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Abstract. We define the transient and recurrent parts of a quantum Markov semigroup 7 on
a von Neumann algebra A and we show that, when A is o-finite, we can write 7 as the sum of
such semigroups. Moreover, if 7 is the countable direct sum of irreducible semigroups each with
a unique faithful normal invariant state p,, we find conditions under which any normal invariant
state is a convex combination of p,’s.

1. Introduction. If P is a Markov chain with finite state space, T is the set of its
transient states and Ry, ..., Ry denote the different classes of recurrent states, then we
can think of P as the sum of its transient part (i.e. the one relative to T') and its recurrent
part, given by a block-diagonal matrix where any block is irreducible and it corresponds
to a recurrent class R;.

In their work [6], Evans and Hgegh-Krohn have generalized this decomposition for a
positive stochastic map ® on a finite-dimensional C*-algebra A by introducing a recurrent
and a transient projection in terms of invariant states; they show that the recurrent
projection is subharmonic and that, if ® is recurrent (i.e. its recurrent projection is equal
to 1), there exists a resolution of the identity {p1,...,ps} such that the restriction of ®
to each of the subalgebras p; Ap; is irreducible.

Our intention here is to extend such results to the case of a quantum Markov semi-
group (QMS) 7 on a o-finite von Neumann algebra A. As in [6], we define the fast
recurrent projection pr as the supremum of the supports of the normal invariant states,
but, to distinguish between fast and slow recurrence, we decompose pﬁ further as the sum
of a transient projection pr (determined by range projections of potentials, see [10]) and
a slow recurrent projection pr,. As in the case of Markov chains with finite state space,
in the finite-dimensional setting we shall have pr, = 0. Therefore, we shall call a QMS
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transient or recurrent according to pr = 1 or pyr = 0, respectively. Further, we show that,
when A is o-finite, the subalgebra prApr is invariant under the action of 7 (see Cor.
11) and its restriction to this subalgebra is a transient semigroup; on the other hand,
the reduced semigroup associated with p# is a recurrent QMS (see Thm. 15). Moreover,
under appropriate conditions, we can decompose the semigroup 7P% associated with pgr
into the direct sum of irreducible “sub”-QMS’s each one supporting a unique faithful
normal invariant state (Prop. 19).

Finally, in the last part we analyze a typical situation occurring in many examples
known in the literature: we assume that there exists an orthogonal sequence (p,) of
TPR_invariant projections such that the restriction of 7P% to the subalgebra p,Ap, is
irreducible and possesses a (faithful) normal invariant state p, for all n. Then, under
this hypothesis, we investigate if we can write any normal invariant state as a convex
combination of p,,, and we show that this is equivalent to a condition on the set of fixed
points of 7 (Thm. 24).

2. Preliminaries. In this paper A is a von Neumann algebra with unit 1 acting on a
complex Hilbert space H. A quantum dynamical semigroup (QDS) is a w*-continuous
semigroup 7 = (7;);>0 of normal completely positive maps on A; if 7;(1) = 1 for all
t > 0, then it is Markov (i.e. it is a QMS). The infinitesimal generator of T is the
operator £ whit domain D(L£) which is the vector space of elements a in A such that
the lim;_ot~1(7;(a) — a) exists in the weak* topology. For a € D(L), L(a) is defined
as the limit above. In many cases (for instance 7 uniformly continuous, i.e. such that
there exists lim;_q |7 — Zo|| = 0), the generator £ of a QMS 7 can be represented in
the Lindblad form

1
L(z) = i[H, 2] - 5 S (LiLiw — 2LgaLy, + wLiLy),
k

where H, Ly, G are bounded operators on H, H self-adjoint.

A state w on A is normal if it is o-weakly continuous or, equivalently, if w(sup, aq) =
sup,, w(aq) for any increasing net (aq)q of positive elements in A with an upper bound;
we denote by A, the predual of A, that is the space of all o-weakly continuous linear
functionals on A. We recall also that w is a normal state if and only if there exists a
density matrix p, that is, a positive trace-class operator of H with a unit trace, such that
w(a) = tr(pa) for all a € A.

w is faithful if w(a) > 0 for all non-zero positive elements a € A.

For any normal state w on A, the support projection s(w) is the smallest projection in
A such that w(s(w)a) = w(as(w)) = w(a) for any a € A (cf. [5], Prop. 3); since it is easy
to check that any normal state w is faithful on s(w)As(w), it follows that w is faithful if
and only if s(w) = 1.

