

methods (see e.g. [A-K 2001] and [L-W 2004]). Then the hope is that under suitable

conditions the method indicated here may be modified to show strong convergence of the

associated quantum random walk, thereby proving the *-homomorphic property of the

solution.

2. Notations and preliminaries. All tensor products between von Neumann algebras

are meant in the ultraweak sense. We begin by fixing a basis {Nk}4
k=1 of B(C2) so that∑4

j=1 bjNj = I for some constants b1, . . . , b4, in particular, we choose

N1 =

[
1 0

0 0

]
, N2 =

[
0 1

0 0

]
, N3 =

[
0 0

1 0

]
, N4 =

[
0 0

0 1

]
.

In such a case, b2 = b3 = 0 and b1 = b4 = 1 and we also note that the Nj ’s satisfy the

following algebraic relations:

N3 = N∗
2 , N2

2 = N2
3 = 0,

N1 = N2N3, N4 = N3N2,(1)

N2N3 + N3N2 = N1 + N4 = I.

We also observe that these are similar to the canonical anti-commutation relations (CAR)

or equivalently the spin algebra relations satisfied by the Pauli matrices, and this is the

reason why the authors of [L-P 1988] named the associated random walk as quantum

spin random walk.

Let A ⊆ B(h) be a von Neumann algebra of system observables where h is a separable

Hilbert space and let α : A → A⊗B(C2) be the basic unital *-homomorphism or the one

step random walk. This means that we can write for x ∈ A,

(2) α(x) =

4∑

j=1

αj(x) ⊗ Nj ,

and this also means that the equalities α(xy) = α(x)α(y) and α(x)∗ = α(x∗) will imply

αj(xy) =
∑

Cj
klαk(x)αl(y), αj(I) = bj ,

(3)
α1(x)∗ = α1(x

∗), α2(x) = α3(x
∗), α3(x) = α2(x

∗), α4(x) = α4(x
∗),

where Cj
kl is determined by NkNl =

∑
j Cj

klNj as can be seen in (1).
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We can now construct the n-step quantum spin random walk by the following recursive

process:

(4) J0(x) = x, J1(x) = α(x), Jn(x) =

4∑

j=1

Jn−1(αj(x) ⊗ Nj).

It is clear that (as in [L-P 1988]) for each n, Jn : A → A⊗B(C2)⊗n is a *-homomorphism.

Next, in order to pass to the diffusion limit of a quantum stochastic process, we need

to embed the structure in a Fock space. Thus consider the symmetric (Bosonic) Fock

space H ≡ Γ(L2(R+)) = H ≡ C⊕∑⊕
n=1 L2(R+) s©n

, where s©n denotes n-fold symmetric

tensor product. For any f ∈ L2(R+), we denote by e(f) the exponential vector given by

e(f) = 1 ⊕ f ⊕ f⊗2

√
2

⊕ · · · ⊕ f⊗n

√
n

⊕ · · ·

so that

〈e(f), e(g)〉 = exp(< f, g >).

We also note the standard Fock space properties:

(i) continuous tensor product property: L2(R+) ∼= L2(0, a)⊕L2(a, b)⊕L2(b,∞) implies

Γ(L2(R+)) ≃ Γ(L2(0, a)) ⊗ Γ(L2(a, b)) ⊗ Γ(L2(b,∞)) for 0 ≤ a ≤ b ≤ ∞;

(ii) if we define, for 0 ≤ a ≤ b < ∞, θ(a, b) to be the unitary isomorphism from L2[0, 1]

onto L2[a, b] given by (θ(a, b)f)(s) = (b − a)−1/2f((b − a)−1(s − a)), where f ∈ L2[0, 1],

then this lifts to a unitary isomorphism of H(0, 1) onto H(a, b) by second quantization

where we have written H(a, b) = Γ(L2(a, b)).

We have already observed that (1) is a representation of the CAR. By the results of

Hudson and Parthasarathy [H-P 1986] the CAR also admit a representation in the Fock

space H as follows:

(5) N2 =

∫ 1

0

Γ(Rs)A(ds), N3 =

∫ 1

0

Γ(Rs)A
†(ds),

where A, A† and Λ are the three fundamental (martingale) processes in H (see Par 1992),

Γ(Rs) is the second quantization of the reflection operator Rs in L2(R+) defined as

(6) (Rsf)(t) =

{
−f(t) if t ≤ s,

f(t) if t > s,

and N1 and N4 are obtained by using the relations in (1). In the standard notation of

the CAR, N2 = a and N3 = a+, moreover N4 = a+a, the number operator, and the Nk’s

so represented are bounded operators in H(0, 1).

