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Abstract. An abstract semilinear parabolic equation in a Banach space X is considered.
Under general assumptions on nonlinearity this problem is shown to generate a bounded dis-
sipative semigroup on Xα. This semigroup possesses an (Xα − Z)-global attractor A that is
closed, bounded, invariant in Xα, and attracts bounded subsets of Xα in a ‘weaker’ topology
of an auxiliary Banach space Z. The abstract approach is finally applied to the scalar parabolic
equation in Rn and to the partly dissipative system.

1. Introductory notes. The theory of global attractors was a very active field of
studies through the last 20 years. One of the limitation inside the classical setting of this
theory ([Ha], [La]) was the requirement of compactness (or, at least, asymptotic compact-
ness) of the semigroup in considered phase space. This assumption cannot be however
satisfied when the space variable x belongs to large unbounded domains, in particular,
to the whole of Rn. To overcome this difficulty, it was necessary to generalize the idea
of an attractor allowing the convergence to the attractor in a weaker topology than the
topology of the phase space in which the semigroup acts. Such generalization was intro-
duced in [B-V] and further developed in [M] and [M-S]. We have already joined these
studies in [Ch-Dl1] and [Ca-Dl]. The aim of the present note is to describe a general
approach to such bi-spaces attractors for sectorial equations. We propose an abstract ex-
istence result (Theorem 2.6) and discuss its applications to two specific problems; bistable
reaction-diffusion equation and FitzHugh-Nagumo system (Examples 3.1 and 3.6).

Both these problems are of special interest because of their nontrivial dynamics, which
is partially connected with the existence of the families of travelling waves (or relaxation
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waves) convergent to constant equilibria. Mention should be made that the attractor we
construct contains these special solutions as well. The latter was possible to achieve thanks
to the specific function spaces involved in the considerations; namely locally uniform
Sobolev spaces W k,p

lu (Rn) (see Appendix). The idea of using such spaces in the studies
of parabolic problems comes back to [M-S], [M], as well as to the earlier publication [F].
A particular feature of the present paper is that it extends in a natural way the abstract
results of [Ch-Dl] concerning the existence of a global attractor to the case when the
system is not even asymptotically compact.

2. Setting of the problem. Consider an abstract Cauchy problem

u̇+Au = F (u), t > 0, u(0) = u0,(1)

under the assumptions that

(i) −A : X ⊃ DX → X generates a strongly continuous analytic semigroup in a
Banach space X and, for certain α ∈ [0, 1), F : Xα → X is Lipschitz continuous on
bounded sets (see [He] for the definition of fractional order space Xα).

Remark 2.1. As well known (see [He], [Ch-Dl]), the problem (1) is then locally well
posed in Xα and it enjoys a solution

u = u(·, u0) ∈ C([0, τu0
), Xα) ∩ C((0, τu0

), X1) ∩ C1((0, τu0
), X1−),

τu0
being a ‘life time’ of u.

Assume further that

(ii) the unique solution u = u(·, u0), u0 ∈ Xα, exists globally in time,

(iii) the semigroup {T (t)} of global solutions corresponding to (1) on Xα has bounded
orbits of bounded sets and there exists a bounded set B0 ⊂ Xα absorbing bounded subsets
of Xα under {T (t)}, that is:

∀B bounded in Xα ∃ tB ≥ 0
⋃

t≥tB
T (t)B ⊂ B0.

Remark 2.2. Note that (i) is the usual assumption to study sectorial evolutionary
equation (see e.g. [Ha]). Concerning assumptions (ii)–(iii), one may refer to [Ch-Dl, Corol-
lary 4.1.3], where conditions for the existence of corresponding to (1) bounded dissipative
semigroup were established. Namely, the solutions should be a priori bounded in the norm
of some auxiliary Banach space Y , X1 ⊂ Y ⊂ X,

‖u(t, u0)‖Y ≤ c(‖u0‖Xα).