If 7 is a QDS on A, its predual semigroup is the semigroup 7, of operators in A,
defined by (7.t(w)) (a) = w(T¢(a)) for every a € A and w € A,. Since any map 7, is
clearly weakly continuous on A, 7, is a strongly continuous semigroup in the Banach
space A, (see, for instance [3] Cor. 3.1.8); moreover, if 7 is Markov, 7 and 7, are
semigroups of contractions (see [7], Prop. 2.10.3).
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We say that a normal state w on A is invariant if 7.;(w) = w for all ¢ > 0 and we
denote by F(7.), the set of normal invariant states on A.

A family G of normal states on A is called faithful if a € A, a positive and w(a) = 0
for all w € G implies a = 0; given a family G of normal invariant state and put p =
sup{ s(w) : w € G }, then G is faithful on the subalgebra pAp.

We recall that a von Neumann algebra A on H is o-finite if there exists a countable
subset S of H which is separating for A (i.e. for any a € A, au = 0 for all u € S implies
a=0).

We shall often make use of the following elementary remark. Given a positive element
r € A and a projection p, then pzp = 0 implies prap = prpt = 0 (see Lemma I1.1

of [9]).

3. The fast recurrent projection and the transient projection. Following the
theory of classical Markov processes and [6], we first introduce the fast recurrent projec-
tion pg in such a way that the set of fast recurrent states is invariant for the system and
the reduced semigroup is mean ergodic; therefore, pr will be determined by the supports
of the normal invariant states.

We call a positive operator a subharmonic (resp. superharmonic, resp. harmonic) if
Ti(a) > a (resp. Ty(a) < a, resp. T¢(a) = a) for all ¢ > 0; we denote by F(7) the set of
harmonic elements of 7. Subharmonic projections play an important role in the study of
QMSs. For example, we have the following

PROPOSITION 1 ([10]). Let T be a QMS on A. If w € A, is an invariant state, then its
support projection is subharmonic.

Proof. Let w be a normal invariant state, p := s(w), and fix ¢ > 0. From the invariance
of w it follows w(p — pZi(p)p) = w(p — Te(p)) = 0, and then p7;(p)p = p, because
pT:(p)p < p and w is faithful on p.Ap. Therefore, the projection p* satisfies p7; (p~)p = 0,
so Ty(p*) = p*Ti(p*)p*. This implies Ty (p*) < p* and then Ty(p) > p. =

Notation. For any w € A, and p projection of A, we denote by pwp the element of A,
defined as (pwp)(a) = w(pap) for all a € A, and by pA.p the set of pwp as w varies in A,.
Then the subalgebra pAp is canonically isomorphic to the dual space of pA,p and we can
identify the normal states on pAp with the normal states on A whose support is smaller
than p.

Given a subharmonic projection p, we can construct a QMS on the subalgebra pAp
in the following way: since p subharmonic implies that pA.p is T.-invariant (see Prop.
I1.1 of [9]), we can restrict 7, to such a Banach space and obtain a weakly continuous
semigroup. If we denote by 77 = {Z;'}; its dual semigroup, taking a € pAp = (pA.p)*
and w € pA.p, we have

W((Tetppa.p)™ (@) = (Tur(w))(a) = w(Te(a)) = w(pTi(a)p), YVt =0,
that is,
(1) 77 (a) = pTi(a)p, Y a€pAp, t>0.
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7 is a QMS on pAp because any 7,/ is clearly normal, completely positive and
p=pT(L)p 2 pTi(p)p = p.
DEFINITION 1 ([13]). 77 is called the reduced semigroup associated with p.

If {p;}; is an arbitrary family of projections, then we denote by sup, p; the projection
(in \A) onto the closure of the linear space of H generated by the ranges of p;’s.

DEFINITION 2 ([13]). The fast recurrent projection associated with a QMS 7 is the pro-

jection pr = sup, p; where the p;’s are the support projections of all invariant states
of T.

THEOREM 2. Let T be a QMS on A. Then its fast recurrent projection is subharmonic.

Proof. It follows immediately from the definition, pr being the least upper bound of
subharmonic projections. m

We can then consider the reduced semigroup associated with pg.