We also set, for 0 ≤ a ≤ b ≤ ∞ and l = 1, 2, 3, 4,

(7) Nl(a, b) = Γ(θ(a, b))NlΓ(θ(a, b))−1

so that the Nl(a, b)’s are bounded operators in H(a, b).

Next suppose that for each non-zero positive number h, we are given a basic*-

homomorphism α(h, ·) : A → A ⊗ B(0, h) as in (2). Then we can proceed to construct
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the n-step random walk as follows: for t ≥ 0,

J
(h)
0 (x) = x, J

(h)
h (x) =

4∑

k=1

αk(h, x) ⊗ Nk(0, h),

(8) J
(h)
t (x) =

4∑

k=1

J
(h)

n−1h
(αk(h, x)) ⊗ Nk(n − 1h, nh),

where n − 1h < t ≤ nh.

From the construction above, two facts follow easily:

(i) for each x ∈ A and t ≥ 0

J
(h)
t (x) ∈ A⊗ B(0, h) ⊗ B(h, 2h) ⊗ · · · ⊗ B(n − 1h, nh) ⊆ A⊗ B(0, nh) ⊆ A⊗ B(H)

where we have used the notation B(a, b) = B(H(a, b));

(ii) since each J
(h)
t is *-homomorphic and unital, in particular it satisfies

(9) ‖J (h)
t (x)‖ ≤ ‖x‖

Here we also collect a result from pages 185–186 of [Par 1992] which will be used more

than once in the sequel.

Proposition 2.1 Let {Xj(t)}j=1,2 be stochastic processes given by

Xj(t) =

n∑

k=1

Lj(tk−1) [Mj(tk) − Mj(tk−1)]

where t0 < t1 < · · · < tn = t and Mj is any martingale process (such as a linear

combination of A, A+ and Λ). Then for u, v ∈ h and f, g ∈ L2(R+),

〈X1(t)ue(f), X2(t)ve(g)〉

=
n∑

j=1

〈L1(tj−1)ue(ftj−1]
), L2(tj−1)ve(gtj−1]

)〉

·〈(M1(tj) − M1(tj−1)) e(f[tj−1
), (M2(tj) − M2(tj−1)) e(g[tj−1

)〉

+

n∑

j=1

〈X1(tj−1)ue(ftj−1]
), L2(tj−1)ve(gtj−1]

)〉 〈e
(
f[tj−1

)
, (M2(tj) − M2(tj−1)) e

(
g[tj−1

)
〉

+

n∑

j=1

〈L1(tj−1)ue(ftj−1]
), X2(tj−1)ve(gtj−1]

)〉

·〈(M1(tj) − M1(tj−1)) e(f[tj−1
), e(g[tj−1

)〉.

3. Approximation of the fundamental processes. Here we derive some useful es-

timates regarding the behaviour of the Nk’s in relation to the fundamental processes in

the Fock space and for this it is convenient to use the notation:

(10) Λ1(s) = s, Λ2(s) = A(s), Λ3(s) = A†(s), Λ4(s) = Λ(s),

and

ε1 = 1, ε2 = ε3 = 1/2, ε4 = 0.
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Lemma 3.1. Let f, g ∈ M ≡ BC1(R+) ∩ L2(R+) and l be a natural number. Then for

0 < h < 1, k = 1, 2, 3, 4,

(i) |〈e(g[l−1h,lh]), [h
εkNk(l − 1h, lh) − Λk(l − 1h, lh)]e(f[l−1h,lh])〉| ≤ C1h

2,

(ii) ‖[hεkNk(l − 1h, lh) − Λk(l − 1h, lh)]e(g[l−1h,lh]‖ ≤
{

C2h
3
2 for k = 1, 2,

C2h for k = 3, 4.

where C1 and C2 are two positive constants depending on g, f and on g respectively.

Here also for an interval ∆ ⊆ R+, g∆ means gχ∆ and BC1(R+) means the space of

once continuously differentiable functions on R+ with the function as well as its deriva-

tive bounded. In the following for the brevity of writing, we shall write gl−1], g[l], g[l

for g[0,l−1h], g[l−1h,lh] and g[lh respectively and Nk[l] and Λk[l] for Nk(l − 1h, lh) and

Λk(l − 1h, lh) respectively.

Proof. (i)

〈e(g[l]), (N4[l] − Λ[l])e(f[l])〉

=
1

h

∫ lh

l−1h

g(s)ds

∫ lh

l−1h

f(τ )dτ e〈Rsg[l],Rτ f[l]〉 −
∫ lh

l−1h

g(s)f(s)ds e〈g[l]f[l]〉.

