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Abstract. The category of von Neumann correspondences from B to C (or von Neumann

B-C-modules) is dual to the category of von Neumann correspondences from C′ to B′ via a

functor that generalizes naturally the functor that sends a von Neumann algebra to its com-

mutant and back. We show that under this duality, called commutant, Rieffel’s Eilenberg-Watts

theorem (on functors between the categories of representations of two von Neumann algebras)

switches into Blecher’s Eilenberg-Watts theorem (on functors between the categories of von

Neumann modules over two von Neumann algebras) and back.

1. Introduction. In algebra the Eilenberg-Watts theorem (Eilenberg [Eil60] and Watts

[Wat60]) states that every functor (fulfilling certain assumptions) between categories of

(right or left) modules over algebras B and C is given (up to natural equivalence) by

tensoring with a (unique up to isomorphism) bimodule (from the right or from the left).

As a consequence, such a functor is an equivalence, if and only if it is implemented by a

bimodule that has an inverse under taking tensor products. This is the famous Morita

theorem (Morita [Mor58]) that answers the question under which conditions two algebras

have equivalent representation theories.

In Hilbert module theory the symmetry between left and right actions is broken

by existence of an inner product with values in that algebra which acts on the right.1
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1We are not speaking about the possibility to model the complete theory in terms of left

Hilbert modules. A left Hilbert module would be a left module over a C∗-algebra with an inner
product assuming values in that C∗-algebra and that inner product should be left linear with
respect to its left argument. Our Hilbert modules will always be right Hilbert modules with an
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Consequently, in Hilbert module theory there are two Eilenberg-Watts theorems. (We give

a concise formulation of both in Section 5.)

The first one, Rieffel’s Eilenberg-Watts theorem [Rie74b], actually concerns represen-

tations of von Neumann algebras on Hilbert spaces.2 A Hilbert space is a von Neumann

module over C. True von Neumann modules appear only in the statement of the theorem

under the name correspondence: Every normal ∗-functor l from the category of repre-

sentations3 of the von Neumann algebra B to the category of representations of the von

Neumann algebra C is implemented (up to natural equivalence) as tensoring from the left

with a von Neumann correspondence4 E from C to B (uniquely determined by l up to iso-

morphism). If we think of a Hilbert space H that carries a normal unital representation of

B as a left B-module, then l carries the representation of B on H to the induced represen-

tation of C on the left C-module l(H) = E⊙H (acting as c(x⊙h) = cx⊙h), where E⊙H

is the tensor product (over B) of the C-B-correspondence E and the B-C-correspondence

H.5 A morphism from H1 to H2, that is, a bounded left B-linear mapping a, is sent to

the morphism l(a) = idE ⊙a.

The second one, Blecher’s Eilenberg-Watts theorem [Ble97], regards Hilbert modules:

Every strict ∗-functor r from the category of Hilbert B-modules to the category of Hilbert

C-modules is implemented (up to natural equivalence) as tensoring from the right with a

correspondence F from B to C (uniquely determined by r up to isomorphism). That is, r

inner product that is right linear in its right variable. The whole theory based on left modules will
be symmetric and will have formulae equally elegant as those in the theory for right modules,
only if we would decide (as, in fact, some algebraists do) to write all functions on the right
of their argument. (An instance of this fact can be seen already in the notations for rank-one
operators in Hilbert space theory, when people insist in having inner products linear in the first
and not in the second variable.)

Actually the symmetry between left and right modules is already broken in the very moment
when we choose to write functions on the left of their arguments. In fact, the condition to be a
module map reads for right modules T (xb) = (Tx)b, a simple associativity where all parts of the
formula stay in order. For left modules the condition reads T (bx) = b(Tx). Here something has
to be commuted. Also, in both parts the simple change of brackets would lead to expressions Tb

and bT that, a priori, are not even defined.
2Some authors, in fact, understand by a Hilbert module simply a representation of a

C∗-algebra on a Hilbert space, thus, turning the Hilbert space into a left module. This is defi-
nitely not the terminology we are using. For us a Hilbert module over a C∗-algebra B is a right
B-module with a B-valued inner product.

3Representations are assumed nondegenerate, unless stated otherwise explicitly.
4By a correspondence from a C∗-algebra C to a C∗-algebra B we mean a Hilbert B-module

E with a nondegenerate representation of C by adjointable operators on E that turns E into
a C-B-module. (The nondegeneracy condition for correspondences is essential and not shared
by all authors!) In particular, every Hilbert B-module is a correspondence from the C∗-algebra
B

a(E) of all adjointable operators on E to B. Von Neumann correspondences will be defined in
detail later on.

5The tensor product of a correspondence E from A to B and a correspondence F from B to
C is that unique A-C-correspondence E⊙F that is generated as a Hilbert module by elementary
tensors x ⊙ y (x ∈ E, y ∈ F ) with inner products 〈x1 ⊙ y1, x2 ⊙ y2〉 = 〈y1, 〈x1, x2〉y2〉.



COMMUTANTS AND EILENBERG-WATTS THEOREMS 393

carries the Hilbert B-module E to r(E) = E ⊙F and a morphism a ∈ Ba(E1, E2) is sent

to r(a) = a ⊙ idE .

While Rieffel’s theorem fails for C∗-algebras, Blecher’s theorem allows for an ob-

vious modification to normal ∗-functors between categories of von Neumann modules

(or abstract W ∗-modules). The failure of Rieffel’s theorem for C∗-algebras can be seen,

for instance, by Rieffel’s argument based on [Rie74b, Proposition 8.19]: Commutative

C∗-algebras have equivalent categories of representations, if and only if their spectra are

Borel isomorphic. However, such an equivalence can be implemented by a tensor product

if and only if these C∗-algebras have homeomorphic spectra. That is, the corresponding

Morita theorem (that would follow if the Eilenberg-Watts theorem would hold) may fail.

In Section 2 we report recent results from Muhly, Skeide and Solel [MSS06] about

representations of Ba(E) and how they can be used to furnish a proof of Blecher’s

Eilenberg-Watts heorem without using operator space technology. In the remainder of

these notes, we use a duality, the commutant, between von Neumann B-C-correspondences

and von Neumann C′-B′-correspondences, to prove that the two Eilenberg-Watts theo-

rems (in the von Neumann variant of Blecher’s version) are duals of each other via the

commutant. More precisely, the commutant ′ takes von Neumann C-B-correspondences

(that is, von Neumann B-modules) to von Neumann B′-C-correpondences (that is normal

unital representations of B′), and back. Under this transition a functor l translates into

a functor r = (′) ◦ l ◦ (′), and back. Moreover, if r is implemented by tensoring the von

Neumann B-C-correspondence F , then l is implemented by tensoring the von Neumann

C′-B′-correspondence F ′, and conversely. Therefore, any proof of Blecher’s Eilenberg-

Watts theorem (von Neumann case), automatically, also proves Rieffel’s, and conversely.

