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Abstract. In the class of self-affine sets on Rn we study a subclass for which the geometry is

rather tractable. A type is a standardized position of two intersecting pieces. For a self-affine

tiling, this can be identified with an edge or vertex type. We assume that the number of types

is finite. We study the topology of such fractals and their boundary sets, and we show how new

finite type fractals can be constructed. For finite type self-affine tiles in the plane we give an

algorithm which decides whether the tile is homeomorphic to a disk.

1. Introduction. In fractal geometry, the theory of measure and dimension is well-
developed. It is possible to determine the Hausdorff dimension, and sometimes even ex-
act Hausdorff measures, for rather complicated fractals sets. Much less is known on the
topology of fractals. Even for simple self-affine tiles in the plane, it is not easy to decide
whether they are homeomorphic to the unit disk (see Section 6), and in dimension > 2
even connectedness is a problem [1, 22]. For random fractals, it remains a central ques-
tion to develop a perfect theory of percolation which describes the evolution of connected
components in a parametrized fractal construction. In dimension 3 and higher, even the
structure of deterministic fractals has not been studied. There is a demand to develop
analysis on fractal spaces, in order to deal with physical phenomena like heat and elec-
tricity flow in disordered media, vibrations of fractal materials and turbulence in fluids.
Without a better understanding of the topology of fractals, this seems very difficult.

In the present paper we study a class of self-affine fractals for which the topology can
be described with finite amount of information. The most common examples of fractals,
like von Koch’s curve, Sierpiński’s gasket and Menger’s sponge, belong to this class. The
concept of finite type has been studied previously in the context of patterns and tilings,
see [23]. For fractals, a similar concept has been suggested by Ngai and Wang [30], and
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several modifications were worked out by Lau and co-workers [13, 24] with the intention
to determine Hausdorff dimension for large classes of fractals. Our goal is somewhat
different.

We give a very clear definition. A type is a standardized relative position of two in-
tersecting pieces of the fractal. These types can be expressed by so-called neighbor maps,
which can be explicitly determined by a recursive algorithm. If there are only finitely
many neighbor maps, the algorithm stops after finite time, and we have a finite type
fractal.

The algebraic structure of neighbor maps will not only determine the Hausdorff dimen-
sion of the boundary of the fractal, which has been noted by many authors [33, 24, 14, 20],
using more complicated concepts like contact matrices. It will also describe the topolog-
ical structure of the fractal, in terms of an equivalence relation on the shift space of
addresses introduced in [18, 8, 11, 21].

Our definition of finite type leads to a construction of corresponding examples. We
give some new examples of fractals with rather simple structure. We also show how the
topology of two- and three-dimensional self-affine tiles can be determined by algebraic
operations with the data.

2. The neighbor concept. We consider contracting affine maps f1, . . . , fm on Rd, that
is, fi(x) = Ai(x + vi) where Ai is a d × d matrix with eigenvalues of modulus < 1, and
vi ∈ Rd is a translation vector. The self-affine set corresponding to f1, . . . , fm is the
unique compact set F 6= ∅ which satisfies the set equation

F = f1(F ) ∪ · · · ∪ fm(F ).

If the fi are similarity maps with respect to Euclidean metric, F is called self-similar.
F consists of small copies Fi = fi(F ) of itself, each Fi consists of smaller copies Fij =
fi(fj(F )), and so on. For any integer n, we can consider the set Sn of words i = i1 . . . in
from the alphabet S = {1, . . . ,m}. Writing fi = fi1 · · · fin and Fi = fi(F ), we have
F =

⋃
{Fi | i ∈ Sn}. When n tends to infinity, this induces a continuous map π : S∞ → F

from the set S∞ of sequences s = s1s2s3 . . . onto the self-similar set, the so-called address
map, cf. [18, 11, 21].

To obtain a reasonable structure in the self-affine set, it is often required that overlaps
of the pieces are sufficiently thin, which is expressed by the open set condition: there exists
a nonempty open set V ⊂ Rd with

⋃m
i=1 fi(V ) ⊆ V and fi(V ) ∩ fj(V ) = ∅ for i 6= j.

In this paper we give a more detailed study of the relation between small neighboring
pieces Fi and Fj of F. When we use the term “neighboring pieces”, we shall always assume
that Fi ∩ Fj 6= ∅, and we shall call such a pair Fi, Fj a “type”. Since we are interested
in the relation and not in the size of the pieces, each type is represented in a standard
form, taking the fractal F in place of Fi and a virtual neighbor h(F ) instead of Fj.

Figure 1 shows a very simple self-affine set with three pieces—a triangle with angles
of 30, 60 and 90 degrees. Two small triangles in F can intersect along a line segment, or
within a point. Let us neglect the latter case and only consider the “edge neighbors”.
There are three types of such neighboring triangles. When we put the first triangle into the
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Fig. 1. Types of a self-affine triangle

position of the set F (indicated by the subdivision), then the three neighboring positions
are obtained by reflection of F along its three sides.