This bound should be asymptotically independent of initial condition varying in bounded
subsets of Xα. Simultaneously, the nonlinear term should be subordinated to Aα accord-
ing to the condition

‖F (u(t, u0))‖X ≤ g
(
‖u(t, u0)‖Y

)(
1 + ‖u(t, u0)‖θXα

)
,(2)

where θ ∈ [0, 1) and g is a nondecreasing function.
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We will next focus on the case when there exists another Banach space Z, such that

(iv) X ⊂ Z algebraically and topologically and −A with the domain DZ such that
DX ⊂ DZ generates a strongly continuous linear semigroup on Z,

(v) for each set B bounded in Xα there exists a constant LB > 0, such that

‖F (v)− F (w)‖Z ≤ LB‖v − w‖Z , v, w ∈ B.
In the following lemma we will prove that the solutions to (1) are continuous with

respect to the initial data in a specific way. Such property will be crucial in the proof of
Theorem 2.6 below.

Lemma 2.3. Under the assumptions (i)–(v), if {un} is bounded in Xα, v ∈ Xα and
‖un − v‖Z → 0, then

‖u(t, un)− u(t, v)‖Z → 0 for each t > 0.

Proof. Thanks to the variation of constants formula (assumptions (i), (ii)) we obtain
that

u(t, un)− u(t, v) = SX(t)[un − v] +

∫ t

0

SX(t− s)
[
F (u(s, un))− F (u(s, v))

]
ds,(3)

where {SX(t)} is an analytic semigroup corresponding to −A on X. Writing the expo-
nential formula we have

∥∥∥SX(t)x−
(

Id +
t

n
A
)−n

x
∥∥∥
X
→ 0 for x ∈ X,

and, if {SZ(t)} denotes a C0-semigroup generated by −A on Z (assumption (iv)), also
∥∥∥SZ(t)z −

(
Id +

t

n
A
)−n

z
∥∥∥
Z
→ 0 for z ∈ Z.

Since X ⊂ Z, it is clear that

SX(t)x = SZ(t)x for x ∈ X
and thus (3) reads

u(t, un)− u(t, v) = SZ(t)[un − v] +

∫ t

0

SZ(t− s)
[
F (u(s, un))− F (u(s, v))

]
ds.(4)

Let B ⊂ Xα be a bounded set such that v, un ∈ B, n ∈ N . Estimating in the usual way
(see [He]), thanks to assumptions (iii) and (v) we get

‖u(t, un)− u(t, v)‖Z ≤Meωt‖un − v‖Z

+

∫ t

0

Meω(t−s)‖F (u(s, un))− F (u(s, v))‖Z ds

≤ c(T, ω,M)‖un − v‖Z + c(T, ω,M)LB

∫ t

0

‖u(s, un)− u(s, v)‖Z ds,

for 0 < t < T <∞. Therefore, by the Gronwall inequality,

‖u(t, un)− u(t, v)‖Z ≤ c(T, ω,M)‖un − v‖Zec(T,ω,M)LBt, 0 < t < T <∞,
which completes the proof.
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Concerning the absorbing set B0 (assumption (iii)) we observe below that, without
loss of generality, B0 may be assumed positively invariant and bounded in X1 norm.

Lemma 2.4. Under the assumptions (i)–(iii) there exists a positively invariant ab-
sorbing set, which is bounded in X1.

Proof. It is easy to see that if (iii) holds then a positive orbit γ+(B0) is bounded
in Xα and absorbs bounded subsets of Xα. The same is true for any image T (t)γ+(B0)

where t > 0. Since there exists t > 0 such that T (t)γ+(B0) is bounded in X1 (see [Ch-Dl,
Lemma 3.2.1]), the proof is complete.

Remark 2.5. Lemma 2.4 combined with Remark 2.2 shows an advantage of studying
the sectorial equation (1). Some a priori estimate in Y norm, which may be relatively
weak and easy to obtain, implies the existence of an absorbing set bounded in much
stronger X1 norm (for example Y = Lplu(Rn) and X1 = W 2,p

lu (Rn) in the case of the
scalar reaction diffusion equation (5)).

We are now ready to formulate an abstract result, which is a counterpart of [Ca-Dl,
Theorem 1] in the case of sectorial equation (1).

Theorem 2.6. Let (i)–(v) hold and let r := supφ∈γ+(B0) ‖φ‖Xα . Suppose also that

(vi) if tn → ∞ and {un} is bounded in Xα, then a sequence {T (tn)un} contains a
subsequence {T (tnk)unk} convergent in Z to certain w ∈ BXα(r), where BXα(r) is a
closed ball in Xα of radius r centered at zero.

Then, the semigroup {T (t)} corresponding to (1) on Xα possesses a nonempty closed
bounded invariant set A ⊂ Xα, being the union of bounded (in Xα) invariant complete
orbits of points. Furthermore, A is bounded in X1, compact in Z, and it attracts bounded
subsets of Xα in the topology of Z.

