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Abstract. Let (Rn, ‖ · ‖B) be a Minkowski space with a unit ball B and let %B
H be the Haus-

dorff metric induced by ‖ · ‖B in the hyperspace Kn of convex bodies (nonempty, compact,

convex subsets of Rn). R. Schneider [3] characterized pairs of elements of Kn which can be

joined by unique metric segments with respect to %Bn

H for the Euclidean unit ball Bn. We

extend Schneider’s theorem to the hyperspace (K2, %B
H) over any two-dimensional Minkowski

space.

1. Preliminaries and introduction. A Minkowski space (see [5]) is a finite dimensional
normed linear space (Rn, ‖ · ‖).

Let B be the unit ball determined by the norm ‖ · ‖:

B := {x ∈ Rn | ‖x‖ ≤ 1}.

Then B is a convex body symmetric at 0 with nonempty interior. Conversely, every convex
body A symmetric at 0 with nonempty interior determines a norm, ‖·‖A, usually referred
to as the Minkowski functional:

‖x‖A := inf{t ∈ R+ | x ∈ tA}
(see [5], p. 17).
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Let Kn be the family of nonempty compact convex subsets of Rn. Following R. Schnei-
der (see [3]), we will refer to the elements of Kn as convex body.

Let %B
H be the Hausdorff metric in Kn associated with the metric %B induced by the

norm ‖ · ‖B (compare [5]):

%B
H(A1, A2) := max{inf{ε > 0 | A1 ⊂ A2 + εB}, inf{ε > 0 | A2 ⊂ A1 + εB}}

for every A1, A2 ∈ Kn.
In the Euclidean case the Hausdorff metric is denoted by %H .
Let (X, %) be a metric space. For any a, b ∈ X a point c ∈ X such that

%(a, c) = %(c, b) =
1
2
%(a, b)

is called a metric midpoint in (X, %) of the pair (a, b). A metric segment (in (X, %)) with
endpoints a, b is a subset of X isometric to the interval [0, %(a, b)].

The affine segment in Kn with endpoints K,L ∈ Kn is defined by the formula

4(K,L) := {(1− t)K + tL | t ∈ [0, 1]}.

The affine midpoint of the pair (K,L) is the set 1
2 (K + L).

In the following theorem R. Schneider characterized pairs of convex bodies with unique
metric segments joining them in (Kn, %H).

Theorem 1.1 (Schneider [3]). Let K,L ∈ Kn be sets joined by a unique metric segment
with respect to the metric %H determined by the Euclidean metric %. Then either

(i) K = L+ λBn or L = K + λBn for some λ > 0 or else
(ii) dimK < n and L = K + u for some u ∈ Rn orthogonal to affK.

Let us recall that for any nonempty compact convex sets K,L in (Kn, %H) either K,L
can be joined by a unique metric segment or there exists an infinite family of metric
segments joining K and L. A pair (K,L) has a unique metric segment if and only if it
has a unique metric midpoint (see [2] p. 244).

In this paper we give necessary and sufficient conditions for a pair (K,L) of elements
of K2 to have a unique metric segment joining them with respect to %B

H . In Section 2 we
present these conditions and give many examples. In Section 3 we prove the sufficiency
and in Section 4 the necessity of our conditions.

For A ∈ Kn the sets bdA, clA, intA and relintA are the boundary, closure, interior
and relative interior of A, convA is the convex hull of A and affA is the smallest affine
subspace containing A. For distinct points a, b ∈ Rn let 4(a, b) be the usual segment
with endpoints a, b. For A1, A2 ∈ Kn we denote A1 ∨A2 := conv(A1 ∪A2).

Let A ⊂ Rn be a convex set. A face of A is a convex subset F ⊂ A such that each
segment 4(x, y) ⊂ A with F ∩ relint4(x, y) 6= ∅ is contained in F or, equivalently, such
that x, y ∈ A and (x+ y)/2 ∈ F implies x, y ∈ F . If {e} is a face of A, then e is called an
extreme point of A. In other words, e is an extreme point of A if and only if it cannot be
written in the form e = (1− λ)x+ λy with x, y ∈ A, x 6= y and λ ∈ (0, 1). (see [4]).
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Let A ⊂ Rn and let H ⊂ Rn be a hyperplane. We say that H supports A at x if
x ∈ A∩H and A is contained in one of the closed half-spaces bounded by H. We denote
the half-space containing A by E+ and the other half-space by E−.

For f ∈ (Rn)∗, real linear function on Rn, we denote by

HfA = {x ∈ A | f(x) = sup
y∈A

f(y)}

the support set of A ∈ Kn with respect to f .
Let e be an extreme point of a set A ∈ K2 with nonempty interior. Then either there

exists a unique line supporting A at e or there exists an infinite family H(e) of lines
supporting A at e. In this family there are two limit lines ←−H (e) and −→H (e) such that
←−
H (e) ∪ −→H (e) = bd(

⋃
H(e)).