As Figure 1 shows, two of the types are found among the first-level pieces, that is,
F1, F2 and F2, F3. The third neighbor pair appears at second level. We can take F12, F22 as
well as F13, F33 or F21, F31. It is clear that we can find all neighbor positions by searching
small pieces on both sides of F1 ∩ F2 and F2 ∩ F3, since from such pairs of intersecting
triangles, all other pairs are obtained by applying the maps fi. On the first level, we had
found two types, and by studying their subpieces, the third type was discovered. Now
considering the subpieces 1, 1 and 3, 3 of the third type, we are led back to the two other
types. This shows that we really have only three types of neighboring triangles, no matter
how far we go into tiny subpieces. (Inclusion of “point neighbors” like F1, F3, means 13
other types, cf. [17], Figure 2.7.1, tiling [4, 6, 12].) Thus we have a simple recursive method
to determine all types of neighboring pieces—at least in the case when only few types
exist.

3. The neighbor graph and its algebraic construction. Our intuitive discussion
will now be replaced by an algebraic framework which determines the types from the
data of the given maps. Given f1, . . . , fm, a neighbor map has the form h = f−1

i fj where
Fi ∩ Fj 6= ∅. We imagine that h maps the large fractal F onto a potential neighbor set
h(F ) which has the same position with respect to F as Fj has with respect to Fi. In fact,
fi maps F to Fi and h(F ) to Fj. Our standardization which assumes the first neighbor
always to be F is necessary in order to compare different neighbor maps. Working with
equivalence classes of neighboring positions, as in [30, 13], is an alternative, but seems to
be more complicated.

We are interested in maps between neighbors of (almost) equal size. So in our paper
where the fi have the same linear part, Ai = A, or the same contraction factor in the



134 C. BANDT AND M. MESING

case of similarities, we shall require that the words i and j have the same length. It will
then turn out that the neighbor maps are isometries. In the case of Figure 1, they were
reflections. For the case Ai = A, Proposition 1 below says that they are translations.

Neighbor maps can be generated recursively. We start with f−1
i1
fj1 where i1 6= j1.

When a neighbor map h = f−1
i fj is constructed, the neighbor maps for the pieces Fiin

and Fjjn of Fi and Fj, respectively, is given as

g = f−1
in
f−1
i fjfjn = f−1

in
hfjn .

Thus we obtain all neighbor maps by applying repeatedly the interior automorphisms
Φij(h) = f−1

i hfj of the isometry group of Rd, starting with id. The identity map describes
the trivial type of two equal pieces, like Fi, Fi. As drawn in Figure 1, it will always be
the starting point of our procedure.

How can we verify the assumption Fi∩Fj 6= ∅, in other words, F ∩h(F ) 6= ∅? We may
assume that 0 ∈ F, by taking 0 as the fixed point of f1. Then F ∩h(F ) 6= ∅ is only possible
if ‖h(0)‖ ≤ 2 diamF. From the fixed points of the fi, it is easy to find upper bounds b
for the diameter of F so we have the necessary condition ‖h(0)‖ ≤ 2b. This condition is
also sufficient in the following sense: if F ∩ h(F ) = ∅ then the minimal distance between
points of F and h(F ) is ε > 0. If all fi have contraction factor ≤ r, it is easy to check
that for any g = f−1

i hfj , the distance between F and g(F ) is ≥ ε/r, and after several
steps this will be ≥ 2b. See [3, 25, 9] for details.

Thus the selection of neighbor maps is as follows. Consider only those h with ‖h(0)‖ ≤
2b. Let these maps form the vertex set of a graph. The edges of the graph lead from
each h to each g = f−1

i hfj , with i, j ∈ S and ‖g(0)‖ ≤ 2b, and are labelled with the
corresponding pair of symbols i, j. Finally, we reduce the graph by considering only those
vertices h from which an infinite or eventually cyclic path in the graph will start. id
denotes the root vertex of this graph G, and the loops from id to id with labels ii will
not be drawn, for convention.

The graph G will be called the neighbor graph of the family f1, . . . , fm, or of the
fractal F. We say that F is of finite type if the graph G is finite. In this case, from each
vertex there starts a path which ends in a directed cycle.

The construction of the neighbor graph and the check of the finite type property can
be done by computer, given the data of the fi. On the other hand, we can determine the
fi in such a way that the neighbor graph G has certain prescribed cycles and is of finite
type. Both methods will be demonstrated for the case of small neighbor graphs. They
simplify in the case that all fi have the same linear part:

Proposition 1. If fj(x) = A(x + vj) for j = 1, . . . ,m, all neighbor maps are transla-
tions.

As a first example, we consider the hexagasket which was used by Lindstrøm [26]
to define a fractal Brownian motion and studied by Strichartz [32] in connection with
isoperimetric estimates. The mappings are fj(z) = 1

3 (z + 2bj) for j = 0, 1, . . . , 5 where
b = exp iπ

3 . In other words, we have homotheties with factor 1
3 and with fixed points

in the sixth roots of unity. As can be seen immediately from Figure 2, the neighbor
maps are translations by twice the sixth roots of unity. So we can arrange the vertices of
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Fig. 2. The hexagasket and its neighbor graph

the neighbor graph in such a way that they coincide with the corresponding translation
vectors. For example, the identity corresponds to the point zero.