Proof. Define

A := {v ∈ BXα(r) : ‖T (tn)un − v‖Z → 0 for certain {un} ⊂ B0 and tn →∞}.
Needless to say that A is bounded in Xα. Also, if {un} ⊂ B0 and tn → ∞ then,

as a consequence of (vi), {T (tn)un} possesses a subsequence {T (tnk)unk} convergent to
certain v ∈ BXα(r). Therefore, A is nonempty.

Take further v ∈ A and {un} ⊂ B0, tn → ∞ such that ‖T (tn)un − v‖Z → 0. Then
‖T (t+tn)un−T (t)v‖Z → 0 as a result of Lemma 2.3 and, according to (vi), {T (t+tn)un}
has a subsequence convergent in Z to certain w ∈ BXα(r). As a consequence, we have
that w = T (t)v, which proves that T (t)v ∈ A. We next consider a sequence {T (tn−t)un},
which (via (vi)) has a subsequence {T (tnk − t)unk} convergent in Z to certain w ∈ A.
Since Lemma 2.3 implies that ‖T (tnk)unk−T (t)w‖Z → 0 (recall that, by assumption (iii),
a positive orbit γ+({un}) is bounded in Xα) we obtain v = T (t)w. This justifies the
invariance of A.

To prove that clXα A = A take {vn} ⊂ A and w ∈ clXα A such that ‖vn − w‖Xα → 0.
SinceXα ⊂ X ⊂ Z, we have ‖vn−w‖Z → 0 and, by definition ofA, there exist {un} ⊂ B0,
tn → ∞ for which ‖vn − T (tn)un‖Z → 0. Recalling definition of A and assumption (vi)
we conclude that w ∈ A.
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Boundedness of A in X1 is a consequence of the invariance of A and the arguments
used in the proof of Lemma 2.4.

Based on assumption (vi) we next observe that A is compact in Z. Consider {vn} ⊂ A
and {un} ⊂ B0, tn → ∞ such that ‖vn − T (tn)un‖Z → 0. Condition (vi) ensures then
the existence of certain w ∈ BXα(r) such that ‖w − T (tnk)unk‖Z → 0. Clearly w ∈ A
and ‖vnk − w‖Z → 0, which ensures compactness of A in Z.

It is now easy to see that if B is bounded in Xα, then

sup
u∈B

inf
v∈A
‖T (t)u− v‖Z → 0 as t→∞.

Indeed, if it was not the case, we could choose tn →∞ and {un} ⊂ B such that

inf
v∈A
‖T (tn)un − v‖Z > ε

for certain ε > 0. However, since (iii) and (vi) hold, the latter condition is impossible.
Finally denote by U a union of bounded in Xα, invariant, complete orbits of points.

By invariance of A we observe that A ⊂ U . Also, if γ(u0) = γ−(u0) ∪ γ+(u0) is such an
orbit (see e.g. [Ch-Dl, p. 3]), then

sup
u∈γ(u0)

inf
v∈A
‖u− v‖Z = 0,

which (by closeness of A in Z) ensures that γ(u0) ⊂ A.
The proof of Theorem 2.6 is thus complete.

Remark 2.7. Assumption (vi) provides us some sort of asymptotic compactness.
Despite certain complexity of the formulation, in applications condition (vi) is just a
consequence of the Sobolev embeddings between appropriately chosen function spaces
(see Section 3 below).

Recall that

Definition 2.8. A set A ⊂ Xα, which is invariant, closed in Xα, compact in Z

and attracts bounded subsets of Xα in the topology of Z is called an (Xα − Z)-global
attractor.

Therefore, Theorem 2.6 provides us the existence of an (Xα − Z)-global attractor
for (1), which is additionally bounded in the norm of X1.

3. Applications

Example 3.1. Our first example is a scalar reaction diffusion equation

ut = ∆u+ u
(
1− |u|q−1

)
, t > 0, x ∈ Rn,(5)

with arbitrarily fixed q ∈ (1,∞).

Let us specify in this example: X = Lplu(Rn), DX = X1 = W 2,p
lu (Rn), p > n, α = 1

2 ,
X1/2 = W 1,p

lu (Rn), Z = Lpρ(R
n), DZ = W 2,p

ρ (Rn), f(u) = u
(
1− |u|q−1

)
and F (φ)(x) =

f(φ(x)), φ ∈W 1,p
lu (Rn). For the definitions of these spaces see the Appendix.