Noting that

RsRτf(t) =

{
−f(t) if t ∈ [s ∧ τ, s ∨ τ ],

f(t) otherwise,

we get that the L.H.S. in (i) equals

1

h

∫ lh

l−1h

g(s)ds

∫ lh

l−1h

f(τ )dτ

[
exp

{∫ sΛτ

l−1h

gf −
∫ s∨τ

sΛτ

gf +

∫ lh

s∨τ

gf

}
− exp

{∫ lh

l−1h

gf

}]

+ exp

{∫ lh

l−1h

gf

}
.

[
1

h

∫ lh

l−1h

dsg(s)

∫ lh

l−1h

f(τ )dτ −
∫ lh

l−1h

g(s)f(s)ds

]

≡ I1 + I2.

We have

|I1| ≤ h ‖g‖∞ ‖f‖∞ exp(‖g‖ ‖f‖) sup
s,τ,∈[l−1h,lh]

∣∣∣∣1 − exp

{
−2

∫ s∨τ

s∧τ

gf

}∣∣∣∣

≤ 2h2 ‖g‖2
∞ ‖f‖2

∞ exp(3 ‖g‖ ‖f‖),
and

|I2| ≤
∣∣∣∣ exp

(∫ lh

l−1h

gf

)∣∣∣∣
∣∣∣∣
1

h

∫ lh

l−1h

g(s)ds

∫ lh

l−1h

[f(τ ) − f(s)]dτ

∣∣∣∣

≤ 2 exp(‖g‖ ‖f‖) ‖g‖∞ ‖f ′‖∞ h2,

proving that

|〈e(g[l]), (N4[l] − Λ[l])e(f[l]〉| ≤ C1h
2.

Next,

〈e(g[l]), (hN1[l] − h)e(f[l])〉 = −h{〈e(g[l]){N4[l] − Λ[l]}e(f[l])〉 + 〈e(g[l]), Λ[l]e(f[l])〉}
and thus by the previous estimates, |L.H.S.| ≤ C ′′

1 h3 + C ′
1h

2 for small h.
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Next,

〈e(g[l]), (h
1
2 N3[l] − A†[l])e(f[l])〉

=

∫ lh

l−1h

g(s)ds〈e(g[l]), (Γ(Rs) − I)e(f[l])〉

=

∫ lh

l−1h

g(s)ds

{
exp

(
−
∫ s

l−1h

gf +

∫ lh

s

gf

)
− exp

(∫ lh

l−1h

gf

)}

and an estimate similar to the earlier one leads to

|〈e(g[l]), (h
1
2 N3[l] − A†[l])e(f[l])〉| ≤ 2 ‖g‖2

∞ exp(3 ‖g‖ ‖f‖) ‖f‖∞ h2.

Finally,

|〈e(g[l]), (h
1
2 N2[l] − A[l])e(f[l])〉| = |〈e(f[l]), (h

1
2 N3[l] − A†[l])e(g[l])〉|

and a similar estimate follows from the previous one.

(ii) We have

‖(hN1[l] − h)e(g[l])‖2 = h2〈e(g[l]), N4[l]e(g[l])〉
= h2{〈e(g[l]), (N4[l] − Λ[l])e(g[l])〉 + 〈e(g[l]), Λ[l]e(g[l])〉}
≤ h2(C ′h2 + C ′′h) ≤ C2

2h3

giving the required estimate. Similarly,

‖{h 1
2 N2[l] − A[l]}e(g[l])‖ =

∥∥∥∥∥

∫ lh

l−1h

g(s)ds
[
e(Rsg[l]) − e(g[l])

]
∥∥∥∥∥ ≤ Const h

3
2 ,

since

‖e(Rsg[l]) − e(g[l])‖2 = 2

[
exp

(∫ lh

l−1h

|g|2
)

− exp

(
−
∫ s

l−1h

|g|2 +

∫ lh

s

|g|2
)]

≤ 4 exp(‖g‖2)‖g‖2
∞h.