In contrast to Figure 1, here each pair of neighbors corresponds to two neighbor maps:
12 is different from 21. Moreover, each neighbor map is realized by two pairs of first-level
pieces (indicated by fat edges with two labels like 50 and 32, instead of drawing double
edges). When we go to smaller levels, only one pair of intersecting pieces is available,
and the standardized translation is the same as before. Note that when we add a seventh
piece in the middle of the gasket, the neighbor graph does not change, only a few more
labels have to be added.

4. The identification of addresses. The existence of a continuous projection π :
S∞ → F from the space of symbol sequences s = s1s2s3 . . . onto the fractal F implies
that F is a quotient space of S∞. Let us write s ∼ t if π(s) = π(t).

Proposition 2. If the open set condition holds, all equivalence classes of addresses are
finite.

Proof. Schief [31] has shown that under the open set condition, there exists a constant K
such that no more than K pieces Fi of (approximately) the same size can have a common
point. (Actually, his condition was even stronger.) If more than K sequences in S∞ are
mapped to the same point x, we find an integer n0 such that all the prefixes of length
n of the sequences are different for n > n0. Corresponding pieces of approximately the
same size can now be constructed. They all contain x, which contradicts the open set
condition.

Proposition 3. The pairs of equivalent addresses coincide with the label sequences of
infinite edge paths in the neighbor graph.

Proof. The neighbor graph contains an edge from the root id labelled i1j1 to some vertex
h1 if and only if Fi1 ∩ Fj1 6=∅. There is an edge from such an h1 to some h2 labelled i2j2
iff Fi1i2∩Fj1j2 6=∅, and so on. Thus there is a path from the root with labels i1j1, . . . , injn
if and only if Fi1...in ∩ Fj1...jn 6= ∅. In the limit, an infinite path s1t1, s2t2, . . . in the
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graph corresponds to two addresses s1s2 . . . and t1t2 . . . which describe the same point:
π(s)=π(t).

If the neighbor graph is finite, the set of labels i1j1, . . . , injn of finite paths forms a
regular language on the alphabet S2 = {ij| i, j ∈ S}. This concept comes from theoretical
computer science where a rooted directed edge-labelled finite graph is also called a finite
automaton, and is one method to define a regular language. Since we are interested in
addresses, we shall use the term “language” for the set of words as well as for the set of
sequences which are obtained as limits of these words, that is, from label sequences of
infinite paths in the graph. We proved

Theorem 4. For a finite type fractal, the equivalence relation ∼ of addresses is defined
by the regular language on S2 given by the neighbor graph.

Of course, the infinite paths s1t1, s2t2, . . . in a finite neighbor graph must contain
repeated cycles. So the structure of F depends very much on the relationship of cycles
in the neighbor graph. This will be shown in the next section, but one important case
has to be mentioned here. Neighbor maps were introduced in [4] to give the following
algebraic equivalent of the open set condition: the identity map cannot be approximated
by neighbor maps f−1

i fj. In particular, a finite type fractal fulfils the open set condition
if there is no edge in G which leads back to id.

Let us now consider only the first symbol i of the label ij on each edge. Then a
path starting in id and labelled i1i2 . . . gives the address of a point in an intersection set
Fi1∩Fj1 . However, instead of intersection sets Fi∩Fj = D we prefer to consider boundary
sets f−1

i (D). These are the sets F ∩ h(F ) where the whole fractal F touches a possible
neighbor h(F ). Moran [29] used the name “dynamical boundary”. In the case of a tile F,
these boundary sets do indeed cover the topological boundary of F. For a disk-like tile in
the plane, all boundary sets are arcs or points. See Section 6.

Except for the root, each vertex h of the neighbor graph corresponds to a boundary
set F ∩ h(F ), and the first labels i1i2 . . . of the infinite paths starting in h give the
addresses of the points of this boundary set. This shows

Theorem 5. For a finite type fractal with open set condition, the addresses of the bound-
ary set corresponding to h form the regular language Lh defined by the first labels on the
graph G \ {id} with intitial vertex h.

Example 1. In Figure 1, the boundary sets of the triangle F are the three sides. Let
B,C,D denote the shortest, medium, and longest side, respectively. Figure 1 shows that

B = f1(C), C = f1(B) ∪ f3(D), and D = f2(C) ∪ f3(C)

from which it follows that

C = f1f1(C) ∪ f3f2(C) ∪ f3f3(C).

fi has contraction factor 1√
3
, so fifj has factor 1

3 and C has similarity dimension 1.

Many authors have noted that the boundary sets of self-affine fractals form a graph
directed construction [28], and so the Hausdorff dimension of the boundary sets can be
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calculated (see [33, 24, 14, 20] and the references there). In our framework, however, the
graph G of the boundary sets is obtained in a very natural and simple way.

Note that the open set condition for the graph-directed system of boundary sets can be
derived from the open set condition for F since the subdivision of boundaries is induced
by the partition of F into the Fi. This fact was used by the authors who determined the
Hausdorff dimension of boundary sets.