The commutant was discussed in Skeide [Ske03] in the case C = B. It also appeared,

independently, in Muhly and Solel [MS04] and was generalized to different algebras in

Muhly and Solel [MS05]. The idea of commutant has already produced a bunch of new

results [Ske05b, GS05, Ske05a, Ske04b] (in preparation [Ske04a]) and has put known re-

sults into a new perspective [Dix54, Sti55, Arv69, AHK78, Sau80, Sau83, Arv89a, Arv89b,

Bha96, Goh04, Hir04, Ske00, MS02]. Still, there is no end in sight. We would like to give

an account of all those new perpectives. But this probably would be beyond the space

available for this note. So we content ourselves with referring the reader to the discussions

in [GS05, Ske05a, Ske04b] (most of [Ske05b] we discuss in Section 3) and promise to do

our best to finish [Ske04a] soon.

In Section 3 we discuss von Neumann modules and how to think of them as repre-

sentations of the commutant of the von Neumann algebra. In Section 4 we discuss von

Neumann correspondences and the construction of their commutants. Finally, in Section

5 we show that the commutant interchanges the two Eilenberg-Watts theorems. The cat-

egories of concrete von Neumann modules and concrete von Neumann correspondences,

which we introduce exactly for that goal, appear here for the first time.

Convention. A von Neumann algebra is always a concrete algebra of operators acting

nondegenerately on a Hilbert space. If we intend a von Neumann algebra without a fixed

identifying representation—but we never ever do that—then we should say W ∗-algebra.

The same convention applies to von Neumann modules (as opposed to W ∗-modules)



394 M. SKEIDE

which we always consider as concrete modules of operators between two Hilbert spaces.

Only in that way the functor commutant is a true bijection, that is, not only up to

(canonical) isomorphism or (natural) equivalence.

2. Representations of B
a(E) and Blecher’s Eilenberg-Watts theorem. Suppose

E is a Hilbert module over a C∗-algebra B. Then E∗ may be viewed as a correspondence

from B to Ba(E), the dual correspondence of E, when equipped with the bimodule op-

erations bx∗a := (a∗xb∗)∗ and with inner product 〈x∗, y∗〉 = xy∗. Here x∗ is interpreted

as the operator y 7→ 〈x, y〉 in Ba(E,B) with adjoint x : b 7→ xb. Consequently, xy∗ is the

rank-one operator z 7→ x〈y, z〉 in Ba(E).

Actually, the inner product of E∗ takes values only in the pre-C∗-algebra F(E) of

finite-rank operators (an ideal in Ba(E)) that is spaned linearly by the rank-one operators.

Therefore, E∗ may be viewed also as a correspondence from B to the C∗-algebra K(E)

of compact operators, the closure of F(E) in Ba(E) and a closed ideal.

We observe that E ⊙E∗ = K(E) via the canonical isomorphism x⊙ y∗ 7→ xy∗, where

K(E) (like every C∗-algebra) is viewed as the identity correspondence from K(E) to K(E)

with its natual bimodule structure and inner product 〈a1, a2〉 = a∗
1a2.

Suppose now that ϑ : B
a(E) → B

a(F ) is a strict unital homomorphism, where F is a

Hilbert module over a C∗-algebra C. This means, in particular, that F is a correspondence

from Ba(E) to C. Moreover the left action being strict, means that already the action of

K(E) on F is nondegenerate. (This is the only property we need. So we do not give a

precise definition of a strict mapping.) In other words, by strictness F is even a corre-

spondence from K(E) to C. Moreover, since ϑ(xy∗)z (x, y ∈ E, z ∈ F ) is a total subset

of F , the action of a ∈ B
a(E) on F is already determined by the action of K(E) alone,

because ϑ(a)ϑ(xy∗)z = ϑ((ax)y∗)z where (ax)y∗ ∈ K(E). That is, a correspondence from

K(E) to C can always be turned into a correspondence from Ba(E) to C in exactly one

way, and this extension is strict automatically.

Nondegeneracy of the action of K(E) on F can be phrased as K(E)⊙ F = F via the

canonical isomorphism a⊙z 7→ ϑ(a)z. Putting together this identification with E⊙E∗ =

K(E), we obtain

F = K(E) ⊙ F = (E ⊙ E∗) ⊙ F = E ⊙ (E∗ ⊙ F ) = E ⊙ Fϑ,

where we defined the correspondence Fϑ from B to C as Fϑ := E∗ ⊙ F . The following

theorem from Muhly, Skeide and Solel [MSS06] just fixes the isomorphism F = E⊙Fϑ and

identifies the action of a ∈ Ba(E) on E⊙Fϑ as the canonical one, that is, as amplification

ϑ(a) = a ⊙ idFϑ
.

Theorem 2.1 ([MSS06]). Let E be a Hilbert B-module, let F be a Hilbert C-module and

let ϑ : B
a(E) → B

a(F ) be a strict unital homomorphism. Then Fϑ := E∗ ⊙ F is a

correspondence from B to C and the formula

u(x1 ⊙ (x∗
2 ⊙ y)) := ϑ(x1x

∗
2)y

defines a unitary

u : E ⊙ Fϑ → F
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such that

ϑ(a) = u(a ⊙ idFϑ
)u∗.

Theorem 2.1 can be specified further regarding uniqueness of Fϑ. First, recall that

the inner product of E generates a closed ideal BE := span〈E, E〉 in B, the range ideal

of E. Further, we have E∗ ⊙ E = BE by the canonical isomorphism x∗ ⊙ y 7→ 〈x, y〉.

Finally, BE ⊙ E∗ = E∗ ⊙ E ⊙ E∗ = E∗ ⊙ K(E) = E∗ so that E∗ may also be viewed as

a correspondence from BE to K(E). (The critical task, here, is nondegeneracy of the left

action of BE .) It follows that Fϑ may be viewed as a correspondence from BE to C. We

collect some more results from [MSS06] in a theorem.

