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Abstra
t. We 
al
ulate the moments mk,0 of the measure orthogonalizing the 2-dimensionalChebyshev polynomials introdu
ed by Koornwinder.In [K℄ Koornwinder introdu
ed a two-dimensional analogue of the 
lassi
al Chebyshevpolynomials of the se
ond kind. They are de�ned by the following re
urren
e relations:

P
−1,l(z, z̄) = 0, Pk,−1(z, z̄) = 0

P0,0(z, z̄) = 1,

P1,0(z, z̄) = z, P0,1(z, z̄) = z̄,

z Pk,l(z, z̄) = Pk+1,l(z, z̄) + Pk−1,l+1(z, z̄) + Pk,l−1(z, z̄),(1)
z̄ Pk,l(z, z̄) = Pk,l+1(z, z̄) + Pk+1,l−1(z, z̄) + Pk−1,l(z, z̄)(2)The total degree of Pk,l(z, z̄) is thus k + l. For general properties of multidimensionalorthogonal polynomials see for instan
e [DX℄.Those polynomials form a system orthonormal with respe
t to the weight fun
tion

µ(z, z̄) =
1

2π2

√

−z2 z̄2 + 4 z3 − 4 z̄3 + 18 z z̄ − 27over the region S inside the Steiner's hypo
y
loid ∂S:
∂S(θ) = 2 ei θ + e−2 i θ, 0 ≤ θ < 2π.2000 Mathemati
s Subje
t Classi�
ation: 60E99.Key words and phrases: moments, Chebyshev polynomials, multidimensional polynomials.Partially sponsored with KBN grant no 2P03A00723 and RTN HPRN-CT-2002-00279.The author wishes to thank Philippe Biane for help and dis
ussion.The paper is in �nal form and no version of it will be published elsewhere.
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430 Ł. J. WOJAKOWSKIthat is, satisfy the following relation:
∫∫

S

Pm,n(z, z̄) Pk,l(z, z̄) µ(z, z̄) dx dy = δm,k δn,l.We are 
on
erned with the problem of 
al
ulating the moments mk,l of the measure
µ(z, z̄) dx dy :

mk,l =

∫∫

S

zk z̄l µ(z, z̄) dx dy.We limit ourselves to the spe
i�
 
ase of mk,0:
mk,0 =

∫∫

S

zk µ(z, z̄) dx dy.Then, using the re
urren
e relations, we 
an write (omitting for simpli
ity the expli
itdependen
e of Pk,l on (z, z̄)):
zk = zk−1 (z P0,0)

= zk−1 P1,0 = zk−2 (z P1,0)

= zk−2 (P2,0 + P0,1) = zk−3 (z P2,0 + z P0,1)

= zk−3 (P3,0 + P1,1 + P1,1 + P0,0)

= . . . = z0
∑

i

Pui(k),vi(k) =
∑

i

Pui(k),vi(k).We see that every multipli
ation by z of the initial zk 
an be eliminated by appli
ationof the formula (1). Ea
h use of this formula repla
es every orthonormal polynomial Pu,vby the respe
tive sum of three others (or fewer, should any of the indi
es go negative).Eventually, when all multipli
ations by z are exhausted, we are left with a sum of or-thonormal polynomials Pui(k),vi(k), where i runs from 1 to the number of polynomialswith nonnegative indi
es and k means that k appli
ations of formula (1) have been made.In order to 
al
ulate the moments mk,0 we have now
mk,0 =

∫∫

S

∑

i

Pui(k),vi(k) µ dx dy =
∑

i

∫∫

S

P0,0Pui(k),vi(k) µ dx dy.Be
ause of the orthogonality relations we see now that the moment is equal to the numberof pairs of indi
es ui(k), vi(k) su
h that ui(k) = vi(k) = 0:
mk,0 = ♯{i : ui(k) = vi(k) = 0}.If we take a look at one parti
ular polynomial Pui(k),vi(k) of the above sum, we 
an �ndto it a unique prede
essor at the step k−1, say Pui(k−1),vi(k−1). We 
an 
ontinue and even-tually get ba
k to the original P0,0 = Pui(0),vi(0). Thus, the points {i : ui(k) = vi(k) = 0}
an be identi�ed with distin
t paths in a two-dimensional latti
e, starting and terminat-ing at the origin, 
omposed of edges e1 = (1, 0), e2 = (−1, 1), e3 = (0,−1), in a