Next,

‖(
√

hN3[l] − A†[l])e(g[l])‖ =

∥∥∥∥∥

∫ lh

l−1h

dA†(s)
{
e(Rsg[l]) − e(g[l])

}
∥∥∥∥∥

≤ C ′′′

√∫ lh

l−1h

(1 + |g(s)|2)
∥∥e(Rsg[l]) − e(g[l])

∥∥2 ≤ C2h,

where we have used the estimate in the previous paragraph. Finally,

(11)
∥∥(N4[l] − Λ[l])e(g[l])

∥∥2

= 〈e(g[l]), N4[l]e(g[l])〉 + 〈e(g[l]), Λ[l]2e(g[l])〉 − 2Re〈N4[l]e(g[l]), Λ[l]e(g[l])〉.
By the quantum Ito formula, we have

dtΛ[a, t]2 = 2Λ[a, t]dΛ(t) + dΛ(t)

or,

Λ[l]2 =

∫ lh

l−1h

(2Λ(l − 1h, t) + 1)dΛ(t).
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Therefore,

〈e(g[l](, Λ[l]2e(g[l])〉 =

∫ lh

l−1h

|g(s)|2ds〈e(g[l]),
{
2Λ(l − 1h, s) + 1

}
e(g[l])〉

=

∫ lh

l−1h

|g(s)|2ds

{
2

∫ s

l−1h

|g(τ )|2dτ + 1

}
exp(

∥∥g[l]

∥∥2
),

and also note that the first term ≤ e‖g‖2 ‖g‖2
∞ h2. Next,

(12) 〈N4[l]e[g[l]), Λ[l]e[g[l])〉= h−1

∫ lh

l−1h

g(s)ds

〈∫ lh

l−1h

Γ(Rτ )dA†(τ )e(Rsg[l]), Λ[l]e(g[l])

〉
.

Using the relation that for ∆, ∆′ ⊆ R+ and f ∈ L2(R+),

A(∆)Λ(X∆′)e(f) =

[∫

∆∩∆′

f(τ )dτ +

∫

∆

f(τ )dτΛ(X∆′)

]
e(f),

we have that
〈∫ lh

l−1h

Γ(Rτ )dA+(τ )e(Rsg[l]), Λ[l]e(g[l])

〉
=

∫ lh

l−1h

〈e(RτRsg[l]), e(g[l])〉g(τ )dτ

+

∫ lh

l−1h

g(τ )dτ

(∫ lh

l−1h

RτRsg(t)g(t)dt

)
〈e(RτRsg[l]), e(g[l])〉,

and therefore (12) is equal to

h−1

∫ lh

l−1h

g(s)ds

∫ lh

l−1h

g(τ )dτ

{
1 +

∫ lh

l−1h

RτRsg(t)g(t)dt

}
· e〈Rτ Rsg[l],g[l]〉.

Finally we note that

〈N4[l]e(g[l]), Λ(l)e(g[l])〉

= h−1

∫ lh

l−1h

g(s)ds

∫ lh

l−1h

g(τ )dτ

{
1 +

∫ lh

l−1h

RτRsg(t)g(t)dt

}
· e〈Rτ Rsg[l],g[l]〉

= 〈N4[l]e(g[l]), Λ(l)e(g[l])〉,
since R∗

τ = Rτ . Putting all this together in (11) we observe that

(13)
∥∥[N4[l] − Λ(l)] e(g[l])

∥∥2
=

1

h

∫ lh

l−1h

g(s)ds

∫ lh

l−1h

g(τ )dτe〈RτRsg[l],g[l]〉

+

∫ lh

l−1h

|g(s)|2ds e‖g[l]‖2

− 2

h

∫ lh

l−1h

g(s)ds

∫ lh

l−1h

g(τ )dτ e〈Rτ Rsg[l],g[l]〉 + O(h2)

≤
∫ lh

l−1h

|g(s)|2ds exp(
∥∥g[l]

∥∥2
) − 1

h

∫ lh

l−1h

g(s)ds

∫ lh

l−1h

g(τ )dτ e〈Rτ Rsg[l],g[l]〉 + O(h2)

=

(
1

h

∫ lh

l−1h

g(s)ds

∫ lh

l−1h

[g(s) − g(τ )]dτ

)
e‖g[l]‖2

+
1

h

∫ lh

l−1h

g(s)ds

∫ lh

l−1h

g(τ )dτ
(
e‖g[l]‖2

− e〈Rτ Rsg[l],g[l]〉
)

+ O(h2).
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The first term in (13) in absolute value does not exceed

‖g‖∞ ‖g′‖∞
e‖g‖2

h

∫ lh

l−1h

ds

∫ lh

l−1h

|s − τ | dτ =
1

6
exp(‖g‖2

) ‖g‖∞ ‖g′‖∞ h2,

while the second term in (13) in absolute value does not exceed

1

h

∫ lh

l−1h

|g(s)|ds

∫ lh

l−1h

|g(τ )|dτ

∣∣∣∣ exp

(∫ lh

l−1h

|g|2
)
−exp

{∫ s∧τ

l−1h

|g|2−
∫ s∨τ

s∧τ

|g|2+

∫ lh

s∨τ

|g|2
}∣∣∣∣

≤ 1

h
exp(‖g‖2)

∫ lh

l−1h

|g(s)|ds

∫ lh

l−1h

|g(τ )|dτ |1 − e−2
∫

s∨τ

s∧τ
|g|2 | ≤ 2 ‖g‖4

∞ exp(‖g‖2)h2.