Actually, the definition of finite type by Ngai and Wang [30] depends on the exis-
tence of an open set and includes all examples with open set condition (see also [24, 13]).
There is an example of Kenyon [19] who took the self-similar 3× 3-division of the square
and shifted the third column by a small irrational vertical translation. This example
fulfils the open set condition and so has finite type in the sense of [30] but not in our
sense.

Our concept is derived from the notion of finite type in patterns and tilings [23] which
states that a tile should have only finitely many neighborhoods of surrounding tiles. In
fact, if there are only n possible neighbors then there can be at most 2n possible systems
of surrounding neighborhoods. Counting neighbors and counting neighborhoods are two
different concepts of measuring complexity of a finite type fractal. It can happen that there
are less neighborhoods than neighbor maps. For the (essentially unique) tiling generated
by Example 1, there is only one possible neighborhood if only fully surrounded tiles are
taken into account, while Figure 1 shows three neighbors, and there are 13 neighbors
which touch F in a point [17, Figure 2.7.1].

5. Different classes of finite type fractals. Now we study the topological structure
of the boundary sets of finite type fractals. We shall distinguish three classes: finitely
ramified, infinitely ramified and overlapping fractals. Some of the following statements
were already given in [3] where neighbor graphs were introduced implicitly.

According to the construction of G, from each vertex h there starts at least one
infinite path which in a finite graph must contain repeated cycles. A terminal cycle in G
is a directed cycle without any diagonal edge or double edge or any edge leading out of
the cycle. Each vertex g on a terminal cycle represents a one-point boundary set, with a
single periodic address given by the first labels of the cycle. Examples are the loops in the
neighbor graphs of Figure 2 and the loop at k in Figure 3, and the terminal two-point
cycles (f, g) in Figure 7 and (17, 18) in Figure 9.

A vertex h of G is called terminal if only terminal cycles can be reached from h. If
n paths to terminal cycles start in the terminal vertex h, then this vertex represents a
boundary set of n points, all with preperiodic addresses.

Following terminology of Thurston on Julia sets, Kigami [21] calls a self-affine set
F post-critically finite if all intersection sets Fi ∩ Fj are finite, and the points in the
intersection have eventually periodic addresses.

Proposition 6. A finite type fractal is post-critically finite iff all cycles in the neighbor
graph are terminal cycles.

This proposition covers the hexagasket (Figure 2) as well as the Sierpiński gasket and
many examples in the literature [21, 32, 6]. The “if”-part was proved above, the “only
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Fig. 3. A neighbor graph with different boundary types

if”-part will follow from the argument below. Moreover, each post-critically finite fractal
defines a finite neighbor graph on a topological level. However, it is not clear whether
every realization of this graph by a self-affine set must be of finite type.

Let us call a directed cycle C in G a multiple cycle if it contains a double edge (drawn
as an edge with at least two labels), or there exist a path between two vertices of C,
or a further cycle from one vertex of C to itself, which is disjoint from the edges of C.
Examples are the cycles (a, d), (b, d), and (d, e, f) in Figure 3, the outer cycle in Figure 4,
and the cycles in Figure 5. Multiple cycles always represent uncountably many addresses.
In fact, starting with a vertex of C where the second cycle begins, each sequence of words
u and v defines one address, where u denotes the labels along C, and v denotes the labels
along the cycle with the other edge or diagonal path or cycle excursion.

Each vertex in G from which a multiple cycle can be reached is called a multiple
vertex. If a vertex is neither a terminal nor a multiple vertex, it is called intermediate.
Intermediate vertices are those from which we can only reach terminal or intermediate
cycles. Here intermediate cycle means a cycle from which a path leads away, but not to
a multiple cycle or back to the original cycle. Two such intermediate cycles are the loops
at g and h in Figure 3, while the loop at f is a multiple cycle. Thus the vertices i, j,
and k in Figure 3 are terminal, the vertices g and h are intermediate, and the other five
vertices (without the root) are multiple vertices. See Example 4 below.

Theorem 7. In the neighbor graph of a finite type fractal F with open set condition,

• terminal vertices represent finite boundary sets,
• intermediate vertices represent countably infinite boundary sets, and
• multiple vertices represent uncountable boundary sets.

Proof. We have already seen that terminal vertices describe finite boundary sets, and
multiple vertices represent an uncountable number of addresses and thus by Proposition
2 an uncountable boundary set. Now take an intermediate vertex h and a path from h

which passes the intermediate cycles C1, . . . , Cn−1 and leads to the final cycle Cn. There
are only finitely many choices of the Ci since there are only finitely many cycles in G,

and the order of intermediate cycles is fixed, by definition. The possible addresses of the
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boundary set of h now have the form u1c
k1
1 u2c

k2
2 . . . urc

∞
r where 1 ≤ r ≤ n, ui describes

the labels on the path from Ci−1 to Ci, and ci describes the labels along the cycle Ci.
These are countably many addresses, so by Proposition 2 the boundary set associated
with h is countable.

In the sequel we shall study the structure of infinite boundary sets more precisely:
when do we have Cantor sets, intervals, or surfaces in higher-dimensional fractals?

Example 2. In Figure 4, we have only one multiple cycle, and each double edge marks
the division of the boundary set into two disjoint parts. Thus all boundary sets are Cantor
sets, in fact self-similar linear Cantor sets with two pieces.