As reported in [M] and [Ch-Dl1], −∆ is a densely defined sectorial operator both in
Lplu(Rn) and in Lpρ(R

n). Also, W 1,p
lu (Rn) ⊂ C0

bd(Rn) (see [Ch-Dl1]). Therefore, if B is
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bounded in W 1,p
lu (Rn) and v, w ∈ B, then values v(x), w(x) (x ∈ Rn) vary in a bounded

subset I ⊂ R1. Since f : I → R1 is globally Lipschitz, we have

‖F (v)− F (w)‖X = sup
y∈Rn

(∫

Rn

∣∣f(v(x))− f(w(x))
∣∣pρ(x− y) dx

)1/p

≤ sup
y∈Rn

(∫

Rn
LpB |v(x)− w(x)|pρ(x− y) dx

)1/p

= LB‖v − w‖Lplu(Rn),

as well as

‖F (v)− F (w)‖Z =
(∫

Rn

∣∣f(v(x))− f(w(x))
∣∣pρ(x) dx

)1/p

≤
(∫

Rn
LB |v(x)− w(x)|pρ(x) dx

)1/p

= LB‖v − w‖Z .

The above considerations show that assumptions (i), (iv) and (v) are satisfied in this
example.

To check validity of (ii) and (iii) we first obtain a subordination condition (2) (with
Y = Lpqlu (Rn)) having the form

∥∥F (u(t, u0))
∥∥
Lplu(Rn)

= sup
y∈Rn

(∫

Rn

∣∣u(t, u0)
(
1− |u(t, u0)|q−1

)∣∣p ρ(x− y) dx
)1/p

≤ const.
(

1 + ‖u(t, u0)‖q
Lpqlu (Rn)

)
=: g

(
‖u(t, u0)‖Lpqlu (Rn)

)
.

(6)

Now, as it is mentioned in Remark 2.2, we need merely find an appropriate Lpqlu (Rn)-
estimate for a solution u(·, u0) of (5) with initial condition u0 ∈ W 1,p

lu (Rn). This will be
done in lemma below.

Lemma 3.2. Let B ⊂ W 1,p
lu (Rn) be a bounded set and s ≥ 2. Then, solutions to (5)

fulfil the estimates

sup
u0∈B

‖u(t, u0)‖Lslu(Rn) ≤ sup
u0∈B

‖u0‖Lslu(Rn) + cs,(7)

lim sup
t→+∞

(
sup
u0∈B

‖u(t, u0)‖Lslu(Rn)

)
≤ cs.(8)

Proof. Multiplying (5) by u|u|s−2ρ(x− y) and integrating, we find

1

s

d

dt

∫

Rn
|u|sρ(x− y) dx =

∫

Rn
∆uu|u|s−2ρ(x− y) dx

+

∫

Rn
(1− |u|q−1)|u|sρ(x− y) dx.

Since |∇ρ(x− y)| ≤ c0ερ(x− y) (see (26)), we have
∫

Rn
∆uu|u|s−2ρ(x− y) dx ≤

∫

Rn
|u|s−2

(
−(s− 1)|∇u|2 + c0ε|∇u| |u|

)
ρ(x− y) dx

≤ 1

4(s− 1)
c20ε

2

∫

Rn
|u|sρ(x− y) dx,
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and ∫

Rn
(1− |u|q−1)|u|sρ(x− y) dx ≤ −

∫

Rn
|u|sρ(x− y) dx+Ms,

where Ms := sup|u|q−1<2

(∣∣1−|u|q−1
∣∣ |u|s

) ∫
Rn

ρ(x−y) dx. Collecting the above estimates
we obtain

1

s

d

dt

∫

Rn
|u|sρ(x− y) dx ≤

( c20ε
2

4(s− 1)
− 1
)∫

Rn
|u|sρ(x− y) dx+Ms,

which for ε small enough, such that −ms :=
c20ε

2

4(s−1) − 1 < 0, gives an estimate
∫

Rn
|u|sρ(x− y) dx ≤

(∫

Rn
|u0|sρ(x− y) dx

)
e−smst +

Ms

ms

(
1− e−smst

)
,

leading to (7) and (8).