The following theorem is well known and we will apply it in Section 4:

Theorem 1.2. Let K,L ∈ Kn, L * K and K * L. Then there exists a hyperplane
H ⊂ Rn supporting all the sets (1− t)K + tL, where t ∈ [0, 1].

2. Necessary and sufficient conditions. In the Euclidean case there are two classes
of pairs of sets with a unique metric segment. In the Minkowski case the matter is much
more complex. Even in a plane we obtain four classes of pairs of sets. Not all of them
relate to classes described by Schneider.

All pairs of elements of K2 joined by a unique metric segment with respect to %B
H are

of the form {K,K+λF}, where F is a face of the unit ball B and λ > 0. Moreover, K and
F satisfy certain additional conditions. Since these conditions are quite complicated, we
collect them in the following table:

Table of Conditions

(a) (b) (c)

1 F = B K arbitrary -

2 F = {e} K = {x} -

3 F = {e} There exist points a, b, c, d ∈ R2 If
←−
H (e) ∩ B 6= {e}

such that: and
−→
H (e) ∩ B 6= {e},

i) 4(a, c) ⊂ K ⊂ conv{a, b, c, d} then

ii) 4(a, d)‖4(b, c)‖←−H (e) i) 4(a, d) ∩K = {a}
iii) 4(a, b)‖4(d, c)‖−→H (e) or 4(a, b) ∩K = {a}
iv) there exists H ∈ H(e) and

such that 4(a, c)‖H ii) 4(c, d) ∩K = {c}
or 4(b, c) ∩K = {c}

4 F = 4(e1, e2) There exist points a, b, c ∈ R2 i) If
−→
H (e1) ∩ B 6= {e1},

such that: then 4(a, c) ∩K = {a}
i) 4(a, b) ⊂ K ⊂ conv{a, b, c} and

ii) 4(a, b)‖4(e1, e2) ii) If
←−
H (e2) ∩ B 6= {e2},

iii) 4(a, c)‖−→H (e1) then 4(b, c) ∩K = {b}
iv) 4(b, c)‖←−H (e2)
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In the four rows of the table we listed all conditions that have to be met by respective
classes of pairs.

Now we shall consider several examples of pairs of convex bodies satisfying the con-
ditions listed in the table. In the following figures, thick lines show such bodies. Thin
lines show some elements of unique metric segments. Since the shape of the unit ball is
crucial, we also present unit balls B.

Example 2.1 (Condition 1). Let K ⊂ R2 be a triangle. Figures 1.a and 1.b show pairs
(K,K + λB), for some λ > 0, which satisfy Condition 1.
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These pairs consist of K and a parallel body of K. Figure 1.b illustrates one of the cases
described by Schneider (compare with [1]). If we take a non-Euclidean unit ball B (see
Figure 1.a), then we obtain a different parallel body of K. Example 2.1 corresponds to (i)
from Theorem 1.1.

Example 2.2 (Condition 2). The set F is a zero-dimensional face of the unit ball B.
Pairs of sets satisfying Condition 2 are pairs of singletons, and segments joining them
consist of singletons, too. In the Euclidean case (Figure 2.b), all pairs of singletons have
a unique metric segment joining them. If B contains a segment in its boundary, then
the pair ({x}, {x + e}) can be joined by a unique metric segment if and only if e is a
zero-dimensional face of B (see Figure 2.a).
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This example corresponds to class (ii) from Theorem 1.1.

Example 2.3 (Condition 3). Since Condition 3 is very complex, we divide it into sub-
conditions 3(a), 3(b) and 3(c), which have to be satisfied simultanously. The set F is
again a zero-dimensional face of the unit ball B (Condition 3(a)).
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The body K is contained in the parallelogram with vertices a, b, c, d. The sides of the
parallelogram are parallel to the limit lines ←−H (e) and −→H (e) supporting B. The diagonal
4(a, c) is parallel to one of the lines supporting B in e. This diagonal should be contained
in K (Condition 3(b)).
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If the point e is an endpoint of at most one segment contained in bdB, then any point
of the boundary of the parallelogram a ∨ b ∨ c ∨ d can belong to K (Figure 3.a).

If the point e is the endpoint of two segments contained in bdB, then K is disjoint
from relint4 (a, b) or from relint4 (a, d). Also K is disjoint from relint4 (c, b) or from
relint4 (c, d) (Figure 3.b).

The pair of sets in Figure 3.a does not satisfy the assumption of Condition 3(c) but
the pair of sets in Figure 3.b does.

This case does not correspond to any case described by R. Schneider.