30,21

10,23

01,32

03,12
32,0120

21,30 31

03,1213

10,23 02

Fig. 4. Infinitely ramified square and its neighbor graph

Let us point out how the mappings for this example were found. We assumed fj(z) =
λ(z+ ij) for j = 0, 1, 2, 3. The complex factor λ was constructed from the neighbor graph.
We have f−1

k fj(z) = ij − ik, and for a translation h(z) = z + v we get

f−1
k hfj(z) = z +

v

λ
+ ij − ik.

Now going from the upper left vertex in the neighbor graph (which represents the trans-
lation vector i− 1) to the right, first up and then down, we obtain the equation(

i− 1
λ

+ i3 − i
)
/λ+ i2 − i = i + 1

which leads to the quadratic equation λ2 + 1+i
2 λ = i

2 . The solution is

λ =
1 + i

2
τ with τ =

√
5− 1
2

≈ 0.618.

The other solution has modulus > 1. So the neighbor graph, together with the assumption
of rotational symmetry (cf. [6]) uniquely determines the mappings.

It should be noted that not every given neighbor graph leads to a solution, since some-
times |λ| is too large, and we obtain more neighbor maps then we assumed. Nevertheless,
we found quite a number of new simple fractals by this method, cf. [3].
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We conclude this section with an example of a self-similar fractal with overlap. Over-
lapping constructions have been studied in several papers [12, 24, 30]. Although they do
not fulfil the open set condition, they satisfy a so-called weak separation condition, and
their Hausdorff dimension can be determined. The most interesting example seems to be
the golden gasket which is generated by three homotheties with factor τ =

√
5−1
2 ≈ 0.618.

The Hausdorff dimension of the golden gasket is d = log β
log τ ≈ 1.93 where β ≈ 0.395 fulfils

the equation 3β − 3β3 = 1 [12]. This can be seen from the method in our next example.

Example 3. In the example of Figure 5, we have exactly overlapping pieces F211 = F133

since the path with labels 21, 13, 13 leads from id back to id. In fact, beside id, the type of
two identical pieces, we have only two other classes of overlapping types: neighbors which
overlap in pieces of the next level, and neighbors which overlap in pieces which are two
levels down. Thus the structure seems simpler than the golden gasket where neighbors
may also intersect in a point.

01,32

03,12 10,23

30,21

31
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0220

21,3032,01
31

10,23
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21,30 20 01,32

03,12

10,2312,03
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Fig. 5. Overlapping square and its neighbor graph

When we assume fj(z) = λ(z + ij) for j = 0, 1, 2, 3 as in Example 2, we can obtain λ
from the equation f211 = f133, or from the cycle in the neighbor graph just mentioned:(

i− i2

λ
+ i3 − i

)
/λ+ i3 − i = 0

leads to the quadratic equation λ2 + λ = 1−i
2 . The solution with modulus < 1 is

λ = −1
2

+

√
3
4
− i

2
≈ 0.409− 0.275i.

To determine the Hausdorff dimension of F, assume there is a normalized d-dimensional
Hausdorff measure µ on F. Then µ(F ) = 1, and µ(Fi) = rd, µ(Fijk) = r3d with r = |λ|.
Putting β = rd we get 4β−4β3 = 1 since the measure of F is the sum of the measures of
the Fi minus the measure of those pieces which have been counted twice. Since β < 1

2 , the
solution is β ≈ 0.2696 and d = log β

log r ≈ 1.85. The method in [12] can be used to confirm
this result.



FRACTALS OF FINITE TYPE 141

6. Disk-like tiles. We are going into a detailed study of the topology for a special case:
self-affine sets with non-empty interior and open set condition, which are called self-affine
tiles. Extending the self-similar construction to the outside, we can construct self-affine
tilings of Rd, that is, we cover the whole space by non-overlapping copies hk(F ) of F
so that Rd =

⋃∞
k=1 hk(F ). Such tilings have been studied intensively because of their

aperiodicity, see [17, Chapter 10]. For us, examples of tilings gave a strong motivation to
develop the neighbor graph.

Self-affine tilings on Rd can be generated from an integer matrix B with determinant
m such that g(x) = Bx is expanding (i.e. has eigenvalues of modulus > 1), and m vectors
vi in the integer lattice Zd such that g(Zd) + {v1, . . . , vm} = Zd. We then have

g(F ) =
m⋃
k=1

vk + F or F =
m⋃
k=1

fk(F ) with fk(x) = B−1(x+ vk).

A more general and interesting construction uses an arbitrary crystallographic group Γ
acting on Rd [16]. That is, Γ contains a maximal abelian subgroup Λ which is a normal
subgroup of finite index in Γ and is isomorphic to Zd. A crystallographic reptile [16]
is defined by a crystallographic group Γ acting as a group of isometries on Rd, by an
expanding affine map g : Rd → Rd with determinant ±m for which gΓg−1 ⊆ Γ, and,
finally, by group elements γ1, . . . , γm. The reptile is the set F which fulfils

g(F ) =
m⋃
j=1

γj(F ) or F =
m⋃
j=1

fj(F ) with fj = g−1γj .