Theorem 2.2. Fϑ is the unique correspondence from B to C (reproducing ϑ as ampli-

fication) that is also a correspondence from BE to C. More precisely, if F̃ is another

correspondence from B to C and ũ : E ⊙ F̃ → F an isomorphism of correspondences from

B
a(E) to C, then

〈x1, x2〉y 7→ x∗
1 ⊙ ũ(x2 ⊙ y)

establishes an isomorphism from the BE-C-correspondence spanBEF̃ = BE ⊙ F̃ (tensor

product over B, where BE is viewed as a correspondence from BE to B) to Fϑ. Therefore,

if F̃ is also a correspondence from BE to C, then F̃ = BE ⊙ F̃ ∼= Fϑ. Also, if E is full

(that is, if BE = B), then F̃ is isomorphic to Fϑ.

Remark 2.3. Theorem 2.1 in the case when F is a Hilbert space and for representations

of F(E) rather than strict representations of Ba(E) is Rieffel’s [Rie74a, Theorem 6.29].

What we added in [MSS06] is, essentially, the discussion for the extension to Ba(E) and

the generalization from Hilbert spaces to Hilbert modules for the representation space F .

Modulo notation and technical discussion, the arguments in the proofs are the same.

The mechanism behind both proofs can be summarized by the observation that we

may switch from modules over BE to modules over K(E) and back by tensoring with E or

E∗ from the relevant side. In fact, the crucial identities E∗⊙E = BE and E⊙E∗ = K(E)

mean just that E is a Morita equivalence from K(E) to BE and E∗ its inverse under

tensor product. (A correspondence E from A to B is a Morita equivalence from A to

B, if E∗ ⊙ E = B and E ⊙ E∗ = A. The latter means that the left action of A on E

defines an isomorphism from A onto K(E). Tensoring a representation space H of B

with a correspondence E from A to B on the left gives a representation space E ⊙ H

of A where the induced representation a ⊙ idH acts. In fact, we obtain a functor from

the category of representations of B with intertwiners as morphisms to the corresponding

category for A. This functor is an equivalence, if and only if E is a Morita equivalence.

As for C∗-algebras not every equivalence is induced by a Morita equivalence, we treat,

later, only the case of von Neumann algebras.)

Now we turn our interest to categories of Hilbert modules and functors between

them. More precisely, we discuss the result that every sufficiently regular functor among

them is implemented by tensoring from the right with a suitable fixed correspondence.

The original version is Blecher’s Eilenberg-Watts theorem [Ble97], proved there using

operator space techniques. Here we use a different fomulation and discuss the approach

from [MSS06] that does not involve operator spaces explicitly. (For experts: Blecher’s
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categories have the same objects as ours but more morphisms. By definition, his functors

restrict to ours and by an additional regularity condition, boundedness of the functor,

that he must require, his functors are unique extensions of ours. So, essentially the two

formulations coincide.)

Let B be a C∗-algebra. By C
∗
B we denote the category of Hilbert B-modules with the

adjointable mappings as morphisms. (Blecher would use the category CB with the same

objects but bounded right linear mappings as morphisms.) A functor r : C∗
B → C∗

C is a

∗-functor if r(a∗) = r(a)∗ for every morphism a. It is strict, if the restriction r ↾ Ba(E)

is strict (in the sense explained above) for every object E. We wish to determine the

structure of strict ∗-functors. (Blecher would speak about bounded strict ∗-functors, where

∗-functor means in [Ble97] that the restriction to our categories is a ∗-functor in our sense.)

The key points of the approach in [MSS06] are as follows: By Theorem 2.1 for every

object E there is a correspondence FE := E∗⊙ r(E) and an isomorphism uE : E ⊙FE →

r(F ) such that r(a) = uE(a ⊙ idFE
)u∗

E. Showing that for a direct sum E1 ⊕ E2, the

submodule uE1⊕E2
(E1 ⊙ FE1⊕E2

) of r(E1 ⊕ E2) is canonically isomorphic to uE1
(E1 ⊙

FE1
) = r(E1) is a key point also in [Ble97]. Thus, E1⊙FE1⊕E2

∼= E1⊙FE1
. In particular,

by a (two-fold!) application of Theorem 2.2 for an arbitrary object E, FB is the unique

correspondence from B to C such that r(E) = uE(E ⊙ FE) ∼= E ⊙ FE⊕B
∼= E ⊙ FB.

Therefore, fixing the correspondence F := FB from B to C, we obtain that r(E) ∼= E⊙F .

The following theorem, the Eilenberg-Watts theorem, fixes for each object a concrete

isomorphism and states that the family of all these isomorphisms establishes a natural

equivalence between the functors r and rF := • ⊙ idF .

By BC∗
C we denote the category of correspondences from B to C with the bilinear

adjointable mappings as morphisms.

Theorem 2.4 ([MSS06], Eilenberg-Watts theorem). Let r : C
∗
B →C

∗
C be a strict ∗-functor.

Then F = B∗⊙ r(B) is a correspondence in BC∗
C such that the strict ∗-functor rF , defined

by setting rF (E) = E ⊙ F and r(a) = a⊙ idF , is naturally equivalent to r via the natural

transformation given by the family of mappings vE : rF (E) → r(E) defined by setting

vE(x ⊙ (b∗ ⊙ z)) = r(xb∗)z.

Moreover, F is unique in BC∗
C. That is, if F̃ ∈ BC∗

C is another correspondence such

that r
F̃

is naturally equivalent to r, then F̃ ∼= F .

Remark 2.5. It is easy to show that the vE are isometries and that they fulfill the

naturality condition rF (a) = v∗E2
r(a)vE1

(a ∈ B
a(E1, E2)). The discussion, as sketched

before and detailed in [MSS06], shows how to find the vE and that they are, indeed,

surjective. See [MSS06] also for details that answer the question why Theorem 2.4 does

not allow to conclude back easily to Theorem 2.1.

Remark 2.6. It is not difficult to show that, if ϑ1 and ϑ2 are strict homomorphisms that

compose to ϑ2 ◦ϑ1, then Fϑ2◦ϑ1
= Fϑ1

⊙Fϑ2
. Also, the constructions iterate associatively.

This leads, in particular, to the construction of product systems of Hilbert modules (bet-

ter: of correspondences) from endomorphism semigroups and was our original motivation

to study homomorphisms ϑ.
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Observation 2.7. Theorems 2.1, 2.2 and 2.4 have obvious generalizations to von Neu-

mann modules, where ϑ and r will be normal, F will be a von Neumann correspondence

and tensor products are those in the category of von Neumann correspondences as dis-

cussed in the following section.