We have pgr = 0 when the semigroup has no normal invariant states, and pr = 1
when 7 has a faithful family of normal invariant states; in particular, if A is o-finite,
then pr = 1 if and only if there exists a faithful normal invariant state (Corollary 1 of
[15]). However, since F(7,), is a faithful family on prApr and any 7-invariant state is
clearly also 7P=-invariant, the family F(7.), is faithful for 77%; so, applying the mean
ergodic Thm. of [12] to 7P® we get the following

THEOREM 3 ([13]). For all a € A the limit

t
E(a) == W*-li£n %/ pr7s(a)prds
0

exists and it defines a pr7T pr-invariant normal conditional expectation onto the von
Neumann subalgebra F(TPR) of prApr such that EoTy = & for allt > 0. A normal state
w on A is T -invariant if and only if wo & = w.

We now introduce the projection in which the system spends a small amount of time;
for this purpose, we need to define a potential associated to 7, which really represents
the time of sojourn of a pure state in a projection.

Our reference on quadratic forms is the book of Kato [14].

DEFINITION 3 ([10]). Given a positive operator x € A we define the form-potential of x
as a quadratic form $(x) by

()] = /Ooo<u,7; (@)wds, ¥ue D)),

where the domain D(8(z)) is the set of all u € H s.t. [~ (u, T, (z) u)ds < oc.

This is clearly a symmetric and positive form; moreover, by Thm. 3.13a p. 461 and
Lemma 3.14a p. 461 of [14] it is also closed. Therefore, when it is densely defined, it
is represented by a self-adjoint operator (see Thm.2.1, p. 322, Thm. 2.6, p. 323 and
Thm. 2.23 p. 331 of [14]). This motivates the following definition.
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DEFINITION 4 ([10]). For all positive z € A such that D(8(x)) is dense, the potential
of x is the self-adjoint operator U (z) which represents $4(x).

We put also A := {z € Ay : U(x) is bounded } and we call its elements T -integrable
(or integrable).

Since D(U(z)'/?) = D(u( )) by [14] Th. 223 p. 331, given x € A, we have
D((z)) = H and then (u, = [;"(u, To(x)u)ds for all u € H.
ProrosiTiON 4. If T is a QMS and r € A is positive, then the orthogonal projections
onto the closure of D(4U(x)) and onto K(z) = {u € D((x)) : H(x)[u] = 0} are subhar-
monic.

Proof. See Prop. 2 and 4 of [10]. =

For each operator = on H, we call the orthogonal projection onto the closure of z(H)
the range projection of x and denote it by [z]; it is well-known that « € A implies [z] € A.
Inspired by the notion of transient QMS given in [10] we give the following

DEFINITION 5. The transient projection associated with the QMS 7 is the projection pp
in A defined by pr := sup,cp p, where P = { [U(z)] : 2 € Aint }.

This definition is original, as are all the next results.

The transient projection is orthogonal to pr, indeed

PROPOSITION 5. If T is a QMS on A, then pr < px.
Proof. Let w be a normal invariant state and put p = [U(x)] with « € A;,; then

| wt@as = [ wm@yas = wuie) < ol - ()
implies w(U(z)) = 0. But w is faithful on the subalgebra s(w).As(w), so that this means
s(w(xz) = 0, i.e. U(z)(H) C ker s(w); from the arbitrariness of w it follows p(H) C
kerpgr, so p < pﬁ for all p € P. Hence pr < pﬁ. L]
By Prop. 4 any projection [U(x)] with x integrable is superharmonic, but it is not clear
whether the supremum of a family of superharmonic projections is still superharmonic.
However, when A is o-finite, we will prove that py is superharmonic because we can

write it as the supremum of an increasing sequence of superharmonic projections. We
shall make use of the following

LEMMA 6. If e € pr(H), then there exists © € Ay such that e € Ran(U(z)).

Proof. By definition of pr, for any n > 1 there exists u, € pp(H), pn = [U(xy,)] (z, €
Aint), such that ||e — u,|| < n~!; therefore, if we put

2= 27" (el + U (@a)]l + 1),
n>1
we obtain an integrable element with kerld(z) = 1,5, kerU(z,) and p = sup,, p, =
[U(x)]. Moreover, since u,, € p(H), we get
lle = pell < lle = unll + llpun — pel <20~ Vn>1,

which implies e € p(H). =
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THEOREM 7. Suppose A is o-finite and let T be a QMS on A. Then there exists an
increasing sequence (pp)n>o i P such that pr = SUPy, >0 Pn- Moreover pr € P.