Combining all these together in (13), we get finally,

‖(N4[l] − Λ[l])e(g[l])‖ ≤ C2h.

Remark 3.2. From Lemma 3.1 (ii), it is clear that for k = 1, 2;

[ n∑

l=1

hǫkNk(l − 1h, lh) − Λk(0, t)
]
e(g) → 0

as h → 0 for g ∈ BC1(R+). In order to prove a similar result for k = 3, 4, one has to be

a bit more careful.

Corollary 3.3. For g ∈ M and k = 1, 2, 3, 4 with the choices of ǫk as given in Lemma

3.1,
[ n∑

l=1

hǫkNk(l − 1h, lh) − Λk(0, t)
]
e(g) → 0

as h → 0+.

Proof. As we have observed above the proof for k = 1, 2 is straightforward. For the rest,

we note from Proposition 2.1 that if we set

Xk
t,he(g) ≡

[ n∑

l=1

hǫkNk(l − 1h, lh) − Λk(0, t)
]
e(g)

=
n∑

l=1

[
hǫkNk(l − 1h, lh) − Λk(l − 1h, lh)

]
e(g),

≡
n∑

l=1

Mk(l − 1h, lh)e(g),

then

‖Xk
t,he(g)‖2 =

n∑

l=1

‖Mk(l − 1h, lh)e(g[l])‖2‖e(g − g[l])‖2(14)

+ 2Re

n∑

l=1

〈X(k)

l−1h,h
e(gl−1h]), e(gl−1h])〉〈e(g[l−1h), Mk(l − 1h, lh)e(g[l−1h)〉

= I3 + I4.

In the above we have used the fact that each Mk is a martingale w.r.t. the Fock filtration,
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i.e. for s < t

〈e(g s]), Mk(s, t)e(g s])〉 = 0.

This is because the L.H.S. above equals

〈e(θ(s, t)−1g s]), Mk(0, 1)e(θ(s, t)−1g s])〉 = 〈e(0), Mk(0, 1), e(0)〉 = 0 for k = 2, 3

in an obvious fashion and for k = 4,

〈e(0), M4(0, 1), e(0)〉 = 〈e(0), N4(0, 1), e(0)〉 =

∥∥∥∥
∫ 1

0

Γ(Rs)dA(s)e(0)

∥∥∥∥
2

= 0,

while for k = 1

〈e(0), M1(0, 1), e(0)〉 =

∥∥∥∥
∫ 1

0

Γ(Rs)dA†(s)e(0)

∥∥∥∥
2

− 1 = ‖A†(0, 1)e(0)‖2 − 1 = 0.

Next we note that, by the estimates in Lemma 3.1(ii), for k = 3, 4, ‖X(k)
t,h e(g)‖ ≤

constant, independent of h, and therefore by using Lemma 3.1(i) in I4 in (14), we get

that |I4| → 0 as h → 0, On the other hand, since by Lemma 3.1(ii)

‖Mk(l − 1h, lh)e(g)‖2 ≤ Constant · h2,

we have |I3| → 0 as h → 0.

Corollary 3.3 essentially produces the result obtained by Attal and Pautrat [A-P2006]

on exponential vectors though they used an entirely different construction. This also

makes clear in what sense the “random walks” approximate various quantum noises.

4. Quantum diffusion as a limit of random walk. In this section we shall address

the central result of this paper, viz. that the quantum n-step random walk J
(h)
t (x) with

step-size h in (8) converges as h → 0, n → ∞ with nh → t strongly to the solution

jt(x) of a particular quantum stochastic differential equation, provided the basic 1-step

homomorphism α(h, .) has suitable limiting properties. Unlike in [L-P 1988] or [A-P 2006],

the strong convergence allows one to conclude that (jt)t≥0 is a flow of *-homomorphisms

on the algebra A of observables and therefore is a “quantum diffusion”.

To present the results in this section, we make two basic assumptions separately so

that one knows which assumption leads to exactly which result.

Assumptions.

