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Abstract. We calculate the moments my o of the measure orthogonalizing the 2-dimensional
Chebyshev polynomials introduced by Koornwinder.

In [K]| Koornwinder introduced a two-dimensional analogue of the classical Chebyshev
polynomials of the second kind. They are defined by the following recurrence relations:

P_q1(2,2) =0, Py _1(2,2)=0
Pyo(z,2) =1,
Pio(z,2) =z, Py1(z,2) =%,
(1) 2 P i(2,2) = Pey1,(2,2) + Pe141(2, 2) + Pru-1(z, 2),
(2) ZPyi(2,2) = Poyt1(2,2) + Pry1,1-1(2,2) + Pr—1,(2, 2)

The total degree of Py (2, %) is thus k + [. For general properties of multidimensional
orthogonal polynomials see for instance [DX].

Those polynomials form a system orthonormal with respect to the weight function

_ 1 - - -
u(z, z) = 33 —22224+423-423 4182227

over the region S inside the Steiner’s hypocycloid 05S:
2S(0) =2¢"" 720 0<6<2m.
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that is, satisfy the following relation:

// Pron(2,2) Piy(2,2) 12, 2) de dy = 6 ks 6y
s

We are concerned with the problem of calculating the moments my,; of the measure

My, = // 2* Zl,u(z,i) dz dy.
s

We limit ourselves to the specific case of my, o:

M0 = // 2F u(z, 2) da dy.
s

Then, using the recurrence relations, we can write (omitting for simplicity the explicit

w(z,z)dx dy :

dependence of Py ; on (z, 2)):
2K =2 (2 Pyy)
= k-1 Py = 2k=2 (zP1y)
=22 (Pyo+ Po1) =23 (2 Pyg+ 2 Poy)
=2"3(P3o+ Py +Pii+ Poo)

0
= =2"Y Puwywt) = O Pusthyoos k)

We see that every multiplication by z of the initial z* can be eliminated by application
of the formula (1). Each use of this formula replaces every orthonormal polynomial P, ,,
by the respective sum of three others (or fewer, should any of the indices go negative).
Eventually, when all multiplications by z are exhausted, we are left with a sum of or-
thonormal polynomials P, (x),v, k), Where ¢ runs from 1 to the number of polynomials
with nonnegative indices and k means that k applications of formula (1) have been made.
In order to calculate the moments my, o we have now

M0 = //Szpui(k),v,,(k) pdxdy = Z//S Po o Py, (kv (k) b dz dy.

Because of the orthogonality relations we see now that the moment is equal to the number
of pairs of indices w;(k), v;(k) such that u;(k) = v;(k) = 0:
myo = i : wi(k) =v;(k) = 0}.

If we take a look at one particular polynomial P, )., (k) of the above sum, we can find
to it a unique predecessor at the step k—1, say Py, (x—1),0,(k—1)- We can continue and even-
tually get back to the original Py = P, (0),v;(0)- Thus, the points {i : u;(k) = v;(k) = 0}
can be identified with distinct paths in a two-dimensional lattice, starting and terminat-
ing at the origin, composed of edges e; = (1,0), e2 = (—1,1), e3 = (0, —1), in accordance
with the recurrence relations, and never leaving the non-negative quadrant. This is in
analogy to the classical Chebyshev polynomials of the second kind and their orthogo-
nalizing measure, where the task of calculating the moments amounts to calculating the
distinct paths in the one-dimensional lattice, starting and terminating at the origin, com-
posed of positive and negative unit steps, and never leaving the non-negative semi-axis,
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known as Dyck or Catalan paths. A method of calculating these numbers is to shift the
paths upwards by one, thus getting an equivalent requirement on the paths to start and
terminate at the point 1 and never to pass through the point 0. A reflection argument
can then be easily applied.

We shall extend the latter observation to the two-dimensional case. Due to the sym-
metry properties of the problem, the lattice is best presented as a triangular tesselation
of the plane. The non-negative quadrant corresponds thus to the region limited by the
x and y axes. The edges ey, es and ez coincide now with suitably oriented walls of the
tesselation triangles. We can restate our problem, similarly as in the one-dimensional
case, by requiring our paths to start at the point A = (1, 1) and never to touch the walls
of the non-negative region.

L] L] y“ L] L]

Fig. 1. The lattice with a sample path (61, e1,e1,€ea, €, €3, €3, 62,63)

In the sequel we shall need the symbol d(x,y,n) defined as the number of distinct
paths from the point (z,y) to the point A = (1,1), composed of exactly n edges and never
touching the walls of the positive region. It is straightforward to observe that d(z,y,n)
is determined by the following recurrence relations

d(1,1,0) = 1,
d(z,y,0)=0, = #1 or y#1,
3)  d(0,y,n) =0,
d(z,0,n) =0,
)

=dz+Lyn-1)+dlz-1y+1,n—1)+d(zx,y—1,n—1),
and that my o = d(1,1, k).

d(z,y,n
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We denote by R, (X;Y) the set of distinct paths from the point X to the point Y, in
exactly n steps, without any restriction on touching the walls and by

Rn(X3Y) = 1 Rn(X;Y)
its cardinality.
LEMMA 1. Let X = (z,y) and Y = (£,m) be any points of the lattice. Let

(eb(l),eb(Q)?"'7eL(n))7 L(Z) =1,2,3
be a path from R, (X;Y). Then for every such path the numbers of edges of the three
kinds,
key = g{i | o(i) = 1}, ke = 8{i | (i) = 2}, ks = §{i | (i) = 3}
are the same and can be determined from n, X and Y .

Proof. Any path (e,(1)e,(2)---€,mn)) starting at X = (x,y) can be seen to terminate at
(x + k1 — ka, y + ko — k3). We have thus the following equation system:

ki — ke =& —u,
ky — ks =n—y,
k1 + ko + ks = n,
which gives the solution

ntr—&+n—y
k2: )

3
ki =k +§ -,
ks =ko+y—n.

Clearly if ko is not an integer, such paths do not exist. m
We are now in a position to present the main theorem.

THEOREM 2. For z,y > 0
d(x’:%n) = Rn((may>7f4> - Rn((wvy)vB)
+ Rn((2,9); C) = Ru((,y); D)
+Rn((2,9); E) — Ro((z,y); F).

Proof. Let us write K = % Then with the use of Lemma 1 the right hand side can
be seen to be:

o () 5 - G G+ (GR) ()
() (S ) G - () (15,

a

where (b) =0 for b < 0 or b > a. All the defining recurrence relations for d(z,y,n)
defined in equations (3) can be seen to be satisfied by rhs by direct computation. m
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COROLLARY 3. Since my o = d(1,1,n) we get

26K 2 Sk ( 2k
msk,0 = KU (k+ D) (k+2)! k(k+1)(l€+2)<k‘)<k’+1>’

moreover, my o = 0 for n # 3k.

REMARK 4. We have not been able to find a closed form expression for the general case
my,;, and leave it as an open question.
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