Proof. Let {ey}n>0 be a countable subset of H which is separating for A; then, for
all n > 0 there exists z, € A, such that pre, € Ran(U(z,)) (see Lemma 6). If
Yn = Y p_o Tk and p, == [U(y,)] (n > 0), we obtain an increasing sequence (py,),>0 in P
with pre, € U(z,)(H) CU(yn)(H) = pn(H); therefore we have (pr —sup,,~¢ Pm)Pren =
0 for all n > 0, so pr = sup,,~gPn because {pre,}tn>o is separating for prApr and
PT — SUPy,>0 Pn € prApPT.

Finally,_ put

yi=> 27" (lynll + U (yn) | + 1)y,
n>0
it is clear that y € A;ny and kerU(y) = (), kerU(yn) = kerpr, so that [U(y)] = pr,
ie.preP. n

COROLLARY 8. If A is o-finite and T is a QMS on A, then its transient projection pr
18 superharmonic. In particular, the subalgebra pr Apr is T -invariant.

We put 77 := opany s then it is a submarkovian QDS on prApr. If (pa)n>o is a
sequence of projections as in Thm. 7, then the map ¢ — (u, T¢(p,)u) is integrable on
[0,00) for all uw € H; this implies that 7;(p,,) is strongly convergent to 0 as t — co. Using
this fact and the uniform boundeness in ¢ of 7; we can easily show that 77 has no normal
invariant states.

DEFINITION 6. The projection pr, = pJé — pr is called slow recurrent projection associ-
ated with the QMS 7.

4. Decomposition of QMSs
DEFINITION 7. We call a QMS 7T

1. wrreducible if it has no non-trivial subharmonic projections;
transient if pr = 1;

recurrent if pr = 0;

fast recurrent if pr = 1;

slow recurrent if pr, = 1.

Gre N

Notice that we can also define pr, pr and pg, for a QDS 7 on A such that 7;(1) <1
for all ¢ > 0; since it is easy to check that these projections satisfy the same properties,
we can introduce the concepts of transience and recurrence for such semigroups too.

PRrROPOSITION 9. Let T be a QMS on A. If T is irreducible, then it is either transient,
or fast recurrent, or slow recurrent.

Proof. If T is irreducible, since pr is superharmonic we have either pr = 1 or pr = 0,
that is, 7 is either transient or recurrent. On the other hand, if pr = 0, since pg is
subharmonic we get either pgr = 1 or pg = 0, that is, 7 is either fast or slow recurrent. m

Instead, in general a QMS 7 is not type 2,3,4,5 but, if A is o-finite, we can write it
as a sum of a transient and a recurrent semigroup. Indeed, we have the following
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THEOREM 10. If.A is o-finite and T is a QMS on A, then TT is a transient QDS on
prApr, while TPT s a recurrent QMS on pFApz. Moreover TPR is a fast recurrent
semigroup on prApR.

We refer to Thm. 9 of [15] for the proof.

It is not yet clear if we can associate a semigroup with the slow recurrent projection
PR, (we don’t know if pp, is superharmonic or subharmonic) and, in this case, if such a
semigroup is slow recurrent.

Since, for all projections p € A, U(p) fo u, T5(p)u)ds represents the time of
sojourn of the state tr(|u)(ul-) (JJul| = 1) in p (see [10]) and any normal state w is defined
by a density matrix ), Axlex)(ex| with e, € s(w)(H), we can read the above theorem as
follows:

e starting from a transient state (support in prApr), the semigroup 7. spends a finite
or an infinite amount of time in py but, if it leaves pr to come into p%ﬁ (i.e. its support
is in pFAp7), it stays there forever;

e starting from a recurrent state, the semigroup 7, cannot leave p%.

In particular, starting from a fast recurrent state, the semigroup 7, cannot leave pg.

We want now to decompose pr as a sum of an arbitrary family of orthogonal 7P%-
invariant projections {p;} such that any restriction of 7P% to the subalgebra p;Ap; is
irreducible; such a decomposition is given in [6] for finite-dimensional algebras. We prove
that this is possible if and only if there exists a faithful family of extremal states of F (75 ),
with orthogonal supports. In this case, since p;Ap; is 7PE-invariant, the equation

7" (@) = p " (@)pi = piTi(2)ps = T (=)

holds for all x € p; Ap;, so that the restriction of 7P% to p;Ap; is the reduced semigroup
TP for all i. Moreover, given w € F(7,), with w(p;) # 0, we have that

(piwpi (T (2)) = w(Te(2)) = w(x)
for all z € p; Ap;. Hence, w; := w(p;) " 'p;wp; is a normal 7Pi-invariant state; also, from
the irreducibility of 77:, it follows that w; is faithful on p;Ap;, so that it is the unique
normal invariant state on p;Ap; by Thm. 1 of [11]. As a consequence, 7P~ is the direct
sum of the irreducible “sub-QMS” 7Pi each one supporting a unique faithful normal
invariant state.