Since f−1
k = γ−1

k g, the neighbor maps are elements of Γ, determined recursively from
f−1
k fj = γ−1

k γj and Φij(γ) = f−1
k γfj = γ−1

k γγj . So the finite index condition in the
definition of Γ implies that F is of finite type.

For a reptile it is required that the identity map is not obtained as a neighbor map
f−1
k fj with k1 6= j1. Then by [4] the open set condition is fulfilled, F has non-empty

interior, and there is a tiling Rd =
⋃
γ∈Γ0

γ(F ) with Γ0 ⊆ Γ, cf. [16, Theorem 3.5]. In
[16, 27] reptiles are required to fulfil Γ0 = Γ, so that the tiling is tile-transitive with
automorphism group Γ. However, we can deal with the more general case which also
includes the well-known self-similar tilings by chair and sphinx [17, Chapter 10],[16,
Remark 3.9].

For geometers working with tilings it goes without saying that a tile in the plane
should be homeomorphic to a disk. However, fractal constructions often lead to tiles
which are either disconnected or have holes or cutpoints, or still more intricate structure,
as for instance the Lévy curve [14, 20]. Thus it is very natural to ask which self-affine
tiles are disk-like. For lattice tiles in the plane this is not too hard to decide [10, 5].
For crystallographic tiles, however, the question is still unsolved although partial answers
have been given [27]. Loridant, Luo, and Thuswaldner use an infinite lattice-type graph
which they call neighbor graph. It is related with, but different from our construction.

It should be noted that from computer pictures, like Figure 6 and 8, we can often not
decide whether a self-affine tile is disk-like. In particular when the contracting eigenvalues
of the mappings fi are different, which is the case in Figure 6, an intricate fibre structure
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is obtained which is blurred by iteration algorithms used to draw fractals. Usually the
appearance of a tile is too fat, and if the neighbors are added, it becomes too meagre.
Even more precise algorithms, as described in [11], do not provide sufficient resolution,
so that exact methods are indispensable.

Here we show how the question of disk-likeness can be answered for all plane self-affine
tiles. We use formal calculations based on the neighbor graph and regular languages,
without referring to Jordan curve arguments. So in principle our methods also apply
to higher dimensions! However, the calculations are pretty complicated and are best
delegated to a computer. We apply our method to two tiles for which Gelbrich [16] asked
whether they are disk-like.

Example 4. Sometimes the neighbor graph shows directly that a tile is not disk-like.
The tile in Figure 6 (originally Figure 8a in [16]) corresponds to the neighbor graph
of Figure 3. The mappings are fi(x) = A(x + vi), i = 0, 1 and f2(x) = −A(x + v2)
with A = 1

3

(
2 −1
−1 −1

)
and v0 =

( 0
− 1

2

)
, v1 =

( 0
1
2

)
, and v2 =

( 1
1
2

)
. The crystallographic

group Γ is generated by integer translations and γ(x) = −x, the expanding map is
g(x) =

(
1 −1
−1 −2

)
x +

( 1
2
0

)
. The eigenvalues of the expanding matrix are 1

2 (−1 ±
√

10), so
F is self-affine, not self-similar.

Fig. 6. A self-affine tile which is not disk-like. For the neighbor graph see Figure 3

We have seen that there are one-point, countably infinite and uncountable boundary
sets. For a disk-like tile, however, it is easy to see that any boundary set is either a
point or a topological line segment [16, Lemma 4.1]. So since there is a countably infinite
boundary set, the tile is not homeomorphic to a disk. The right-hand part of Figure 6
indicates the position of certain neighbors in the graph of Figure 3. The fractal tile F
is drawn in black, and the neighbors denoted a and f intersect the tile in uncountable
sets. After our calculation, we can imagine that j is a neighbor which meets the tile in
one point, and h meets the black tile in a countable infinite boundary set. j and h divide
the interior of the neighbor tile f into many components. The picture alone would not
provide enough evidence for these facts.

How can we confirm that a tile is really disk-like? We must check that all boundary
sets are either singletons or homeomorphic to an interval. The boundary sets which are
singletons are terminal vertices as discussed in Section 4. We could check that they admit
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only one path to a terminal cycle, but this is only one necessary condition, and here we
look for a complete method.

All terminal vertices and also the root vertex id, with all their edges, are now cancelled
from the neighbor graph, resulting in the simplified neighbor graph G∗, where we take
only the first symbols as labels. See Figure 7 for an example.
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2
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2
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3

Fig. 7. Neighbor graph and simplified neighbor graph of a tile

We now have to show that all vertices in G∗ represent intervals. Let us first consider
the case that the tiling is tile-transitive, Γ0 = Γ, as required in [16, 27]. For a boundary
set associated with the neighbor map h, we denote with Lh the regular language of all its
addresses which by Theorem 5 is given by the first labels of paths starting in the vertex h.

Theorem 8. The following conditions for the simplified neighbor graph G∗ are necessary
and sufficient for the transitive reptile F to be disk-like.