ordan
ewith the re
urren
e relations, and never leaving the non-negative quadrant. This is inanalogy to the 
lassi
al Chebyshev polynomials of the se
ond kind and their orthogo-nalizing measure, where the task of 
al
ulating the moments amounts to 
al
ulating thedistin
t paths in the one-dimensional latti
e, starting and terminating at the origin, 
om-posed of positive and negative unit steps, and never leaving the non-negative semi-axis,
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k or Catalan paths. A method of 
al
ulating these numbers is to shift thepaths upwards by one, thus getting an equivalent requirement on the paths to start andterminate at the point 1 and never to pass through the point 0. A re�e
tion argument
an then be easily applied.We shall extend the latter observation to the two-dimensional 
ase. Due to the sym-metry properties of the problem, the latti
e is best presented as a triangular tesselationof the plane. The non-negative quadrant 
orresponds thus to the region limited by the
x and y axes. The edges e1, e2 and e3 
oin
ide now with suitably oriented walls of thetesselation triangles. We 
an restate our problem, similarly as in the one-dimensional
ase, by requiring our paths to start at the point A = (1, 1) and never to tou
h the wallsof the non-negative region.
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Fig. 1. The latti
e with a sample path (e1, e1, e1, e2, e2, e3, e3, e2, e3)In the sequel we shall need the symbol d(x, y, n) de�ned as the number of distin
tpaths from the point (x, y) to the point A = (1, 1), 
omposed of exa
tly n edges and nevertou
hing the walls of the positive region. It is straightforward to observe that d(x, y, n)is determined by the following re
urren
e relations
d(1, 1, 0) = 1,

d(x, y, 0) = 0, x 6= 1 or y 6= 1,

d(0, y, n) = 0,(3)
d(x, 0, n) = 0,

d(x, y, n) = d(x + 1, y, n − 1) + d(x − 1, y + 1, n − 1) + d(x, y − 1, n − 1),and that mk,0 = d(1, 1, k).



432 Ł. J. WOJAKOWSKIWe denote by Rn(X; Y ) the set of distin
t paths from the point X to the point Y , inexa
tly n steps, without any restri
tion on tou
hing the walls and by
Rn(X; Y ) = ♯Rn(X; Y )its 
ardinality.Lemma 1. Let X = (x, y) and Y = (ξ, η) be any points of the latti
e. Let

(eι(1), eι(2), . . . , eι(n)), ι(i) = 1, 2, 3be a path from Rn(X; Y ). Then for every su
h path the numbers of edges of the threekinds,
k1 = ♯{i | ι(i) = 1}, k2 = ♯{i | ι(i) = 2}, k3 = ♯{i | ι(i) = 3}are the same and 
an be determined from n, X and Y .Proof. Any path (eι(1) eι(2) . . . eι(n)) starting at X = (x, y) 
an be seen to terminate at

(x + k1 − k2, y + k2 − k3). We have thus the following equation system:
k1 − k2 = ξ − x,

k2 − k3 = η − y,

k1 + k2 + k3 = n,whi
h gives the solution
k2 =

n + x − ξ + η − y

3
,

k1 = k2 + ξ − x,

k3 = k2 + y − η.Clearly if k2 is not an integer, su
h paths do not exist.We are now in a position to present the main theorem.Theorem 2. For x, y ≥ 0

d(x, y, n) = Rn((x, y); A) − Rn((x, y); B)

+ Rn((x, y); C) − Rn((x, y); D)

+ Rn((x, y); E)− Rn((x, y); F ).Proof. Let us write K = n+x−y

3 . Then with the use of Lemma 1 the right hand side 
anbe seen to be:
rhs =

(

n

K

) (

n − K

K − y + 1

)

−

(

n

K − 1

) (

n − K + 1

K − y + 1

)

+

(

n

K − 1

) (

n − K + 1

K − y

)

−

(

n

K

) (

n − K

K − y − 1

)

+

(

n

K + 1

) (

n − K − 1

K − y − 1

)

−

(

n

K + 1

) (

n − K − 1

K − y

)

where (

a
b

)

= 0 for b < 0 or b > a. All the de�ning re
urren
e relations for d(x, y, n)de�ned in equations (3) 
an be seen to be satis�ed by rhs by dire
t 
omputation.
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e mn,0 = d(1, 1, n) we get
m3k,0 =

2 (3 k)!

k! (k + 1)! (k + 2)!
=

2

k (k + 1) (k + 2)

(

3 k

k

)(

2 k

k + 1

)

,moreover, mn,0 = 0 for n 6= 3k.Remark 4. We have not been able to �nd a 
losed form expression for the general 
ase
mk,l, and leave it as an open question.
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