What was said above ensures that equation (5) generates onW 1,p
lu (Rn) a C0-semigroup

of global solutions which has bounded orbits of bounded sets and possesses a bounded
absorbing set B0. Let us remark that, thanks to Lemma 2.4, we may assume without loss
of generality that B0 is positively invariant and bounded in W 2,p

lu (Rn).
Concerning validity of (vi) we will show further that this condition follows from

the embedding of locally uniform spaces into Hölder spaces. Indeed, let BW 1,p
lu (Rn)(r)

be a closed ball containing B0 and choose a sequence {un} bounded in W 1,p
lu (Rn) and

tn →∞. Since {un} is absorbed by B0 and B0 is bounded in W 2,p
lu (Rn), we observe that

{T (tn)un, n ≥ n0} is bounded in W 2,p
lu (Rn) and we define vn := T (tn+n0

)un+n0
, n ∈ N .

We will prove that

Lemma 3.3. The sequence {vn} bounded in W 2,p
lu (Rn) contains a subsequence con-

vergent in Lpρ(R
n) to an element v ∈W 1,p

lu (Rn).

Proof. As a consequence of Lemma 4.2, for fixed µ ∈ (0, 1 − n
p ), W 2,p

lu (Rn) ⊂
C1+µ(Rn). Hence {vn} is bounded in C1+µ(Rn), which implies that {vn} is precompact in
C1+ν({|x| ≤ k}) for each k ∈ N and arbitrarily fixed ν ∈ (0, µ) (see [Ad, Theorem 1.31]).
The latter ensures the existence of a (diagonal) subsequence {vnk} convergent in each
space C1+ν({|x| ≤ k}), k ∈ N , to certain v ∈ C1+ν(Rn). Evidently, ‖vnk − v‖Lpρ(Rn) → 0

as a result of Lebesgue dominant convergence theorem and we will show below that such
v belongs to W 1,p

lu (Rn).
Since function v is uniformly bounded on Rn together with the first order derivatives

we only need to justify translation continuity property

‖τzv − v‖W 1,p
lu (Rn) → 0 as |z| → 0,(9)

where τzv(x) = v(x− z), x, z ∈ Rn. We start with an estimate
(∫

Rn

∣∣vxk(x− z)− vxk(x)
∣∣pρ(x− y) dx

)1/p

≤
(∫

Rn

∣∣vxk(x− z)− vnxk(x− z)
∣∣pρ(x− y) dx

)1/p

+ |z|ν‖vnxk‖Cν(Rn)

(∫

Rn
ρ(x− z) dx

)1/p

+
(∫

Rn

∣∣vnxk(x)− vxk(x)
∣∣pρ(x− y) dx

)1/p
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and pass to a lower limit as k →∞ to get
(∫

Rn
|vxk(x− z)− vxk(x)|pρ(x− y) dx

)1/p

≤ C|z|ν ,(10)

where C := const. sup{‖vn‖W 2,p
lu (Rn), n ∈ N}. Similarly we show that

(∫

Rn
|v(x− z)− v(x)|pρ(x− y) dx

)1/p

≤ C|z|ν ,

which together with (10) justifies validity of (9).

Remark 3.4. Note that additionally,

(∫

Rn
|v(x)|pρ(x− y) dx

)1/p

+

n∑

k=1

(∫

Rn
|vxk(x)|pρ(x− y) dx

)1/p

≤ sup
n∈N

sup
y∈Rn

((∫

Rn
|vn(x)|pρ(x− y) dx

)1/p

+

n∑

k=1

(∫

Rn
|vnxk(x)|pρ(x− y) dx

)1/p
)

+
(∫

Rn
|v(x)− vn(x)|pρ(x− y) dx

)1/p

+

n∑

k=1

(∫

Rn
|vxk(x)− vnxk(x)|pρ(x− y) dx

)1/p

.

In particular, since {vn} ⊂ BW 1,p
lu (Rn)(r) and vn → v (together with first order deriva-

tives) uniformly on each compact subset of Rn, passing to a limit in the above inequality
we obtain that

(∫

Rn
|v(x)|pρ(x− y) dx

)1/p

+
n∑

k=1

(∫

Rn
|vxk(x)|pρ(x− y) dx

)1/p

≤ r.(11)

Adding supremum on the left hand side of (11), we justify that v ∈ BW 1,p
lu (Rn)(r).