Example 2.4 (Condition 3). It can happen that the parallelogram a∨b∨c∨d degenerates
to a segment. If B is a Euclidean ball, then we obtain case (ii) from Schneider’s theorem
(Figure 4.a).

If the ball B can be supported at some point e of the boundary by different straight
lines, then we can obtain segments like K and L (Figures 4.b and 4.c). These two examples
depend on which side of the parallelogram a∨ b∨ c∨ d degenerates to a point. These two
examples correspond to case (ii) from Schneider’s theorem.
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Example 2.5 (Condition 4). This case is complex and we have to consider Conditions
4(a), 4(b) and 4(c) from the Table of Conditions. The set F is a segment 4(e1, e2) ⊂ B.
Then we have three different lines supporting B at points e1, e2. Condition 4(b) says that
K is contained in a triangle a∨ b∨ c whose sides are parallel to the limit lines supporting
B at points e1, e2. The side 4(a, b) parallel to 4(e1, e2) must be contained in K (see
Figures 5.a and 5.b).
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If no segment contained in bdB other than 4(e1, e2) contains e1 or e2, than any point
of the triangle a ∨ b ∨ c can be contained in K (see Figure 5.a).

If the point e1 or e2 contains a segment contained in bdB other than 4(e1, e2), then
the set K has to be disjoint from relint4 (a, c) or relint4 (b, c) (see Figure 5.b).
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This example does not correspond to any case of Schneider.

Example 2.6 (Condition 4). In Figure 6.a two of three limit lines supporting B at points
e1, e2 are identical. Then the triangle a ∨ b ∨ c reduces to a segment parallel to F . It can
also happen that two of three limit lines supporting B at points e1, e2 are parallel. Then
B is a parallelogram and the triangle a∨ b∨ c transforms to a half-strip (see Figure 6.b).

Also this example does not correspond to any case of Schneider.
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3. Sufficiency. In section 2 we described four types of pairs of elements of K2; in this
section we prove that for every such pair there is a unique metric segment in (K2, %B

H)
joining the elements of this pair.

Proposition 3.1. Let K ∈ Kn and let F = B; then, for every λ > 0, the pair of sets
{K,K + λF} has a unique metric segment with respect to %B

H joining them.

The proof of Proposition 3.1 is analogous to that for Kn (see [3]).

Proposition 3.2. Let K = {x} ∈ Kn and let F = {e} be a face of the unit ball B.
Then, for every λ > 0, the pair of sets {K,K + λF} has a unique metric segment with
respect to %B

H joining them.

Proof. It suffices to prove that the pair {{x}, {x + λe}} has a unique metric midpoint
with respect to %B

H .
With no loss of generality we may assume that λ = 2. Then %B

H({x}, {x + 2e}) = 2.
The singleton {x+ e} is the affine midpoint of the pair {{x}, {x+ 2e}}.
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The point e is an extreme point of B. Therefore x+ e is an exposed point of the balls
(x+ B) and (x+ 2e+ B). Then

{x+ e} = (x+ B) ∩ (x+ 2e+ B).

The singleton {x+ e} is the greatest metric midpoint of the pair {{x}, {x+ 2e}} in the
sense of inclusion (see [1]), so it is the unique metric midpoint of {{x}, {x+ 2e}}.

The assumption that {e} is a face of B is essential in Proposition 3.2. It is easy to see
that if {e} is not a face of B, then in the set (x + B) ∩ (x + 2e + B) there exist points
other than x+ e.

Proposition 3.3. Let K ∈ K2 and let F = {e} be a face of the unit ball B. If F and
K satisfy Conditions 3(a), 3(b) and 3(c) from the Table of Conditions, then, for every
λ > 0, the pair of sets {K,K + λF} has a unique metric segment with respect to %B

H

joining them.

Proof. Let λ = 2 and assume that K fulfills the assumptions of Proposition 3.3 (see
Figures 3.a and 3.b). Let K have nonempty interior. Then the boundary bdK is the
union of two arcs joining the points a and c. Then the ”upper” arc of bdK is contained
in bd(K + B) − e and the ”lower” arc is contained in bd(K + B) + e. Therefore, K =
(K + e+ B)∩ (K − e+ B). Hence K + e = (K + B)∩ (K + 2e+ B). This implies that any
metric center M between K and K + 2e is contained in K + e.