LEMMA 11. Let T be a QMS on A; if w is a normal state on A and p is a subharmonic
projection such that p > s(w), then:

1. w is T -invariant if and only if w is TP-invariant;
2. w is extremal in F(T.), if and only if w is extremal in F(TF);.
THEOREM 12. Let T be a QMS on A. The following facts are equivalent:

1. there exists a set {p;}icr of pairwise orthogonal projections such that:

a) Pr = Zie]pi;
b) T (ps) = pi for allieI;
c) the restriction of TP® to the subalgebra p; Ap; is irreducible for all i € I.



422 V. UMANITA

2. there exists a faithful family of normal invariant states {w;}icr such that:

a’) each w; is an extremal point of F(T.),;

b') s(wj)s(w;) =0 fori#j, i,j€1.
Proof. 1 = 2. Fix i € I; by the above remarks, there exists a unique faithful normal
T Pi-invariant state w; on p;Ap;. Since w; must be extremal in F(7F"); by Thm. 1 of [11],
we can conclude the proof by virtue of Lemma 11.

2 = 1. Define p; := s(w;) (i € I); we obtain a set of pairwise orthogonal 7P%-harmonic
projections, w; being a faithful invariant state on p;Ap; and p; subharmonic. Moreover,
since w;(pr — Y _;c;pi) = 0 for all j € I and {w;}ier is faithful, we get pr = >,/ pi-

Finally, for i € I, w; is extremal in F(7;F*); by virtue of Lemma 11 and 7% = T‘f iRAPi
is irreducible by Thm. 1 of [11]. m

REMARK 1. If A is o-finite, then we have card(I) < Rg by virtue of Prop. 2.5.6 of [3].
Therefore, in this case, 7PE is a countable direct sum of irreducible semigroups.

We find now some conditions under which such a decomposition holds.

PrOPOSITION 13. Let 7 be a QMS on A. The equivalent conditions of Thm. 12 are
satisfied if at least one of the following assumptions holds:

e F(T,) is finite dimensional,

o A is commutative and the family of extremal states of F(7.), is faithful on prApr.

Proof. Let {w;}icr be a maximal family of extremal states of F(7,), with pairwise or-
thogonal supports. Set ¢ := ), ; s(w;), which is majorized by pr, and define ¢’ := pr—q.
If ¢ # pr we show that there exists an extremal state o of F(7,), such that s(o)s(w;) =0
for all i € I. Since this contradicts the maximality of {w; };cr, we would obtain that ¢ = pg
(and then (w;);er is a faithful family of extremal points of F(75),).

Let p € F(T.), be such that p(¢’) # 0. Since T?=(¢'A¢’) C ¢’ A¢’ and s(p) < pr, we
have

q'pq (Ti(a)) = p(T"(d'aq)) = p(Ti(q'aq')) = ¢'pd (a)
for all a € A, t > 0, that is, w := p(q¢')"'¢'pq’ is a normal invariant state. Therefore, if
F(T.) is finite-dimensional, and since w is a convex combination of extremal points of
F(7.), by Thm. 2.3.15 of [3], we have ¢’ > s(w) > s(o) for some o extremal in F(7.),,
which means s(o)s(w;) =0 for all i € I.

On the other hand, if A commutative and the family of extremal states of F(7Z,), is
faithful on prApgr, we can choose an extremal state p such that p(¢’) # 0. Fix ¢ € I:
the condition [s(w;), s(p)] = 0 implies s(w;) A s(p) = s(w;)s(p); since s(w;) A s(p) < s(w;)
is 7*@ invariant and w;, p are extremal, by Thm. 1 of [11] we have that 75t is
irreducible, so s(w;) A s(p) = 0, for s(w;) < ¢. This means s(p)s(w;) =0. =

5. The finite-dimensional case. If A acts on a finite-dimensional Hilbert space H,
as in the case of Markov chains with finite state space, we get pr # 0 and pgr, = 0.
Moreover, pr is integrable.

PROPOSITION 14. Suppose dimH < +oo. If T is a QMS on A, then its fast recurrent
projection pr s not zero.
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Proof. It is a trivial consequence of the Markov-Kakutani Theorem. m

COROLLARY 15. If T is an irreducible QMS on A and H is finite-dimensional, then T
is fast recurrent.