Corollary 3.5. For p > n, the C0-semigroup defined by (5) on W 1,p
lu (Rn) possesses

a (W 1,p
lu (Rn)− Lpρ(Rn))-global attractor, which is bounded in W 2,p

lu (Rn).

Example 3.6. Our second example will be the FitzHugh-Nagumo system in Rn,
n ≤ 4,





ut = ∆u− αv + f(u), t > 0, x ∈ Rn,
vt = −δv + βu+ h(x),

u(0) = u0, v(0) = v0,

(12)

where α, β, δ are positive constants, h ∈ Lp0

lu (Rn) for certain p0 > n and f : R1 → R1 is
a locally Lipschitz continuous function satisfying

f(s)s ≤ −as2 + b, s ∈ R1, a, b > 0.(13)

For simplicity of the presentation we will restrict our further studies to the polynomially
bounded nonlinearity

|f(s)| ≤ C(1 + |s|z), z > 1 arbitrary, s ∈ R1.(14)
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System (12) will be rewritten in a matrix form
(
ut
vt

)
=

(
∆ 0

0 −δ

)(
u

v

)
+

(
f(u)− αv
βu+ h(x)

)
(15)

and considered in the space X = Lplu(Rn)×Lplu(Rn) where n < p ≤ p0. The operator A =

−∆× δ defined on DX = W 2,p
lu (Rn)×Lplu(Rn), is sectorial in Lplu(Rn)×Lplu(Rn). Thanks

to the inclusion X1/2 = W 1,p
lu (Rn) × Lplu(Rn) ⊂ C0

bd(Rn) × Lplu(Rn), it is easy to verify
Lipschitz continuity of the nonlinear term F (φ, ψ)(x) =

(
f(φ(x))−αψ(x), βφ(x) +h(x)

)

acting from bounded subsets of X1/2 into X. Therefore, (i) holds.

To show global solvability condition (ii), we need to obtain Lpzlu (Rn)×Lplu(Rn) a priori
estimate of the solution (u, v).

Step 1. First the L2
lu(Rn) × L2

lu(Rn) estimate will be obtained. Multiplying the first
equation in (12) by βuρ(x − y), the second by αvρ(x − y), integrating and adding the
results, we get

1

2

d

dt

∫

Rn
(β|u|2 + α|v|2)ρ(x− y) dx+ β

∫

Rn
|∇u|2ρ(x− y) dx

= −β
∫

Rn
u∇u · ∇ρ(x− y) dx− αδ

∫

Rn
v2ρ(x− y) dx

+ β

∫

Rn
f(u)uρ(x− y) dx+ α

∫

Rn
h(x)vρ(x− y) dx.

(16)

Now, the estimate |∇ρ(x− y)| ≤ c0ερ(x− y) (see (26)), condition (13), and the standard
use of the Cauchy inequality gives

d

dt

∫

Rn

(
β|u|2 + α|v|2

)
ρ(x− y) dx ≤ −αδ

∫

Rn
v2ρ(x− y) dx

− aβ
∫

Rn
u2ρ(x− y) dx+ 2bβ

∫

Rn
ρ(x− y) dx+

α

δ

∫

Rn
h2(x)ρ(x− y) dx.

Consequently, whenever ‖(u0, v0)‖L2
lu(Rn)×L2

lu(Rn) ≤ λ, we have

sup
y∈Rn

∫

Rn

(
|u(t)|2 + |v(t)|2

)
ρ(x− y) dx ≤ C

(
λ, ‖h‖L2

lu(Rn)

)
(17)

and, asymptotically,

lim sup
t→∞

sup
y∈Rn

∫

Rn

(
β|u(t)|2 + α|v(t)|2

)
ρ(x− y) dx

≤ 1

min{a, δ}
(

2bβ

∫

Rn
ρ(x) dx+

α

δ
‖h‖2L2

lu(Rn)

)
.

(18)

Step 2. We will next use (17) to obtain Lqlu(Rn) estimate of u with q := pz. Without
loss of generality we will assume that q ≥ 2.
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Multiply the first equation in (12) by u|u|q−2ρ(x− y) and integrate over Rn to get

1

q

d

dt

∫

Rn
|u|qρ(x− y) dx =

∫

Rn
∆uu|u|q−2ρ(x− y) dx

−
∫

Rn
αvu|u|q−2ρ(x− y) dx+

∫

Rn
f(u)u|u|q−2ρ(x− y) dx.