Let x be an exposed point of K. If x 6= a, x 6= b and x belongs to the ”upper” arc of
bdK, then x + 2e ∈ K + 2e and (x + 2e + B) ∩ (K + e) = x + e. Let y = x + e. Then
x+ 2e ∈ y+ B and x+ 2e /∈ y1 + B for every y1 ∈ K+ e such that y1 6= y. Since K+ 2e ⊂
M +B, it follows that x+e ∈M . In a similar way we can prove that M contains x+e for
an exposed point x of the ”lower” arc of bdK (x is not equal to a or b). If ←−H (e)∩B = e,
then (a+ 2e+ B) ∩ (K + e) = a+ e and (c+ B) ∩ (K + e) = c+ e and a+ e, c+ e ∈M .
In a similar way −→H (e) ∩ B = e implies that a + e, c + e ∈ M . If 4(a, d) ∩ K = a or
4(a, b)∩K = a, then (a+ 2e+ B)∩ (K + e) = a+ e or (a+ B)∩ (K + e) = a+ e. Hence
a + e ∈ M . If 4(c, d) ∩K = c or 4(b, c) ∩K = c, then (c + 2e + B) ∩ (K + e) = c + e

or (c+ B) ∩ (K + e) = c+ e. Hence c+ e ∈M . We have just proved that M contains all
exposed points of K + e. Therefore, M = K + e.

If K has an empty interior (see Figures 4.a, 4.b and 4.c), then K = 4(a, c) and we
see that (K + B) ∩ (K + 2e+ B) = 4(a+ e, c+ e) = K and that both points a+ e and
c+ e have to belong to any metric center M .

Proposition 3.4. Let K ∈ K2 and let F = 4(e1, e2) be a face of the unit ball B. If
F and K satisfy Conditions 4(a), 4(b) and 4(c) from the Table of Conditions, then, for
some λ > 0, the pair of sets {K,K + λF} has a unique metric segment with respect to
%B

H joining them.

Proof. Let λ = 2 and assume that K fulfills the assumptions of Proposition 3.4 (see
Figures 5.a and 5.b). Let K have an nonempty interior and d be a point of K \ 4(a, b)
belonging to the straight line supporting K. Then the boundary bdK is the union of
4(a, b) and two arcs, a ”left” arc l joining a and d and a ”right” arc r joining d and b.
Hence (l+ e1)∪ (d+F )∪ (r+ e2) ⊂bd(K + B) and 4(a+ e1, b+ e2) ⊂ bd(K + 2F + B).
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Therefore, K + F = (K + B) ∩ (K + 2F + B). This implies that any metric center M of
the pair (K,K + 2F ) is contained in K + F .

Let x be an exposed point of (K+F )\4(a+e1, b+e2). If x ∈ l+e1, then x+e1 ∈ K+2F
and (x + e1 + B) ∩ (K + F ) = x. Hence x + e1 ∈ x + B and y + e1 /∈ x + B for every
y ∈ K + F and y 6= x. Since K + 2F ⊂M + B, it follows that x ∈M . If x ∈ r+ e2, then
in a similar way we can prove that x ∈M .

If ←−H (e1)∩B = e1 or 4(a, c)∩K = {a}, then (a+ 2e1 + B)∩ (K +F ) = a+ e1 Hence
a+e1 ∈M . In a similar way, if −→H (e2)∩B = e2 or 4(b, c)∩K = {b}, then b+e2 ∈M . We
have just proved that M contains all exposed points of K + F . Therefore, M = K + F .

If K has an empty interior (see Figures 6.a and 6.b), then K = 4(a, b) and we see
that (K + B)∩ (K + 2F + B) = 4(a+ e1, b+ e2) = K and both points a+ e1 and b+ e2
have to belong to any metric center M .

Notice that the following theorem is a simple corollary of Propositions 3.1–4.

Theorem 3.5. Let K ∈ K2 and let F be a face of the unit ball B. If K and F satisfy
one of Conditions 1–4 from the Table of Conditions, then, for every λ > 0, the pair of
sets {K,K + λF} has a unique metric segment with respect to %B

H joining them.

4. Necessity. We are now going to prove that every pair of elements of K2 with a unique
metric segment with respect to %B

H joining them is of one of the four types described in
Section 2.

We shall need the following seven lemmas. The first two hold true for any n ≥ 2.

Lemma 4.1. Let K,L,C ∈ Kn and let L * K and K * L. Let C be the unique metric
midpoint (with respect to %B

H) of the pair (K,L) and let H be the common hyperplane
supporting K,L and C (see Theorem 1.2). Then there exist k ∈ K, l ∈ L, c ∈ C and a
line S ⊂ H such that {k} = S ∩K, {l} = S ∩ L and {c} = S ∩ C.

Proof. We may assume that ρB
H(K,L) = 2. By assumption, C = (K + B) ∩ (L + B) =

1
2 (K+L). By Theorem 1.2, K ∪L∪C ⊂ E+. Let k ∈ K ∩H, l ∈ L∩H, c ∈ C ∩ aff(k, l).
Suppose that there exists c′ 6= c such that c′ ∈ C ∩ aff(k, l). Then, for any ε > 0, there
exist m,n ∈ E− such that m ∈ k + εB, n ∈ l + εB and points m,n, c, c′ are coplanar.