3. Von Neumann modules and representations. Von Neumann algebras are alge-

bras acting on a Hilbert space. It is easy to obtain them: Just take the strong closure

of a ∗-algebra of bounded operators or, equivalently, take its double commutant. The ab-

stract counterpart (that is, without a defining representation by operators on a Hilbert

space) are W ∗-algebras. Once given such an algebra, there is no principal difference in

difficulty between treating it as a von Neumann algebra or as a W ∗-algebra. (Although,

we feel that the method based on the theory of operators on Hilbert spaces with their

topologies appears to be more direct than what comes out if one tries to capture these

topologies abstractly only in terms of the W ∗-algebra. But this is certainly only a matter

of personal taste.) In this context, the basic result about W ∗-algebras is that given an

abstract ∗-algebra, if there is a possibility to turn it into a W ∗-algebra, then the way to

do it is unique. (W ∗-Algebras have unique pre-dual Banach spaces.) The problems in the

theory of W ∗-algebras occur when when we have ∗-algebras that are not yet W ∗-algebras

in this (unique) sense. It is, generally, a difficult task to find a good candidate for the

(future) pre-dual Banach space (whose dual would, then, be the desired W ∗-algebra)

without fixing a representation of the ∗-algebra.

These problems pass directly over to W ∗-modules. Let E be (pre-)Hilbert module

over a W ∗-algebra B. Then E is a W ∗-module, if it is self-dual (that is, every bounded

right linear mapping E → B arises as x∗ for a suitable x ∈ E) or, equivalently, if E has

a (unique) pre-dual Banach space. But, if E is not yet self-dual (for instance, if E is

the Hilbert module tensor product of two W ∗-modules), then how to make it self-dual?

Paschke [Pas73] showed that every (pre-)Hilbert module over a W ∗-algebra admits a

(unique minimal) self-dual extension, but the explicit construction is not very handy.

Rieffel [Rie74b] showed how this extension can be obtained more easily, but once more

only after fixing a faithful representation of the W ∗-algebra, that is, after having turned

the W ∗-algebra into a von Neumann algebra. In fact, Rieffel’s construction can be thought

of as the beginning of the idea of a commutant for Hilbert modules.

So, if the (simple) construction of the (unique) self-dual extension requires the choice

of a representation, why not dealing from the beginning with von Neumann algebras

rather than W ∗-algebras? Paired with the notion of von Neumann algebra as a concrete

operator algebra, there is the notion of von Neumann module as a concrete module of

operators. Much of the constructions needed to make this concept really applicable, can

be found already in Rieffel [Rie74b], but the explicit definition (using strong closure in an

operator space), that signifies a complete separation of the abstract properties from the

concrete operator picture, is due to Skeide [Ske00], and for the proof that this definition

based on strong closure is equivalent to the one using self-duality we were not able to

spot a reference going back further than [Ske00].

So let B ⊂ B(G) be a von Neumann algebra. (According to our convention, this means

that B is a strongly closed ∗-algebra of bounded operators acting nondegenerately on the
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Hilbert space G.) We start by turning every (pre-)Hilbert B-module E into a concrete

operator module. We define the Hilbert space H = E⊙G. Then every element x ∈ E gives

rise to an operator Lx : g 7→ x⊙ g in B(G, H) with adjoint L∗
x defined by y⊙ g 7→ 〈x, y〉g.

Clearly, Lxb = Lxb and 〈x, y〉 = L∗
xLy. In other words, if we identify x with Lx, then E

becomes a concrete operator B-submodule of B(G, H). We will always think in that way

of E as a subset of B(G, H).

Definition 3.1 ([Ske00]). A (pre-)Hilbert module E over a von Neumann algebra B ⊂

B(G) is a von Neumann B-module if E is strongly closed in B(G, H).

Corollary 3.2. If E is a (pre-)Hilbert module over a von Neumann algebra B ⊂ B(G),

then the strong closure E
s

in B(G, H) is the unique smallest von Neumann B-module

containing E.

Proof. This follows (like many other properties) simply because operator multiplication

in B(G ⊕ H) is separately strongly continuous and B is strongly closed in B(G ⊕ H) ⊃

B(G).

Every a ∈ Ba(E) gives rise to an operator in B(H) that sends x⊙g to ax⊙g. Instead

of writing a⊙ idG we continue using the same letter a. In this way, we identify (faithfully,

of course) B
a(E) as a subalgebra of B(H) acting nondegenerately on H. The following

corollary follows as the preceding one.

Corollary 3.3. If E is a von Neumann B-module, then Ba(E) ⊂ B(H) is a von Neu-

mann algebra. (The converse need not be true, as the example E = K(G, H) shows. In fact

K(G, H) is a Hilbert B(G)-module and Ba(K(G, H)) = B(H), but if K(G, H) 6= B(G, H),

that is, H and G are infinite-dimensional, then K(G, H) is not a von Neumann module.)

Example 3.4. A von Neumann B(G)-module has necessarily the form E = B(G, H)

(because it contains a subset norm-dense in the finite-rank operators F(G, H)) and Ba(E)

is B(H). Therefore, who is interested in nontrivial operator algebras Ba(E) ≇ B(H)

should not look at B(G)-modules.

Von Neumann modules E over commutative von Neumann algebras (in standard

representation, that is, L∞ acting by pointwise multiplication on L2) as they occur in

examples coming from classical probability, have direct integrals over the underlying

measure space (type I von Neumann algebras) as operator algebras. In fact, Mingo and

Giordano [MG97] started considering this point of view as a possibility to free the theory

of direct integrals from separability assumptions.

The basic result that makes the theory of von Neumann modules naturally equivalent

to the theory of W ∗-modules is the following.

Theorem 3.5 ([Ske00, Ske05b]). A (pre-)Hilbert module over a von Neumann algebra

is a von Neumann module if and only if it is self-dual, that is, if and only if it is a

W ∗-module.

The first proof in [Ske00] is based on existence of quasi orthonormal bases. The method

of the second proof in [Ske05b] is already closely related to the idea of commutant to which

we gradually switch our attention.
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We have imbedded Ba(E) into B(H) as acting on the first factor in H = E ⊙ G.

This can be done for an arbitrary element in the algebra B
r(E) of bounded right linear

mappings on E.