(1) The vertices of G∗ can be arranged in cyclic order h0, . . . , hn−1 such that the asso-
ciated regular languages Lk and Lk+1 (+ modulo n) meet exactly in one address, or
in one equivalence class of ∼, and the Lk are disjoint otherwise. The corresponding
points of the boundary sets associated with hk will be called the endpoints of hk.

(2) The successor vertices of each vertex h in G∗ can be linearly ordered so that the
boundary sets of consecutive vertices have a common endpoint, and languages of
non-consecutive vertices are disjoint. The two endpoints of the boundary set asso-
ciated with h must be endpoints of the first and last successor vertex.

Proof. If the tile F is disk-like, the neighbors which intersect F in an interval surround
F, and the union of intervals coincides with the topological boundary of F, which is a
Jordan curve. Moreover, the intervals generated by two neighbors can have only one point
in common, because otherwise the neighbor tiles must have interior points in common,
which is not possible in the tile-transitive case. This implies (1). When we now go to
pieces of F and the neighbors, they also intersect in an interval, and again, these intervals
have at most one point in common. These intervals partition the larger intervals, which
implies (2).

Now assume that the conditions are fulfilled. We have to prove that the topological
boundary ∂F of F is a Jordan curve. Since F is a tile, ∂F is the union of the (dynamical)
boundary sets, and is also the union of the infinite boundary sets. Thus when each
boundary set H is homeomorphic to an interval, it follows from (1) that ∂F is a Jordan
curve.
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We use (2) to construct a homeomorphism φ : [0, 1] → H. We map 0 and 1 to the
two endpoints of H. When h has n successor vertices, in other words, H divides into n
pieces, then the endpoints of the pieces which do not agree with φ(0) and φ(1) will be
defined as φ( 1

n ), φ( 2
n ), . . . , φ(n−1

n ) in such a way that their linear order (or the reverse
order, since φ(0) and φ(1) were already fixed) agrees with the order of the interval. Now
we use (2) to proceed inductively with smaller intervals and subpieces. As a result, we
obtain a one-to-one mapping φ from a dense subset of [0, 1] onto the set of all endpoints
of subpieces of H. This map is continuous since subdivision points of the interval which
have distance less N−k (where N denotes the maximum number of successors of a vertex
in G∗) must belong to one piece, or two neighboring pieces, of the k-th subdivision of
H. So φ can be extended to a continuous map from [0, 1] onto H, which is the closure
of all endpoints of subpieces of H. This extension is one-to-one since for any number
t ∈ [0, 1] which is not a subdivision point, the pieces of φ(t) are uniquely determined and
so φ(t) has only one address. A one-to-one map between compact Hausdorff spaces is a
homeomorphism.

As we see in the following example, the check of (1) and (2) reveals the complete
combinatorial structure of the tiling under investigation.

Example 5. We consider a self-similar tile introduced by Gelbrich [16, Figure 7b]. The
mappings are fi(x) = A(x+ vi), i = 1, 2 and f3(x) = −A(x+ v3) with

A =
1
3

(
−1 −1
2 −1

)
, v1 =

(
1
2

0

)
, v2 =

(
1
2

1

)
, v3 =

(
− 1

2

0

)
.

The group is the same as in Example 4.
Figure 7 shows the neighbor graph G and the simplified graph G∗. Let us determine

the languages corresponding to the five boundary sets given by a, b, c, d, e. From vertex
d the following cycles go back to d: 23 via a, 21 via b, 32 via c, and 13∗12, 23∗12, 13∗33,
23∗33 via e. Here 3∗ can be empty or any 3k. The sequences of the language Ld are
generated by composing these words:

Ld = {23, 21, 32, 13∗12, 23∗12, 13∗33, 23∗33}∞.

The languages of the other vertices are derived from Ld :

La = 3 · Ld, Lb = 1 · Ld, Lc = 2 · Ld, and Le = {3∗12, 3∗33} · Ld.

By Theorem 5, these languages consist of the addresses of all points of the corresponding
boundary sets. Now we determine their intersections. Le does not intersect Ld since no
word of Ld starts with 12, 31 or 33. Similarly, Lb does not intersect Ld since 1w with
w ∈ Ld does not give 112, 131 or 133. However, Lc ∩ Ld = {23} and La ∩ Ld = {32}.
Lc is disjoint with La, Lb, Le since their words do not begin with 2. However, the sequences
132 in Lb and 223 in Lc are equivalent as can be seen from G. So the boundary sets
corresponding to b, c have a single point in common. Moreover, Lb ∩ Le = {123}, and
La ∩ Le = {332}. Thus condition (1) is fulfilled for the cyclic order c, d, a, e, b.

Property (2) need not be checked for a, b, and c, since d is their only successor vertex.
e has successors a, e, c with edge labels 3,3, and 1, respectively. 3La contains the endpoint
332 of e, and 1Lc contains the other endpoint 123. Starting with different letters, these



FRACTALS OF FINITE TYPE 145

two languages are disjoint, while 3La ∩ 3Le = 3(La ∩ Le), and 1Lc, 3Le contain the
equivalent addresses 1223 and 3123. Finally, d has successors a, b, c, and two successors
e, which can be expressed as

Ld = 2La ∪ 2Le ∪ 2Lb ∪ 1Le ∪ 3Lc.