Notice that 4(m, c)∩4(n, c′) 6= ∅ or 4(m, c′)∩4(n, c) 6= ∅ for sufficiently small ε.
Let c1 ∈ 4(m, c) ∩ 4(n, c′). Then c1 ∈ (K + B) ∩ (L + B) ∩ intE− = C ∩ intE−, which
contradicts the assumptions.

Analogously, we prove that {k} = K ∩ aff(k, l) and {l} = L ∩ aff(k, l). Then S :=
aff(k, l).

Lemma 4.2. Let K,L,C ∈ Kn and let L * K and K * L. Let C be the unique metric
midpoint (with respect to %B

H) of the pair (K,L) and let H be the common hyperplane
supporting K,L and C. Let c ∈ H ∩ C. Then

dist(c,K) = dist(c, L) =
1
2
ρB

H(K,L).

Proof. We may assume that ρB
H(K,L) = 2, l 6= k. Certainly, dist(c,K) ≤ 1. Suppose

that dist(c,K) < 1. Then c + εB ⊂ K + B for some ε > 0. By Lemma 4.1, there exist
a line S ⊂ H and points {k} = S ∩ K, {l} = S ∩ L and {c} = S ∩ C. The segment
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4(c, l) ⊂ L + B. Hence, 4(c, l) ∩ (c + εB) ⊂ 4(k, l) ∩ C which is impossible by Lemma
4.1. Then dist(c,K) = 1.

Analogously, we prove that dist(c, L) = 1.

Lemma 4.3. Let K,L,C ∈ K2. Suppose L * K and K * L. Let C be the unique metric
midpoint (with respect to %B

H) of the pair (K,L) and let H be the common line supporting
K,L and C. Let H ∩K = {k}, H ∩ L = {l}, H ∩ C = {c}. Then

ρB(c, k) = ρB(c, l) =
1
2
ρB

H(K,L).

Proof. We may assume that ρB
H(K,L) = 2 and l 6= k. Lemma 4.2 implies ρB(c, k) ≥ 1.

Suppose that ρB(c, k) > 1. By Lemma 4.2, dist(c,K) = 1. Hence (c + B) ∩ K 6= ∅ and
(c+ intB) ∩K = ∅. Let k1 ∈ (c+ B) ∩K. By our assumption, k1 6= k.

Let H1 be a line which separates K and c+B and let f1 be a linear function on R2 such
that f1(H1) is a singleton and f1(c) > f1(H1). Then k1 ∈ (c+ B)∩K ⊂ H1 ∩K = Hf1K

and k1 ∈ (c + B) ∩ K ⊂ H1 ∩ (c + B) = H−f1(c + B). Hence k1 − c ∈ H−f1B and
c− k1 ∈ Hf1B. Then c = k1 + (c− k1) ∈ Hf1K +Hf1B = Hf1(K + B).

The set C is contained in K+ B, hence c ∈ Hf1C. By the assumptions of Lemma 4.3,
the segment 4(k, l) is the unique segment with endpoints belonging to K and L and with
the midpoint c. Since Hf1C = 1

2 (Hf1K+Hf1L), it implies that k ∈ Hf1K and l ∈ Hf1L.
Hence 4(k, k1) ⊂ Hf1K and 4(c, 1

2 (k1 + l)) ⊂ Hf1C.
Analogously, there exists l1 ∈ (c+ B) ∩ L such that l1 6= l and there exists a line H2

which separates c + B and L. Let f2 be a linear function on R2 such that f2(H2) is a
singleton and f2(c) > f2(H2). Then 4(l, l1) ⊂ Hf2L and 4(c, 1

2 (k + l1)) ⊂ Hf2C.
Let now C1 := cl(C \ 4(c, 1

2 (k1 + l), 1
2 (k + l1)). We shall show that C1 is another

metric midpoint of (K,L). Notice that dist(c,H1) = 1. Hence dist(l,H1 + c − k) = 1.
Since f1(c) = f1(H1 + c− k), it follows that Hf1C ⊂ H1 + c− k and hence dist(l, C) ≥ 1.
Since L ⊂ C + B, we have dist(l, C) = 1. Then there exists c1 ∈ C such that dist(l, C) =
ρB(l, c1) and c1 ∈ H1 + c − k. Since k1 + l − c ∈ H1 + c − k and ρB(k1 + l − c, l) = 1, it
follows that c1 ∈ 4(k1 + l − c, 1

2 (k1 + l)), whence l ∈ C1 + B and c1 ∈ C1.
Analogously, we prove that there exists c2 ∈ C1 such that dist(K, c2) = 1 and c2 ∈

4(l1 + k − c, 1
2 (k + l1)). Hence k ∈ C1 + B.