Proof. Since 7 is irreducible, it can be either transient, or fast or slow recurrent by
Prop. 9; but Prop. 14 implies pr # 0, so that pr = 1, i.e. 7 is fast recurrent. m

LEMMA 16. If dimH < +oo and T is a QMS on A, then pi € Ain. In particular,
ﬂ(pR) =00

Proof. Let z¢ € psAps be the positive limit of the decreasing net {7;(p5)}i>o0 (p3 is
superharmonic); therefore x( is harmonic. If we put

1 n
= lim — 7.
w) im — ; k(W)

for all w € Ay = A, then S(w) € F(7.),, so s(S(w)) < pr. Hence

1 n
= lim — =S =S S =0,
)=l Sz ()(w0) = S()(s(S(w))0)
so that xy = 0. But ‘H finite-dimensional implies that ’Z}(pjé) is also norm-convergent
to 0, and then there exists ¢y > 0 such that ||T, (p3)|| < 1; therefore, by || Z;(ph)|| <
172, (p%)|| < 1 for all t > t, it follows that || 7;(p%)|| < cexp(—ta) for some a > 0, ¢ > 0,
and for all t > tg, so that finally

/ M@MWS%+/IM@MW<m,
0 to

ie. pJFE is integrable. m
THEOREM 17. If dimH < 400 and T is a QMS on A, then pg, = 0.

Proof. Since by virtue of Lemma 16 p3 is integrable, we have pr + pr, = px < [U(p%)]
<pr,ie. pr,=0. =

COROLLARY 18. Suppose dimH < 4o0. If T is a QMS on A, then its transient projection
pr S integrable.

We conclude this section with an application to a physical model: this is the open
BCS model, where the system is described by spin variables and the reservoir is given in
terms of bosonic operators (see [2]). It is contained in a box with N sites.

We show first some preliminary results which will be very useful to analyze the open
BCS model.

We recall that, given a QMS 7 on a von Neumann algebra 4, we can consider the
subalgebra

N(T) = ({a € A: Ti(a*a) = Ti(a*)Tila), Ti(aa”) = Ti(a)To(a®) }.
>0
If A= B(H), T is uniformly continuous and its generator is represented in the Lindblad
form, we have N (7)) = {Lg, L} : k > 0}’ (see Prop. 2.33 of [8]); moreover, if there exists
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a faithful normal invariant state, Prop. 2.32 of [8] implies that F(7) = {Ly, L}, H : k >
0} C N (7). We shall use these facts in the following

ProroOSITION 19. Let A = MQ(C)®N, with N > 1. If wy,...,wn are faithful states on
M5(C), then w1 ® ... @ wy is a faithful state on A.

Proof. We denote by E; and Fs the partial traces over ((C2)®(N71) and C? respectively.
It is clear that (w1 ®...QwN)(1) = (W1 ®...QwN)(1®...®1) = 1. We prove by induction
on N that wy ® ... ® wy is positive and faithful: for N = 1, it is trivial. Suppose now
wo ® ... wy positive and faithful on Mg((C)®N71, and denote by p its density; hence, if
we denote by tr, tr; and tro the normalized traces on the Hilbert spaces ((CQ)@’N, C? and
((C2)®(N71) respectively, we have
(2) (wo ® ... @wn)(b) = tra(pb) = tra(p'/*bp'/?)
for all b € Mg((C)‘X’N_l. Let F be the (w; ® ... ® wy)-preserving conditional expectation
onto Ms(C) given by

F: My(C) @ My(C)®" " — M,y (C)® C

a®b — (W ®...0wy)(b)a® 1.

Therefore, identifying Ms(C) ® C with M5(C), we have

(W1 ®...0wy)(a)=w (F(a))

for all a € A. In particular, if a is positive, F'(a) is also positive in M3(C), so that
w1 ®...®wy is a positive functional on A.

Assume now that (w; ® ... @ wy)(a) = 0, a € Ay. With the identification C ®
My(C)2 ™ ~ My(C)2 ™" the faithfulness of wy and (2) imply

0= F(a) = Ea(1® p"?)a(1 @ p/?)).

Since (1 ® p'/?)a(1 ® p'/?) is positive and Ej is faithful, we obtain that (1 ® p'/?)a(1 ®
p/?) =0, and so

0=tr((1® p)a) =tra(pEi(a)) = (w2 ® ... @ wn)(E1(a)).