The endpoints 23 and 32 of d belong to the first and last part. By (1), among the first
three parts only consecutive languages have an address in common, and they are disjoint
with the other two parts which have another starting letter. However, the check of ∼
shows that 2132 ∈ 2Lb is equivalent to 1332 ∈ 1Le, and 1123 ∈ 1Le is equivalent to
3223 ∈ 3Lc. So (2) is proved.

a

e b

c

d fg

2 1

3

g a

e

c b

d

f

Fig. 8. A fractal tile, its combinatorial and self-similarity structure

There exists a topological classification of plane tile-transitive tilings [17, Figure 2.7.1].
Since we have five neighbor types in G∗, and two neighbors which meet F in a point, the
structure of our tiling is given by the symbol [3342]. In Figure 8, the scheme of this tiling
and the self-similarity structure of our example is drawn. The correspondence with the
above calculations and with the fractal picture is easy to see.

Let us generalize Theorem 8 to the case of arbitrary finite type self-affine plane tilings
which need not be transitive or crystallographic. Different neighborhoods are possible,
and the number of possible neighbors of F can be much larger than the number of real
neighbors of one tile. A new problem is that two boundary intervals can intersect in a
whole subinterval when the corresponding neighbors do not actually appear together.
This requires a more careful formulation, but the proof is very similar to the proof of
Theorem 8 and will not be given here. The condition (1) now says n boundary sets form
the topological boundary of F, and so must cover all other boundary sets.

Theorem 9. The following conditions for the simplified neighbor graph G∗ are necessary
and sufficient for a plane self-affine tile F of finite type to be disk-like.

(1) There are vertices of G∗ which can be arranged in cyclic order h0, . . . , hn−1 such
that the associated regular languages Lk and Lk+1 (+ modulo n) meet exactly in
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one address, or in one equivalence class of ∼, and the Lk are disjoint otherwise.
For all other vertices g, the language Lg is contained in

⋃n−1
k=0 Lk.

(2) The successor vertices of each vertex h in G∗ can be linearly ordered so that the
boundary sets of consecutive vertices have a common endpoint, and languages of
non-consecutive vertices are disjoint. The two endpoints of the boundary set associ-
ated with h must be endpoints of the first and last successor vertex. For all relations
in which some h appears as vertex or successor vertex, the endpoints of h are the
same.

Let us note that even the necessity of the condition is not so obvious. If the tiling is
not transitive, it can happen that neighboring tiles meet in two points, enclosing one or
two other tiles between them. An example is Voderberg’s spiral tile from 1936, cf. [17].
Here we work with neighbors which intersect in an arc, and we need the fact that they
cannot intersect in a further point or arc. This follows from the uniqueness argument
in Voderberg’s paper [34] which, however, is not complete according to contemporary
standards of proof. It would be nice to have a simpler argument for this fact.

7. A three-dimensional example. Research on self-similar fractals has been focussing
on the plane case: there are very few examples in Rd with d ≥ 3. One reason could
be that computer visualization is simplest in two dimensions. However, there are also
mathematical obstacles. In dimension greater than two, even linear similarity maps will
rarely commute. It also turns out that it is not easy to construct finite type examples.
For example, it seems that in R3 there are no crystallographic self-similar tiles with less
than 8 pieces. The reason is that the eigenvalues of a 3 × 3 integer matrix usually have
at least two different moduli.

Moreover, since in R3 there is no analogue of the Jordan curve theorem, the topological
structure of fractal tiles can be extremely complicated, and so it has not been studied
so far. We present here a simple example of a three-dimensional self-affine tile with two
pieces which seems to be homeomorphic to a ball.

Example 6 (A three-dimensional twindragon). In R3 we consider the tile F defined by

g(F ) = F ∪ (F + v1) or F = f0(F ) ∪ f1(F ) with f0 = g−1, f1(x) = g−1(x+ v1),

where

g(x) =

 0 2 0
0 0 1
−1 1 1

 and v1 =

 1
0
0

 .

This is a tile-transitive lattice tile, and it is centrally symmetric (see the argument in [2,
Section 5]). Figure 9 shows the neighbor graph which is finite. There are four terminal
vertices 14,16,17,18 which represent one-point boundary sets. The other 14 neighbor types
describe seven pairs of opposite neighbor sets, interchanged by the central symmetry.
They all have the same dimension, since each of these neighbor sets contains copies of
each of the other ones.

Our computer pictures of this tile were much worse than the plane Figures 6 and 8.
They did not provide any geometrical insight. However, from the neighbor graph it seems
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Fig. 9. The neighbor graph of a three-dimensional tile

very likely that the tile is homeomorphic to a ball, and the 14 faces are homeomorphic
to disks. There is a polyhedral space tiling by truncated octahedra, which are centrally
symmetric and admit 14 faces, of which 6 are hexagons and 8 are squares [35]. However,
these polyhedra have no one-point neighbors.

The neighbor graph is simple enough to derive the graph of all intersections of two
faces, which should be edges of our fractal polyhedron. We obtain 40 edges, and when the
one-point boundary sets are neglected, they do indeed bound 6 hexagons and 8 squares.
Details will be given elsewhere.
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