Remark 3.6. The possibility to do so, is a nontrivial issue for the Banach algebra Br(E)

without an a priori involution, and follows as, for instance, in Rieffel [Rie74b] from

general theorems about Banach modules. Only after this result, Br(E) turns out to be

a not necessarily self-adjoint subalgebra of B(H). The result is crucial for both proofs

of the preceding theorem. In [Ske00] we provided a comparably elementary proof for

existence and isometricity of the embedding B
r(E) ⊂ B(H), that works only in the

context of Hilbert modules and is based on cyclic decomposition, polar decomposition

and the Kaplansky density theorem.

It is natural to ask for the possibility to embed into B(H) also operators that act on

the second factor G in H = E ⊙G. This works, if the operator on G is left B-linear, that

is, if it is an element of the commutant B′ of B. In other words, on H we can define a

unital (normal, of course) repesentation ρ′ of B′ by setting ρ′(b′) = idE ⊙b′ (b′ ∈ B′). We

call ρ′ the commutant lifting associated with the (pre-)Hilbert B-module E. (This is not

a one-hundred percent correct, looking at the meaning the term has in operator theory,

but we think that commutant lifting expresses very well what ρ′ actually does; see also

Example 4.1.)

It is easy to compute the following commutant M′ and the double commutant M′′

in

B(G ⊕ H) =

(
B(G) B(H, G)

B(G, H) B(H)

)

of the so-called linking algebra M =
(
B E∗

E B
a(E)

)
(with obvious operations) of E:

(1) M′ =

{(
b′ 0

0 ρ′(b′)

)
: b′ ∈ B′

}
and M′′ =

(
B CB′(B(H, G))

CB′(B(G, H)) ρ′(B′)′

)
,

where, generally, for an A-bimodule E we denote its A-center or just center by

CA(E) = {x ∈ E : ax = xa (a ∈ A)}.

So CB′(B(G, H)) = {x ∈ B(G, H) : ρ′(b′)x = xb′ (b′ ∈ B′)}. As M′′ is the strong closure

of M, we conclude that E
s

= CB′(B(G, H)) and that B
a(E

s
) = B

a(E)′′ = ρ′(B′)′.

Theorem 3.7 ([Ske05b]). E is a von Neumann module if and only if

E = CB′(B(G, H)).

In this case, B
a(E) = ρ′(B′)′.

Together with the result that Br(E) embeds into B(H) it is not difficult to show

that the bounded right linear mappings CB′(B(G, H)) → B embed into CB′(B(H, G)) =

CB′(B(G, H))∗, so that the intertwiner space CB′(B(G, H)) is a self-dual Hilbert module.

This was already observed by Rieffel [Rie74b] and concludes the proof of self-duality of

von Neumann modules (E = CB′(B(G, H))!) as presented in [Ske05b].

Now a von Neumann B-module gives rise to a representation of B′ and can be recovered

as the intertwiner space for that representation. The question is natural, whether this
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correspondence can be reversed. That is, given a normal unital representation ρ′ of B′

on a Hilbert space H, can we define a von Neumann B-module E := CB′(B(G, H))

so that its commutant lifting gives back ρ′. These are actually two questions. The first

one, is CB′(B(G, H)) a von Neumann B-module, is readily verified to be affirmative.

(Excercise!) The second one, is ρ′ the commutant lifting associated with E, is tricky in

two respects. Firstly, to construct the commutant lifting we have to construct E⊙G and

then b′ 7→ idE ⊙b′. But, E ⊙ G is a freshly constructed abstract space, while H is given

from the beginning. They cannot be equal, they can only be canonically isomorphic and

ρ′ and the commutant lifting can, at most, be unitarily equivalent. Secondly, suppose

E ⊙ G and H are canonically isomorphic. Then, as E generates all of E ⊙ G from G,

the intertwiner space CB′(B(G, H)) should do the same for H, that is, we should have

span CB′(B(G, H))G = H.

The first problem we resolve in a minute. (Under suitable specifications H and E⊙G

are canonically isomorphic, and giving a suitable modified definition of concrete von

Neumann modules we sort this out.) The second problem has its affirmative solution in

the following crucial lemma.

Theorem 3.8 ([MS02]). If ρ′ is a normal unital representation of B′ on a Hilbert space

H, then span CB′(B(G, H))G = H.

(Starting with ρ′ we define M′ as in (1). The idea of the proof is to see which closed

subspace of G ⊕ H is generated from G by the commutant M′′ of M′ (as in (1)). The

projection P ′ onto that subspace is in M′. So there exists a projection p′ ∈ B′ such

that P ′ =
(

p′ 0
0 ρ′(p′)

)
. But M′′ certainly generates all of G, so p′ = 1B′ and P = idG⊕H .

Note that also the converse is true: If CB′(B(G, H))G is total in H, then ρ′ is unital and

normal.)

For the solution of the first problem we collect the properties fulfilled by E when

identified as a subspace of B(G, E ⊙ G), but formulate them in a way where the Hilbert

space H is given from the beginning and E is a concrete subset of B(G, H).

Definition 3.9. Let B ⊂ B(G) be a von Neumann algebra. A concrete von Neumann

B-module is a pair (E, H) consisting of a Hilbert space H and a subset E of B(G, H)

such that:

1. E is a (right) B-submodule of B(G, H), that is, x ∈ E, b ∈ B =⇒ xb ∈ E.

2. x, y ∈ E =⇒ x∗y ∈ B.

3. E acts nondegenerately on G, that is, span EG = H.

4. E is strongly closed in B(G, H).

By cvNB we denote the category of concrete von Neumann B-modules with the adjointable

mappings (that is, mappings a : E1 → E2 that admit a (unique) adjoint a∗ : E2 → E1

such that x∗(ay) = (a∗x)y for all y ∈ E1, x ∈ E2) as morphisms.

By 1 and 2 a concrete von Neumann B-module E is a pre-Hilbert B-module with

inner product defined as 〈x, y〉 = x∗y.

By 3 the Hilbert spaces E ⊙ G and H are isomorphic via the unitary defined by

x ⊙ g 7→ xg (where 3 contributes surjectivity). Therefore, every property present in the
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description using H has its counterpart in the description using E⊙G. For instance, by 4

the subset E of B(G, H) is strongly closed, thus, the same is true for the subset {Lx : x ∈

E} ⊂ B(G, E ⊙G) so that E is a von Neumann B-module in the sense of Definition 3.1.

It follows that the morphisms E1 → E2 are, indeed, the adjointable mappings Ba(E1, E2)

in the usual sense.