Due to the faithfulness of ws ® ... ® wy and Fp, we have a = 0. This proves that
w1 ® ... wy is a faithful state on A. =

PROPOSITION 20. Let A = Mg((C)®N and L be the linear map on A given by

N
(3) L1®.. . 01y) =Y 110...0Li(z;)®...ax Y x; € My(C),
where each L; is the generator of a uniformly continuous QMS TY on My(C). Then L
generates a uniformly continuous QMS T on A defined by

(4) L1 ®.. @ay) =TV @)@ o T (ay).
Moreover, if we assume that:

1. each T9) is irreducible and it possesses a (unique) faithful invariant state wj,
2. N(TW)=F(TD) forallj=1,...,N,

then T is irreducible and w1 ® ... @ wy 1s the unique faithful invariant state of T .
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Proof. If
1 ] 4
Li(z) = 5(2@(] YLz — 23 (L) er? + 3 2Ly Léﬂ)) +i[HD, 2]
k>0 E>0 k>0
is the Lindblad form of £;, then £ can be represented in the Lindblad form too taking
Lix=19..0 LV ®...1,

~—
J

N
H:Zl@...@H(“@...@l

forall j =1,...,N and k > 0. Therefore £ generates a uniformly continuous QMS 7 on
A, it is easy to prove that 7 is given by (4) and

(5) ﬁ*(O'l ®...®O’N) = 20'1 ®...®£j*(0'j)®...0']v Vo, € MQ((C)
J

Suppose now that conditions 1,2 hold. Hence wy ® ... ® wy is a faithful 7-invariant
state thanks to (5) and Proposition 19. To conclude, it is enough to prove that F(7) = C1:
indeed, in this case, since w1 ® ... ® wy is a faithful 7-invariant state, Thm. 1 and
Lemma 2 of [11] imply that 7 is irreducible and w; ® ... ® wy is the unique invariant
state.

If z € F(T), then in particular  commutes with each L;, so that

2
kj ] ] )% . _ y
Y Ty )iy ) lin k) B € (LY L7 k>0 = N(TW)
ij k=1

forall j = 1,..., N; since N (7)) = F(T1) and this last space is equal to C1 by Thm.
1 and Lemma 2 of [11], this means that 2(;, r), . (ix,ky) = 0 for i; # k; and

Tlinkn)ees (1 )seens (i k) = T (i1k1)(202) 0 (i k)
for all j =1,..., N. Therefore, we get ¢, i,),....(in,in) = T(ki,k1),....(kn,kn) 10T all 75, k; €
{,2}and j=1,...,N,ie. F(7T)=C(1®...@1)=Cl. =
EXAMPLE 1. Let H = (CH®N, N > 1, and A = B(H) =~ My(C)®Y; denote of =
18..01® ¢° ®1®...01, wheree =0,4+,i=1,...,N and

B

10 0 1 00
0 _ + i
2o h) = (oa) = (00)

We recall that [0}, o;] = 6;j0% and [0, J] F26;;05. The index i represents the
discrete values of the momentum that an electron in a fixed volume can have, 0?‘
a Cooper pair with given momentum while o;” annihilates the same pair.

We define

creates

N
Z > ATalph 2lply + Malok alph, = Taplloi 2] = Rapl[ph, 2]}

=0,+
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for all x € A, where Iy, Ay € C, RT,,RA, >0, and pJ, =1®...01® p, 91®...®1
—~

with j

2s+

po = L2250 + 5% +25%57),
gSt _w—g58Y . w—gS° 4

- W92 50 _4s

Pr =2 (S w—i—gSOU 2 7 97 )
gSt _w4gS° . w+gSt .

p-="3 (gS w—gSOU i — —gSto™ |,

w, 8" e R, 81,57 € C, w+gS° St,5 ,w # 0; —g < 0 is the interaction close to the
Fermi surface.
Notice that £ assumes the form (3) with £, = £ for all k =1,..., N and

L(@) =Y {Talpa:z]pl + Aalps 2lpa — Tapaloh, 1] — Rapllpe: 2]}
a=0,%

for any x € M5(C). Since L can be represented in the Lindblad form taking

Ll,a =V 2%Fap:;7 L27a = Q%Aapa

for all @ = 0,4 and H = 0, it is the generator of a uniformly continuous QMS 7.
Therefore, it follows from Prop. 20 that £ generates a uniformly continuous QMS 7 on
A. We want to prove that 7 satisfies conditions 1,2 of the same Proposition, so that 7
is irreducible and it possesses a unique faithful normal invariant state.