Then L ⊂ C1 + B and K ⊂ C1 + B and L * C1 + εB and K * C1 + εB for 0 < ε < 1.
Certainly, C1 ⊂ C = (K + B) ∩ (L + B). The set C1 is another metric midpoint of the
pair (K,L). This contradicts the assumption of this lemma. Finally, ρB(c, k) = 1.

Analogously, we prove that ρB(c, l) = 1.

Lemma 4.4. Let K,L,C ∈ K2. Suppose L * K and K * L. Let C be the unique metric
midpoint (with respect to %B

H) of the pair (K,L) and let H be the common line supporting
K,L and C. Let H ∩K = {k}, H ∩ L = {l}, H ∩ C = {c}. Then

dist(k,C) = dist(l, C) =
1
2
ρB

H(K,L).

Proof. Assume that ρB
H(K,L) = 2. By Lemma 4.2 dist(c, L) = 1. Hence dist(k,C) ≥

dist(k, L + B) ≥ dist(k, L) − 1 = dist(k, L) + dist(l, L) − 1 ≥ dist(k + l, L + L) − 1 ≥
2dist(c, L)− 1 = 1. On the other hand dist(k,C) ≤ ρB

H(K,C) = 1.
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Lemma 4.5. Let K,L,C ∈ K2. Suppose L * K and K * L. Let C be the unique metric
midpoint (with respect to %B

H) of the pair (K,L). For distinct c1, c2 ∈ (C ∩ bd(K ∨ L))
where ci = 1

2 (ki + li), ki ∈ K, li ∈ L, the line aff(c1, c2) supports the balls ki + B, li + B
for i = 1, 2.

Proof. Assume that ρB
H(K,L) = 2. By Lemma 4.4 the segment 4(c1, c2) is disjoint from

int(k1 + B) and int(l1 + B). Then int(k1 + B) = int(k1 − B) = (k1 + l1) − int(l1 + B) =
2c1− int(l1 +B) is disjoint from 2c1−4(c1, c2) = 4(c1, 2c1−c2). Hence the line aff(c1, c2)
supports the ball k1 + B.

Lemma 4.6. Let K,L,C ∈ K2. Let L * K and K * L. Let C be the unique metric
midpoint (with respect to %B

H) of the pair (K,L). If card(C) > 1, then card(C ∩ bd(K ∨
L)) = 2.

Proof. Notice that bd(K∨L) is homeomorphic to a circle. Each point of bd(K∨L)\(K∪L)
lies in a relative interior of a segment contained in bd(K ∨ L) with endpoints belonging
to K and L. By Lemmas 4.1 and 4.2, such a segment has the length ρB

H(K,L) and its
midpoint belongs to C. Hence card(C ∩ bd(K ∨ L) is finite. There are a finite number
of segments described above and contained in bd(K ∨ L) with relative interiors disjoint
from K ∪ L. Therefore card(C ∩ bd(K ∨ L)) is an even number.

Suppose that card(C ∩ bd(K ∨ L)) > 2. Let c1, c2, c3, c4 be different elements of
C ∩ bd(K ∨ L) and let D := conv(c1, c2, c3, c4) with c1, c2, c3, c4 subsequent vertices of
D. In view of Lemma 4.3, points c1, c2, c3, c4 belong to four different segments contained
in bd(K ∨ L) ∩ C. Thus, there exist k1, k2, k3, k4 ∈ K and l1, l2, l3, l4 ∈ L such that
ci = 1

2 (ki + li) for i = 1, 2, 3, 4.
We may assume that ρB

H(K,L) = 2. By Lemma 4.4 the lines H = aff(c1, c2) and
H1 = aff(c1, c4) support the ball k1 + B and the lines H and H2 = aff(c2, c3) support the
ball k2 +B. Hence lines H1−k1 and H2−k2 support B at c1−k1 and c2−k2, respectively.
Moreover, (H − k1)∩B = 4(c1− k1, c2− k2). Denote F = (H − k1)∩B. The unit ball B
is centrally symmetric, thus −F ⊂ B. Hence the sum of angles at two adjacent vertices
of D is less than or equal to π. Therefore D is a parallelogram and B is a summand of D.

Hence C = D and B = I + J , where I and J are two segments with midpoint 0 and
length greater than or equal to 0. Thus C = x+ αI + βJ for some x ∈ R2 and α, β ≥ 1.

Since4(c1, c2) and4(c3, c4) are parallel sides of D, it follows that the lines aff(k1, k2)
and aff(k3, k4) support K and aff(l1, l2), aff(l3, l4) support L. Analogously, aff(k2, k3),
aff(k1, k4) support K and aff(l2, l3), aff(l1, l4) support L. Thus K = x+(α−ε)I+(β+δ)J
and K = x+ (α+ ε)I + (β − δ)J for some ε, δ > 0. Consider C1 = x+ ((α− ε)I + βJ)∨
(αI+(β−δ)J). Notice that C1 +B = x+(αI+(β+1)J)∨((α+1)I+βJ) contains K∨L.
The set C1 is a metric midpoint of the pair (K,L) different than C. This contradicts the
assumption.