But, also each structure we defined so far in terms of E ⊙ G has a counterpart

when using H. The representation b′ 7→ idE ⊙b′ of B′ on E ⊙ G gives rise to a rep-

resentation ρ′ : B′ → B(H) uniquely determined by ρ′(b′)xg = xb′g. We recover E as

E = CB′(B(G, H)). Moreover, the elements a ∈ Ba(E1, E2) correspond one-to-one to

elements in CB′(B(H1, H2)), also denoted by a, where a ∈ Ba(E1, E2) acts on H1 as

a(x1g) = (ax1)g and where a ∈ CB′(B(H1, H2)) acts on x1 ∈ E1 ⊂ B(G, H1) simply

by composition ax1 = a ◦ x1 (but, except possibly in definitions, we never write ◦ for

compositions of operators on Hilbert spaces).

Conversely, if (ρ′, H) is a normal unital representation of B′ on a Hilbert space H,

then E := CB(B(G, H)) defines a concrete von Neumann B-module (E, H) and the repre-

sentation b′ 7→ (xg 7→ xb′g), constructed as before, gives us back ρ′. The correspondence

between elements in Ba(E1, E2) and in CB′(B(H1, H2)) remains the same as discussed

before. So, if we define B′cvN as the category of normal unital representations of B′ with

B′-linear bounded (or, equivalently, adjointable) mappings as morphisms, then we obtain

the following theorem.

Theorem 3.10. Let B⊂B(G) be a von Neumann algebra with commutant B′⊂B(G). By

F : (E, H) 7→ (b′ 7→ (xg 7→ xb′g), H), a 7→ (a : x1g 7→ (ax1)g)

we define a bijective functor F : cvNB → B′cvN. The inverse functor is given by

F
−1 : (ρ′, H) 7→ (CB′(B(G, H)), H), a 7→ (a : x1 7→ a ◦ x1).

We see that concrete von Neumann B-modules and representations of B′ are isomor-

phic categories, not only naturally equivalent ones. Although the sequence E
F

−−→ ρ′
F

−1

−−−→

E certainly was known to Rieffel in [Rie74b] and the back direction ρ′
F

−1

−−−→ E
F

−−→ ρ′

must have been known to many people working in Connes’ setting of correspondences

[Con80], it seems that the one-to-one aspect of Theorem 3.10, featuring the usefulness of

strongly closed operator modules as introduced (with emphasis on strong closure in the

definition) in [Ske00], has not been noticed so far.

Observation 3.11. Theorem 3.10 tells us that speaking about von Neumann B-modules

and speaking about representations of B′ is the same thing. So, if H is a Hilbert space,

choosing a normal unital representation of B′ on H turns it into a (concrete) von Neumann

B-module. In this picture, two von Neumann B-modules determined by two representation

(ρ′1, H1) and (ρ′2, H2) are established as isomorphic, if we, first, find a unitary H1 → H2

and, then, show that the unitary intertwines ρ′1 and ρ′2.

This harmless and obvious observation turns out to be a very powerful tool, when

we have to identify von Neumann modules. The reason is, really, that it splits the con-

struction of an isomorphism into two steps, the first of which is to well-define a mapping

and, then, to show its properties. The definition of a mapping directly on the modules,
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usually, is somewhat in the reverse order. First, one tries to give a prescription for how to

calculate the mapping by phrasing the properties it should satisfy. In the first moment,

one does not know whether the mapping is well-defined, but if it is, then it will have the

desired properties. Only then, one shows that the mapping is well-defined.

We have learned that every statement or definition, for instance an Eilenberg-Watts

theorem, for the category cvNB can be translated into one for the other category B′cvN,

and conversely, by conjugation with F. We can already smell the relation between the

two Eilenberg-Watts theorems, but both of them involve a correspondence, namely, that

which implements the respective functor. So, before we can really describe the relation,

we have to discuss briefly von Neumann correspondences, in particular concrete ones,

and we have to extend the pair of functors in Theorem 3.10 to one functor, the commu-

tant, sending (concrete) von Neumann B-C-correspondences to (concrete) von Neumann

C′-B′-correspondences, and back. Anticipating the fact that a von Neumann B-module is

a von Neumann C-B-correspondence, and that a representation of B′ is a von Neumann

B′-C′-correspondence (C′ = C ⊂ B(C) = C), we will identify also F and F
−1 as instances

of the commutant.

4. Von Neumann correspondences and their commutants. Let A and B de-

note W ∗-algebras. A correspondence E from A to B is a W ∗-correspondence if E is

a W ∗-module over B such that all the mappings a 7→ 〈x, ax〉 (x ∈ E) are normal. (Notice

that we have nondegeneracy of the left action of A in the C∗-sense. But, as A is unital,

this does not matter.)

Let A ⊂ B(K) and B ⊂ B(G) denote von Neumann algebras. A correspondence E

from A to B is a von Neumann correspondence if E is a von Neumann module over

B such that the canonical representation A → Ba(E) ⊂ B(H) is normal. We refer to

ρ : A → B(H) as the Stinespring representation of A associated with E. It is routine to

show that E is a von Neumann correspondence if and only if it is a W ∗-correspondence;

see Skeide [Ske01, Lemma 3.3.2].

Example 4.1. Why are we referring to ρ as the Stinespring representation? Because the

construction of the original Stinespring representation [Sti55] “factors through Hilbert

modules” (or better through correspondences) and the way we defined ρ captures exactly

what happens. What do we mean by that?

Let T : A → B be a completely positive (CP-)map (for simplicity normal, between von

Neumann algebras, but what we do works already for unital C∗-algebras provided B is

represented faithfully on a Hilbert space G). Then Paschke’s GNS-construction associates

with T a (unique) correspondence E from A to B that is generated by a single vecctor

ξ ∈ E fulfilling 〈ξ, aξ〉 = T (a) for all a ∈ A. (E is simply the algebraic tensor product

A⊗B with the only reasonable (semi-)inner product, length-zero elements quotiented out

and completed.) Identifying E ⊂ B(G, H), the representation ρ is exactly Stinespring’s

representation on H = E⊙G and ξ = Lξ ∈ B(G, H) the mapping such that T (a) = ξ∗aξ.

And why do we refer to ρ′ as the commutant lifting? The strong closure of the GNS-

correspondence in B(G, H) is a von Neumann correspondence. And the representation

ρ′ is exactly what Arveson is doing in the section with the title “lifting commutants” in
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[Arv69], when we interpret his CP-map T : A → B(G) as a mapping into B := T (A)′′ ⊂

B(G). (This is the minimal choice for B, consequently, with maximal commutant in B(G).