A1: The quantum stochastic initial value problem: for x ∈ A, t ≥ 0, u ∈ h, f ∈ L2(R+),

(15) jt(x) ue(f) = x ue(f) +

∫ t

0

4∑

k=1

js(βk(x))dΛk(s).ue(f)

has a unique strongly continuous solution jt : A 7→ A⊗B(H). Furthermore, it is assumed

that for fixed u ∈ h and f ∈ M ⊆ L2(R+) the solution satisfies the bound:

(16) ‖jt(x)ue(f)‖ ≤ C(t, f)‖x‖ ‖u‖.
A2: Assume furthermore that the basic *-homomorphism α(h, .) satisfies for k = 1, 2, 3, 4,

(17) h−ηk {αk(h, x) − bkx − hǫkβk(x)} → 0 as h → 0

uniformly with respect to x ∈ A, where ηk = 1 for k = 1, 3 and = 1/2 for k = 2, 4.
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Since we are assuming in this paper that the structure maps (βk) are bounded, as-

sumption A1 holds ([Par 1992]).

Theorem 4.1. Assume A1 and A2. Then J
(h)
t (x), as defined in (8), converges strongly

to jt(x) for each x ∈ A and t ≥ 0. Thus jt : A → A⊗ B(H) is a unital *-homomorphic

flow.

Proof. (a) From A1 it follows that for u ∈ h, f ∈ M and 0 ≤ s < t < T, x ∈ A

‖ [jt(x) − js(x)]ue(f)‖2 =

∥∥∥∥
4∑

k=1

∫ t

s

jt (βk(x))Λk(dt)ue(f)

∥∥∥∥
2

≤ C ′(T, f)
4∑

k=1

∫ t

s

‖jt (βk(x))ue(f)‖2ds

≤ C ′′(T, f)‖u‖2
4∑

k=1

‖βk(x)‖2(t − s)

≤ C̃(t, f)2(t − s)‖u‖2 ‖x‖2.

Thus in the definition of the strong integral in the right-hand side of (15) with respect

to the partition of [0, t) as given in (8), one has that
( 4∑

k=1

∫ t

0

js (βk(x)) Λk(ds) −
4∑

k=1

n∑

l=1

jl−1h (βk(x))Λk[l]

)
ue(f)

=
4∑

k=1

∫ t

0

[js (βk(x)) − js,n (βk(x))] Λk(ds)ue(f),

with js,n(y) = jl−1h(y) for l − 1h ≤ s < lh, l = 1, 2, . . . , n.

By using the earlier estimate, for u ∈ h, f ∈ M, x ∈ A we have that
∥∥∥∥
( 4∑

k=1

∫ t

0

js (βk(x))Λk(ds) −
4∑

k=1

n∑

l=1

jl−1h(βk(x))Λk[l]

)
ue(f)

∥∥∥∥
2

≤ D′(T, f)
4∑

k=1

∫ t

0

‖ [js (βk(x)) − js,n (βk(x))] ue(f)‖2
(
1 + |f(s)|2

)
ds

≤ D̃(T, f)

4∑

k=1

n∑

l=1

∫ lh

l−1h

ds‖[js (βk(x)) − jl−1h(βk(x))]ue(f)‖2

≤ D̃C̃2‖u‖2
4∑

k=1

‖βk(x)‖2
n∑

l=1

h2 ≤ D(T, f)‖u‖2 ‖x‖2h.

This establishes the fact that for u, f and x as above,
(

jt(x) − x −
4∑

k=1

n∑

l=1

jl−1h(βk(x))Λk[l]

)
ue(f)

=

( 4∑

k=1

∫ t

0

js(βk(x))Λk(ds) −
4∑

k=1

4∑

l=1

jl−1h(βk(x))Λk[l]

)
ue(f)
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converges to 0, uniformly w.r.t. x ∈ A, as h → 0, n → ∞ with nh → t. From (8), it

follows that

J
(h)
t (x) − x =

n∑

l=1

{J (h)
lh (x) − J

(h)

l−1h
(x)}

=
∑

k

n∑

l=1

{J (h)

l−1h
(αk(h, x)) ⊗ Nk(l − 1h, lh) − J

(h)

l−1h
(x) ⊗ bkNk(l − 1h, lh)}

=
∑

k

n∑

l=1

J
(h)

l−1h
(αk(h, x) − bkx) ⊗ Nk(l − 1h, lh)

=
∑

k

n∑

l=1

J
(h)

l−1h
(αk(h, x) − bkx − hǫkβk(x)) ⊗ Nk[l]

+
∑

k

n∑

l=1

J
(h)

l−1h
(βk(x)) ⊗ {hǫkNk[l] − Λk[l]}+

∑

k

n∑

l=1

J
(h)

l−1h
(βk(x)) ⊗ Λk[l].