Lemma 4.7. Let K,L,C ∈ K2 with L * K and K * L. Let C be the unique metric
midpoint (with respect to %B

H) of the pair (K,L), ρB
H(K,L) = 2 and card(C) > 1. Then

there exist two lines H1 and H2 supporting the sets K,L,C at the unique points k1, l1, c1
and k2, l2, c2 respectively. Moreover, (ki + B) ∩ C = {ci} and (li + B) ∩ C = {ci} for
i = 1, 2 and:
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i) If H1 ‖ H2, then e := c1− l1 = c2− l2 is a zero-dimensional face of the unit ball B,
C = L + e and K = L + 2e. The set C is contained in the parallelogram D bounded by
←−
H (c1), ←−H (c1) + (c2− c1), −→H (c1) and −→H (c1) + (c2− c1), where the lines ←−H (c1) and −→H (c1)
support the balls l1 + B and k1 + B at the point c1 and the lines ←−H (c1) + (c2 − c1) and
−→
H (c1) + (c2 − c1) support the balls l2 + B and k2 + B at the point c2 (see Figure 7.a).

ii) If H1 ∦ H2, then F := 4((c1 − l1), (c2 − l2)) is one-dimensional face of the unit
ball B, C = L + F and K = L + 2F or C = K + F and L = K + 2F . The set C is
contained in the triangle D bounded by H, −→H (c1) and ←−H (c2), where H =←−H (c1) = −→H (c2)
(or by H, ←−H (c1) and −→H (c2), where H = −→H (c1) = ←−H (c2)). The lines ←−H (c1) and −→H (c1)
support the balls l1 + B and k1 + B at the point c1 and the lines ←−H (c2) and −→H (c2) support
the balls l2 + B and k2 + B at the point c2 (see Figure 7.b).
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Proof. By Lemma 4.4, H = aff(c1, c2) supports the sets l1 + B and l2 + B. Hence the
segment 4(c1 − l1, c2 − l2) is contained in bdB. Let F be the one-dimensional face of B
containing 4(c1− l1, c2− l2). Then F is parallel to 4(c1, c2), the line H supports C and
H ∩ C = 4(c1, c2).

Similarly, H + l1 − c1 supports L with (H + l1 − c1) ∩ L = 4(l1, l2) and H + k1 − c1
supports K with (H + k1 − c1) ∩K = 4(k1, k2).

Assume that |l1 − l2| < |k1 − k2|. Denote by E+
H(L) the half-plane bounded by H

and containing L. Then intE+
H(L) ∩ C = ∅. If 4(c1 − l1, c2 − l2) ∈ relintF , then ci ∈

relint((ki + B) ∩ (li + B)) for i = 1, 2. Hence there exist c3, c4 ∈ C such that c3 ∈
intE−H1

(K∨L) and c4 ∈ intE−H2
(K∨L), which is impossible. Thus 4(c1− l1, c2− l2) = F .

Let←−H (ci) and −→H (ci) support li+B in ci for i = 1, 2, respectively. Then←−H (c1) = −→H (c2)
or −→H (c1) = ←−H (c2). Let ←−H (c1) = −→H (c2) = H. Thus C is contained in the triangle D
bounded by H, −→H (c1) and ←−H (c2).

If −→H (c1) = H or ←−H (c2) = H, then D = 4(c1, c2).
Assume now that −→H (c1) 6= H and ←−H (c2) 6= H. Since (L+ B) ∩ (K + B) ⊂ (L+ B) \

E+
H(L) = L+F , it follows that C ⊂ L+F . Recall that L ⊂ C+ B and −F is a face of B.

Then aff(l1, l2) supports L. Hence L+ F ⊂ (K + F )∨ ((l1, l2) + F ) ⊂ K + B. Obviously,
L+ F ⊂ L+ B. Thus C = L+ F and K = L+ 2F .