But, of course, we may choose for B any von Neumann subalgebra of B(G) that contains

T (A).)

The tensor product E ⊙̄s
F of von Neumann correspondences E and F is simply

the strong closure of the usual tensor product E ⊙ F in the sense of Corollary 3.2.

The corollary tells us that the strong closure is the unique self-adjoint extension and,

therefore, coincides with the usual definition in the W ∗-framework. But, strong closure

is much easier to obtain.

Definition 4.2. Let A ⊂ B(K) and B ⊂ B(G) be von Neumann algebras. A correspon-

dence E from A to B is a concrete von Neumann correspondence if E is a concrete von

Neumann module over B and a von Neumann correspondence.

By AcvNB we denote the category of concrete von Neumann correspondences from A

to B with the bilinear adjointable mappings as morphisms. (Only left linearity must be

checked, because right linearity follows from adjointability.)

By Theorem 3.10 a concrete von Neumann B-module is given simply by a normal

unital representation (ρ′, H), the commutant lifting. What we have to add to the rep-

resentation ρ′ in order to have a concrete von Neumann correspondence from A to B is

just a normal unital representation of A, the Stinespring representation. As ρ maps into

Ba(E) = ρ′(B′)′, the two representations commute mutually, that is, [ρ(A), ρ′(B′)] = {0}.

But, this is the only condition a representation ρ must satisfy in order to turn the con-

crete von Neumann module determined by (ρ′, H) into a concrete von Neumann corre-

spondence.

Remark 4.3. A triple (ρ′, ρ, H) of a pair of normal unital mutually commuting repre-

sentations ρ′ : B′ → B(H) and ρ : A → B(H) on a Hilbert space H is very close to what

Connes called correspondence in [Con80]. The missing link is as follows. If B is in standard

representation, then Tomita conjugation provides us with an isomorphism B′ → Bop. And

a Connes correspondence from A to B is just a pair of commuting representations of A

and of Bop.

Our setting is slightly more general, but not much. (It is easy to show that two

commutants of the same W ∗-algebra, obtained by choosing two faithful normal unital

representations, are always Morita equivalent.) Apart from that, we think that our setting

is considerably more elementary. We need not know what the standard representation

is and we need not know (parts of) Tomita-Takesaki theory. We also mention that the

construction of tensor products of such triples is a difficult task. Most discussions seem

not to work without technical restrictions (typically to II1 factors), while our definition

of the tensor product is elementary, general and easily applicable.

Coming back to Theorem 3.10 with the Stinespring representation of A added, we have

obtained a bijective functor from the category of concrete von Neumann A-B-correspond-

ences (E, H) to the category of triples (ρ′, ρ, H) with the mappings that intertwine both

ρ′ and ρ as morphisms.
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So far, it was not really necessary to think of A as a concrete von Neumann alge-

bra acting on a Hilbert space K. However, as observed in Skeide [Ske03] (in the case

A = B) and discussed also, independently, in Muhly and Solel [MS04] in a W ∗-context

(and generalized to different algebras in [MS05]): In the triple picture (ρ′, ρ, H) the roles

of ρ′ and of ρ are in perfect symmetry. Nobody prevents us from switching to the triple

(ρ, ρ′, H). Only when we go back to the correspondence picture the roles of B′ and A are

interchanged. Now A is the commmutant of A′ and the representation ρ, interpreted as

the commutant lifting of that commutant, determines a concrete von Neumann module

(E′, H) over A′ where E′ := CA(B(K, H)). Now it is the representation ρ′, when inter-

preted as Stinespring representation, that turns E′ into a correspondence from B′ to A′.

Theorem 4.4 (Definition and Theorem). The diagram

(ρ′, ρ, H)
99

yyssssssssss

(ρ, ρ′, H)
ee

%%KKKKKKKKKK

(E, H) (E′, H)

establishes a bijective functor F, called the commutant functor, from the category AcvNB

of concrete von Neumann A-B-correspondences to the category B′cvNA′ of concrete von

Neumann B′-A′-correspondences.

We say E′ is the commutant of E.

Varying the parameters A and B of the functor to B′ and A′, we have (E′)′ = E.

Observation 4.5. This is the counterpart of Observation 3.11. Also correspondences,

when thought of as triples (ρ′, ρ, H), can be identified by fixing first a unitary, and then

showing that it intertwines now both representations.

If we identify cvNB with CcvNB in the only possible way and B′cvN with B′cvNC

(identifying h ∈ H = B(C, H) as h : z 7→ hz), then the functors F and its inverse

in Theorem 3.10 become special cases of the commutant functor of Theorem 4.4. The

commutant functor F is cum grano salis auto-inverse and we need no longer write F
−1.

5. Eilenberg-Watts theorems under commutant. Let us describe the technical

hypothesis of our functors in a unified way. We say that a functor AcvNB → CcvND is

normal if for every object E it restriction to Ba,bil(E) is normal. A functor is a ∗-functor,

if it respects adjoints.

The version for (concrete) von Neumann modules of Blecher’s Eilenberg-Watts theo-

rem, Theorem 2.4, reads as follows.

Theorem 5.1. Let B ⊂ B(G) and C ⊂ B(L) be von Neumann algebras and let r : cvNB →

cvNC be a normal ∗-functor. Then there exists a unique up to isomorphism (concrete)

von Neumann correspondence F from B to C such that the functor

rF : E 7→ E ⊙̄s
F, a 7→ a ⊙ idF

is naturally equivalent to r.

Rieffel’s Eilenberg-Watts theorem, in our language, takes the following form.
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Theorem 5.2. Let B ⊂ B(G) and C ⊂ B(L) be von Neumann algebras and let l : B′cvN →

C′cvN be a normal ∗-functor. Then there exists a unique up to isomorphism (concrete)

von Neumann correspondence F ′ from C′ to B′ such that the functor

lF ′ : H 7→ F ′ ⊙ H, a 7→ idF ′ ⊙a

is naturally equivalent to l.

Recall that H is a Hilbert space so that F ′⊙H = F ′ ⊙̄s
H. (Strong and norm topology

on B(C, H) coincide. This is probably the reason why a tensor product of von Neumann

correspondences along the lines of Rieffel, that is, along the lines we described in the

preceding section, has not been developed earlier.) Recall, too, that by Theorems 3.10

and 4.4 instead of H we may write also H = E′ where E = H ′. Then the two functors

rF and lF ′ assume the perfectly symmetric form

rF (E) = E ⊙̄s
F, lF ′(E′) = F ′ ⊙̄s

E′.