Thus for u ∈ h, f ∈ M, x ∈ A, and using (a), we get

(18) [J
(h)
t (x) − jt(x)]ue(f)

=
∑

k

n∑

l=1

(J
(h)

l−1h
(αk(h, x) − bkx − hǫkβk(x)) ⊗ Nk[l])ue(f)

+
∑

k

n∑

l=1

(J
(h)

l−1h
(βk(x)) ⊗ {hǫkNk[l] − Λk[l]})ue(f)

−
[∑

k

∫ t

0

js(βk(x))Λk(ds) −
∑

k

n∑

l=1

jl−1h(βk(x))Λk[l]
]
ue(f)

+
(∑

k

n∑

l=1

{J (h)

l−1h
(βk(x)) − jl−1h(βk(x))} ⊗ Λk[l]

)
ue(f)

= I1 + I2 + I3 + I4,

where we have used the notations used in the proof of Lemma 3.1.

Next we fix u ∈ h, f ∈ M, x ∈ A and then using (9) and assumption A2, we can

estimate I1 in (18):

‖I1‖ ≤ ‖u‖
4∑

k=1

n∑

l=1

‖αk(h, x) − bkx − hǫkβk(x)‖ ‖Nk[l]e(f)‖

which goes to zero uniformly w.r.t. x ∈ A, as h → 0 once we observe from Lemma 3.1

that

‖N1,3[l]e(f[l])‖ ≤ C ′
1, ‖N2,4[l]e(f[l])‖ ≤ C ′

2h
1
2

with constants C ′
1 and C ′

1 depending on f only.
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For I2, we shall use again Proposition 2.1 as we did in the proof of Corollary 3.3. For

this we set

Y k
t,h ≡

n∑

l=1

J
(h)

l−1h
(βk(x)) ⊗ {hǫkNk[l] − Λk[l]}

and observe first that by Lemma 3.1(ii)

(19) ‖Y k
t,hue(f[l])‖ ≤ Constant · ‖x‖ (independent of h)

Thus

‖Y k
t,hue(f)‖2 =

n∑

l=1

‖J (h)

l−1h
(βk(x))ue(fl−1h])‖2

· ‖(hǫkNk[l] − Λk[l])e(f[l])‖2‖e(f[lh)‖2

+ 2Re

n∑

l=1

〈Y k
l−1h,h

ue(fl−1h]), ue(fl−1h])〉

· 〈e(f[l]), {hǫkNk[l] − Λk[l]} e(f[l])〉 · ‖e(f[lh)‖2

which, again by virtue of Lemma 3.1 (i) and (ii) and (19) goes to zero uniformly w.r.t.

x ∈ A as h → 0.

Thus using the observation in the part (a) of this proof and (18), we note that given

an arbitrary ǫ > 0, we can choose h > 0 sufficiently small so that

(20) ‖I1 + I2 + I3‖ < ǫc ‖x‖ ,

where c is a constant depending only on u, f, T but independent of h and x.

(c) This last part of the proof is similar to that of theorem 3.3 in [L-P 1988]. For fixed

u ∈ h and f ∈ M, define

(21) T
(h)
t (x) = J

(h)
t (x)ue(f), Tt(x) = jt(x)ue(f).

First of all, note that both the maps T
(h))
t and Tt are well-defined bounded linear

maps from A into h ⊗H. Next, we get from (18) and (20) that

‖T (h)
t (x) − Tt(x)‖2 ≤ 2c2ǫ2 ‖x‖2 + 2C2

n∑

l=1

h
4∑

k=1

‖T (h)

l−1h
(βk(x)) − Tl−1h(βk(x))‖2,

where we have used the standard estimate (page 223 [Par 1992]) for I3 and C is a constant

which depends only on f . Noting that β′
k’s are all bounded, the above leads to

‖T (h)
t − Tt‖2 ≤ 2c2ǫ2 + 2C2

4∑

k=1

‖βk‖2
n∑

l=1

h‖T (h)

l−1h
− Tl−1h‖2(22)

= 2c2ǫ2 + D
n∑

l=1

‖T (h)

l−1h
− Tl−1h‖2.h

where we have set D = 2C2
∑4

k=1 ‖βk‖2. As in [L-P 1988], we note that since the initial

values T
(h)
0 (x) = xue(f) = T0(x), it follows that

‖T (h)
t − Tt‖2 ≤ (1 + hD)n2c2ǫ2 ≤ 2etDc2ǫ2
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and since ǫ was arbitrary, it follows that

lim
h→0

‖T (h)
t − Tt‖2 ≡ 0

or equivalently

lim
h→0

‖J (h)
t (x)ue(f) − jt(x)ue(f)‖ = 0, for u ∈ h, f ∈ M, x ∈ A.