Let us now assume that |l1 − l2| > |k1 − k2|. Then, analogously, we prove that C =
K + F and L = K + 2F .
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Let now |l1 − l2| = |k1 − k2|. Then c1 − l1 = c2 − l2 = e. In a similar way we prove
that {e} is a zero-dimensional face of the unit ball B. Let←−H (ci) and −→H (ci) support li +B
in ci for i = 1, 2, respectively. Since c1 and c2 are exposed points of l1 + B and l2 + B, it
follows that←−H (c1) ‖ ←−H (c2) and −→H (c1) ‖ −→H (c2). If←−H (c1) = −→H (c2), then C = 4(c1, c2). If
←−
H (c1) 6= −→H (c2), then C is contained in the parallelogram D bounded by ←−H (c1), ←−H (c2),
−→
H (c1) and −→H (c2). Notice that L + e ⊂ L + B and L− e ⊂ L + B. Then L ⊂ L + e + B.
Since e is a face of B, it follows that L+ e * L+ εB and L * L+ e+ εB for 0 < ε < 1.
Recall that e = c1 − l1 = 1

2 (k1 − l1). Thus K ⊂ L+ B + e and L ⊂ K + B + e. Therefore
the set L+ e is a metric midpoint of the pair (K,L). Then C = L+ e and K = L+ 2e.

Theorem 4.8. Let K,L ∈ K2. If K and L have a unique metric segment with respect
to %B

H joining them, then K = L + λF or L = K + λF for some λ > 0 and a face F of
the unit ball B and, moreover, the sets L and F (or K and F , respectively) satisfy one
of Conditions 1–4 from the Table of Conditions.

Proof. Take K,L ∈ K2. Suppose K ⊂ L or L ⊂ K. If (K,L) have a unique metric
midpoint with respect to %B

H , then L = K + λB or K = L + λB for some λ > 0,
respectively. The proof is analogous to that for Euclidean case (compare [3]). In this case
we obtain pairs of elements of K2 satisfying Condition 1 from the Table of Conditions.

Suppose now L * K and K * L. The set C ∈ K2 is the unique metric midpoint (with
respect to %B

H) of the pair (K,L). Then either C = {c} or card(C) > 1.
Let C = {c}. It is easy to prove that in this case K = {k}, L = {l}, and, for

e := c − k = l − c, the singleton {e} is a zero-dimensional face of the unit ball B. In
this case we obtain pairs of elements of K2 satisfying Condition 2 from the Table of
Conditions.

Let now card(C) > 1. Then, by Lemma 4.5, there exist two linesH1 andH2 supporting
the sets K,L,C at unique points k1, l1, c1 and k2, l2, c2 respectively, (ki + B) ∩ C = {ci}
and (li + B) ∩ C = {ci} for i = 1, 2.

If H1 ‖ H2, then, for e := c1 − l1 = c2 − l2, the singleton {e} is a zero-dimensional
face of the unit ball B, C = L + e and K = L + 2e. The set C is contained in the
parallelogram D bounded by ←−H (c1), ←−H (c1) + (c2 − c1), −→H (c1) and −→H (c1) + (c2 − c1),
where the lines ←−H (c1) and −→H (c1) support the balls l1 + B and k1 + B at the point c1 and
the lines ←−H (c1) + (c2 − c1) and −→H (c1) + (c2 − c1) support the balls l2 + B and k2 + B
at the point c2. The set D can degenerate to a segment (compare Figures 4.a, 4.b, 4.c).
In this case we obtain pairs of elements of K2 satisfying Condition 3 from the Table of
Conditions.

If H1 ∦ H2, then F := 4((c1− l1), (c2− l2)) is a one-dimensional face of the unit ball,
C = L + F and K = L + 2F or C = K + F and L = K + 2F . The set C is contained
in the triangle D bounded by H, −→H (c1) and ←−H (c2), where H = ←−H (c1) = −→H (c2). The
lines ←−H (c1) and −→H (c1) support the balls l1 + B and k1 + B at the point c1 and the lines
←−
H (c2) and −→H (c2) support the balls l2 + B and k2 + B at the point c2. The set D can
degenerate to a segment (compare Figure 6.a) or to an unbounded half-strip (see Figure
6.b). In this case we obtain pairs of elements of K2 satisfying Condition 4 from the Table
of Conditions.
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In view of Theorem 3.5 we obtain the following result:

Theorem 4.9. Let K,L ∈ K2. The following conditions are equivalent:

i) there is a unique metric segment with respect to %B
H joining K and L;

ii) K = L + λF or L = K + λF for some λ > 0 and a face F of the unit ball B.
Moreover, the sets L and F (or K and F , respectively) satisfy one of Conditions 1–4
from the Table of Conditions.

5. Remarks. In this paper we give necessary and sufficient conditions for a pair (K,L)
of elements of K2 to have a unique metric segment with respect to %B

H joining them. Our
conjecture is that in higher dimensions all pairs of elements of Kn with a unique metric
segment joining them are of the form {K,K + λF}, where F is a face of the unit ball B,
λ > 0 and the sets K and F together with the unit ball B satisfy certain additional
conditions. These conditions may be much more complicated than in the planar case.

Restriction of the class of Minkowski spaces to those with a strictly convex or smooth
unit ball seems to be a good starting point for studying unique metric segments in higher
dimensions. We thank the referee for this suggestion. Our paper dedicated to this problem
is now in preparation.
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