So far, F and F ′ are correspondences from different theorems. We just denoted the von

Neumann C′-B′-correspondence granted by Theorem 5.2 by the symbol F ′. As the r and

l in the hypothesis are not related, F from Theorem 5.1 and F ′ from Theorem 5.2 need

not be related, either. But, suppose we have a functor r, and we construct a functor l as

l := F ◦ r ◦ F, that is, l(E′) = r(E)′. If we could show that the commutant functor takes

tensor products to tensor products of the commutants in the opposite order (the only

order that makes sense), that is, if we could show that

(2) (E ⊙̄s
F )′ ∼= F ′ ⊙̄s

E′,

then, indeed, l(E′) = r(E)′ ∼= rF (E)′ = (E⊙̄s
F )′ ∼= F ′⊙̄s

E′ = lF ′(E′). As the (canonical)

isomorphisms in this chain intertwine the actions of the relevant algebras, l(E′) ∼= lF ′(E′)

provides us with a natural transform as claimed in Theorem 5.2. In other words, Theo-

rem 5.2 would follow from Theorem 5.1, but, as the whole discussion is symmetric, also

Theorem 5.1 would follow from Theorem 5.2. We would, thus, have proved the following.

Theorem 5.3. Theorem 5.1 and Theorem 5.2 are dual to each other under the commu-

tant functor.

Fortunately, Equation 2 is true for arbitrary concrete von Neumann correspondences

for which the tensor products make sense. This statement is [Ske03, Lemma 2.2] or [MS04,

Lemma 3.7] for a single von Neumann algebra (both based on a computation leading to

[MS02, Proposition 2.12] but in their context there is no commutant of correspondences

arround) and the general case in [MS05, Lemma 3.9]. The treatment in [MS04, MS05]

is rather on the level of W ∗-correspondences, while a treatment adapted exactly to the

(concrete) von Neumann correspondences will appear in [Ske04a]. Here, in order to avoid

messing up notation (by choosing many different repesentation spaces for many different

von Neumann algebras) we treat only the case needed for (2) where one von Neumann

algebra is C. (But cf. also Remark 5.6.)

We would also like to mention that the definition of the tensor product of correspon-

dences can be made such (choosing a different realization) that (2) becomes “sharp”, that

is, an equality and not just an isomorphism. But the discussion is tedious and we refer

also here to [Ske04a].
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Let us come to the last missing piece.

Theorem 5.4. Let B ⊂ B(G) and C ⊂ B(L) be von Neumann algebras. Then for every

(F, K) ∈ BcvNC we have

F ◦ rF = lF ′ ◦ F

up to natural equivalence.

Proof. For every object (E, H) ∈ cvNB we seek for identifications F ◦ rF (E, H) = lF ′ ◦

F(E, H) by (canonical) isomorphisms (following Observations 3.11 and 4.5) which, then,

provide automatically a natural transform. So, there is no harm if we decide to choose

for the occurring tensor products a realization as concrete correspondences different from

but isomorphic to that from the definition of the tensor product. Let (σ′, σ, K) denote

the triple associated with (F, K), that is, σ′ is the commutant lifting of C′ and σ the

Stinespring representation of B. For E ⊙̄s
F we choose the realization as concrete von

Neumann C-module (E ⊙̄s
F, E ⊙ K) in the following way. For every x ∈ E define the

mapping η(x) ∈ B(K, E⊙K) (similar to Lx) by k 7→ x⊙k. Observe that E⊙K carries the

representation τ ′ : c′ 7→ idE ⊙σ′(c′) of C′, and that η(x) intertwines τ ′ and σ′. It follows

that E⊙̄s
F := spans η(E)F ⊂ B(L, E⊙K) is a strongly closed subset of CC′(B(L, E⊙K))

that has complement {0} and, therefore, (like for every strongly closed submodule of a

von Neumann module with zero-complement; see [Ske01, Corollary 3.2.12]) it follows that

E ⊙̄s
F = CC′(B(L, E ⊙ K)). On the other hand, the canonical isomorphism of K and

F ⊙L shows that the von Neumann C-module E ⊙̄s
F is, indeed, isomorphic to the tensor

product as defined in the previous section.

We find the equalities (without any canonical identification)

F ◦ rF (E, H) = F(E ⊙̄s
F, E ⊙ K) = (τ ′, E ⊙ K),

and

lF ′ ◦ F(E, H) = lF ′(ρ′, H) = (idC′ ⊙ idH , F ′ ⊙ H).

The spaces E⊙K and F ′⊙H are different, even if we take into account that K = span F ′G

and H = span EG. However, we have the canonical identifications span F ′G = F ′⊙G and

span EG = E⊙G. With these and the canonical identification E⊙(F ′⊙G) = F ′⊙(E⊙G)

defined by

(3) x ⊙ y′ ⊙ g 7→ y′ ⊙ x ⊙ g

(Exercise: Check that (3) defines a unitary!) and taking also into account how C′ acts

on these spaces, we find the desired identification up to canonical isomorphism. (Indeed,

c′ on the left-hand side passes through x, because tensoring with x may be replaced by

the action of the intertwiner η(x), so that c′ comes to act on y′ by left multiplication.

Therefore, we obtain the same action as on the righ-hand side.)

Remark 5.5. The operation described by (3) can be used to construct a tensor product

of a von Neumann B-module and a von Neumann B′-module. The result is a von Neumann

(B∩B′)′-module, that is, a representation of the center B∩B′ of B. This is closely related

contructions on the Hilbert space level by Sauvageot [Sau80, Sau83]. We describe details

in [Ske04a].
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Remark 5.6. Clearly, rF2
◦ rF1

= rF1 ⊙̄s F2
and lF ′

1
◦ lF ′

2
= lF ′

1
⊙̄s F ′

2
. Therefore, Theorem

5.4 together with the uniqueness of the correspondences inducing such functors may even

be used to show in full generality that (F1 ⊙̄s
F2)

′ = F ′
2 ⊙̄s

F ′
1 up to isomorphism for

arbitrary correspondences that match. But, in [Ske04a] we specify this better than just

as up to isomorphism.

Remark 5.7. By uniqueness, the functor rF (lF ′) is an equivalence if and only if F (F ′)

is a Morita equivalence. This furnishes also new proofs for the corresponding Morita

theorems.
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