Denote by pr the fast recurrent projection of 7 and analyze the subharmonic pro-
jections of this semigroup; notice that, if p is such a projection, then pL; .p = L; op for
7 =1,2 means pp,p = pop and ppip = pip, a = 0, £, that is,

P € {parpi} ={Lja: Lo :j=1,2, a=0,&} = N(T).

But H = 0 implies N(7) = F(7), so that any subharmonic (and therefore superhar-
monic) projection is harmonic; in particular, the non-zero superhamonic projections are
not integrable. As a consequence, since pr is superharmonic and integrable (because H
is finite-dimensional), we get pr = 0 and then pg = p% =1, ie. T is fast recurrent.
In particular there exists a faithful 7-invariant state w (Corollary 1 of [15], M(C) be-
ing a o-finite algebra). Since a straightforward calculation shows that F(7) = C1, this
implies that 7 is irreducible and w is its unique normal invariant state by virtue of
Thm. 1 and Lemma 2 of [11]. We have thus proved that conditions 1,2 of Prop. 20
are fulfilled; therefore, 7 is irreducible and its unique faithful normal invariant state is
w®...0w.

—_———

N times

6. Characterization of normal invariant states. In this section we analyze a clas-
sical situation: assume that there exists a set {p, }nen, N C N, of orthogonal projections
which satisfy:

L. Znean = ]-a
2. Ty(pn) = pn for all n € N,
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3. the restriction of 7 to the subalgebra p, Ap, is irreducible for all n € N,

4. there exists a normal invariant state p,, with s(p,) < py.

Since py, is clearly also 7|, -invariant, $(pr) is a subharmonic projection for the irre-

A
o A (sée Prop. 1), so that p,, is faithful on p,, Ap, (i.e. s(pn) = pn);
moreover, it is the unique normal invariant state on p,.Ap, by Thm. 1 of [11].

This implies that ) .\ 27"p, is a faithful normal invariant state on A and then
pr = 1, so there exists a 7-invariant normal conditional expectation £ onto F(7) by
Thm. 3.

We wish now to determine when it is possible to write every normal invariant state

in the form ) Anpn for some positive A, such that -y A = 1.

ducible semigroup 7;

In general, this is not the case, as the following example shows: take A = B(H), H sep-
arable with {e,, },,>1 a orthonormal basis, and 7; the identity map. Then, {|e;,)(€m|}m>1
is a sequence of orthogonal projections which fulfills the above properties by letting
Pm = |lem){em|, every state is invariant, yet not every normal state can be expressed as

Zle Am|e7774><6m‘

THEOREM 21. Let (pn)nen be a set of orthogonal projections with card (N) < Nq. If
(Pn)nen satisfies 1-4, then the following conditions are equivalent:

1. any normal invariant states on A has the form > Anpn for some A, > 0 with

ZnEN )\n = 17‘
2. F(T) =span{p, : n € N}.

neN

Proof. 1= 2. Let w be a normal invariant state on A; since w(a) = >_, . y w(piap;) for
all a € A, and ppwp, = w(pn)pn by Thm. 1 of [11] (because p,wp, is a normal invariant
functional on p,Ap,), it is enough to prove that £(p;ap;) =0 for all 4,5 € N, ¢ # j, for
w =wo & by Thm. 3.

So, fix a € A and ¢ # j: since E(p;ap;) = limy x, with z, € span{p, : n € N}, we
have p;€(piap;)pn, = 0 for all I # n, and also p€(piap;)pr = E(pipiap;pr) = 0 for all
l e N, for py = E(p) and @ # j. Therefore, £(p;ap;) = 0, as claimed.

2 = 1. Let € F(7), which is an algebra. Thus, p,xp, € F(7T), so that p,ap, €
F(T),, 4, ) but F(T, . ) = Cp, by virtue of Thm. 1 of [11], s0 ppxpn = pn(2)py for
all n € N. We want to prove that p;zp; =0 for 4,5 € N, i # j.

Fix i # j and w € A, a state: since (¢t* fg T.s(w)ds)>o is weakly convergent to a
normal invariant state by Thm. 2.1 of [13], there exists a sequence {A, }nen of positive

numbers such that -\ A, =1 and

1 t
;/ Tos(w)(pizp;)ds — Y Anpn(pizp;) = 0.
0 n>0

But this means w(p;xp;) = 0, because p;xp; also belongs to F(7), and finally p;xp; = 0
by the arbitrariness of w. Therefore,

T = Z DnTPn = Z pn(z)pn, € span{p, :n € N}. =
neN nenN
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