Next, since for t>0 fixed and for each h>0, J
(h)
t is contractive, and {J (h)

t (x)ue(f)}h>0

is strongly Cauchy in h, for u ∈ h and f ∈ M, it easily follows by the density of the

algebraic tensor product of h and vectors of the type e(f) (with f ∈ M) in h⊗Γ
(
L2(R+)

)

that:

(i) for every t > 0 and x ∈ A, {J (h)
t (x)}h>0 is strongly Cauchy on h ⊗H,

(ii) for every t > 0 and x ∈ A, J
(h)
t (x) converges strongly on h ⊗H to jt(x),

(iii) since each J
(h)
t is a *-homomorphic unital map from A to A⊗B(H), jt(.)t≥0 is also

a *-homomorphic unital map from A to A⊗ B(H),

(iv) since furthermore by A1, jt(x) satisfies the quantum stochastic differential equation

(15), jt : A → A⊗B(H) is a *-homomorphic flow and is the limit of the quantum random

walk (8).

Remark 4.2. (a) In the case βk’s are bounded maps, as has been assumed here, the

hypothesis A1 can actually be verfied directly by an iterative construction of the solution

(see for example, [E 1989] or [Par 1992] on the exponential domain i.e. on vectors of the

type ue(f), u ∈ h, f ∈ L2(R+).

(b) In the original papers ([E 1989], [M-S 1990] and [G-S 1999]), the homomorphism

property was also deduced by using a kind of iterative procedure, depending heavily on

the boundedness of all the “structure maps” βk’s. Here we have separated the two issues,

viz, the existence and the property of homomorphism. This is more natural because

for various unbounded βk’s, the existence problem may be handled by using various

theories of semigroups and of evolutions, whereas the scheme of approximation of the

solution by a sequence of homomorphisms (called “random walks”), if it can be adapted

for unbounded βk’s, will prove the homomorphism property of the solution. However, it

should be emphasised that the step (c) in the proof of the theorem 4.1 has to be modified

appropriately for this to succeed. This will be addressed elsewhere.

(c) From (2), (8) and (16) we find that the map α(h, .) : A → A⊗ B(C2) is given as:

(23) α(h, x) =

(
α1(h, x) α2(h, x)

α3(h, x) α4(h, x)

)
=

(
x + hβ1(x) + O(h)

√
hβ2(x) + O(h

1
2 )√

hβ3(x) + O(h) x + β4(x) + O(h
1
2 )

)

and the property of homomorphism for α(h, ·) gives:

(24)

α1(h, xy) = α1(h, x)α1(h, y) + α2(h, x)α3(h, y),

α2(h, xy) = α1(h, x)α2(h, y) + α2(h, x)α4(h, y),

α3(h, xy) = α3(h, x)α1(h, y) + α4(h, x)α3(h, y),

α4(h, xy) = α3(h, x)α2(h, y) + α4(h, x)α4(h, y).

Combining (23) and (24) we get, for fixed x, y ∈ A,

xy + hβ1(xy) + O(h) = (x + hβ1(x) + O(h))(y + hβ1(y) + O(h)),
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or,

h [β1(xy) − β1(x)y − xβ1(y) − β2(x)β3(y)] + O(h) = 0,

and similarly,

h
1
2 [β2(xy) − xβ2(y) − β2(x) {y + β4(y)}] + O(h

1
2 ) = 0,

h
1
2 [β3(xy) − β3(x)y − {x + β4(x)}β3(y)] + O(h

1
2 ) = 0,

[β4(xy) − β4(x)y − xβ4(y)] + hβ3(x)β2(y) + O(h) = 0 − β4(x)β4(y),

leading to the familiar structure relations in the limit of h → 0,

β1(xy) = β1(x)y + xβ1(y) + β2(x)β3(y),

β2(xy) = xβ2(y) + β2(x)(y + β4(y)),

β3(xy) = β3(x)y + (x + β4(x))β3(y),

β4(xy) = β4(x)y + xβ4(y) + β4(x)β4(y).

Similarly, the *-preservation property of α(h, .) leads to

β1(x)∗ = β1(x
∗), β2(x)∗ = β3(x

∗), β4(x)∗ = β4(x
∗).
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