Recalling (13), observing that |∇u|2|u|q−2 = 4
q2

∣∣∇
(
|u|q/2

)∣∣2 , and keeping in mind that
L2

lu(Rn) bound of v is already known, we next have

1

q

d

dt

∫

Rn
|u|qρ(x− y) dx ≤ −4(q − 1)

q2

∫

Rn

∣∣∣∇
(
|u|q/2

)∣∣∣
2

ρ(x− y) dx

+
2

q

∫

Rn
|u|q/2

∣∣∣∇
(
|u|q/2

)∣∣∣ |∇ρ(x−y)| dx+M(v)
(∫

Rn
|u|2q−2ρ2−2/q(x−y) dx

)1/2

− a
∫

Rn
|u|qρ(x− y) dx+ b

∫

Rn
|u|q−1ρ(x− y) dx,

(19)

where

M(v) := α
(

sup
y∈Rn

∫

Rn
|v|2ρ2/q(x− y) dx

)1/2

≤ const. sup
t≥0

(
sup
y∈Rn

∫

Rn
|v|2ρ(x− y) dx

)1/2

.

Remark 3.7. While the norms
(∫
Rn
|v|2ρ(x) dx

)1/2
and

(∫
Rn
|v|2ρ2/q(x) dx

)1/2
are

obviously not equivalent for ρ(x) = (1 + |εx|2)−ν , the expressions

sup
y∈Rn

(∫

Rn
|v|2ρ2/q(x− y) dx

)1/2

and sup
y∈Rn

(∫

Rn
|v|2ρ(x− y) dx

)1/2

define equivalent norms in locally uniform space L2
lu(Rn) provided that ρ2/q and ρ are

both integrable (see Remark 4.1). Therefore, we take ρ(x) = (1 + |εx|2)−ν in (26) such
that ρ2/q is integrable, which is just a matter of choosing sufficiently large parameter ν.

Let us next obtain suitable estimates of the terms appearing on the right hand side
of (19). For the second term, using the estimate |∇ρ(x− y)| ≤ c0ερ(x− y) (see (26)), we
have

2

q

∫

Rn
|u|q/2

∣∣∣∇
(
|u|q/2

)∣∣∣ |∇ρ(x−y)| dx ≤ 2

q
c0ε

∫

Rn
|u|q/2

∣∣∣∇
(
|u|q/2

)∣∣∣ ρ(x−y) dx

≤ 1

q
c0ε

∫

Rn
|u|qρ(x− y) dx+

1

q
c0ε

∫

Rn

∣∣∣∇
(
|u|q/2

)∣∣∣
2

ρ(x− y) dx.

(20)

To estimate the third term we start with an auxiliary inequality valid for n ≤ 4:
(∫

Rn
|u|2q−2ρ2−2/q(x− y) dx

) 1
2

q
q−1

=
(∫

Rn

[
|u|q/2ρ1/2(x− y)

] 4q−4
q

dx
) q

2q−2

=
∥∥|u|q/2ρ1/2(· − y)

∥∥2

L(4q−4)/q(Rn)
≤ c
∥∥|u|q/2ρ1/2(· − y)

∥∥2

H1(Rn)

= c
(∥∥|u|q/2ρ1/2(· − y)

∥∥2

L2(Rn)
+
∥∥∥
∣∣∇
[
|u|q/2ρ1/2(· − y)

]∣∣
∥∥∥

2

L2(Rn)

)

≤ c1
(∥∥|u|q/2ρ1/2(· − y)

∥∥2

L2(Rn)
+
∥∥∥
∣∣∇
(
|u|q/2

)∣∣ρ1/2(· − y)
∥∥∥

2

L2(Rn)

)
.

(21)
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Using (21) and the Young inequality, for the third term in (19) we get the bound

(22) M(v)
(∫

Rn
|u|2q−2ρ2−2/q(x− y) dx

)1/2

≤ c(M(v), δ) + δc1

∫

Rn
|u|qρ(x− y) dx+ δc1

∫

Rn

∣∣∣∇
(
|u|q/2

)∣∣∣
2

ρ(x− y) dx.

For the fifth term we finally obtain

b

∫

Rn
|u|q−1ρ(x− y) dx ≤ δ̃

∫

Rn
|u|qρ(x− y) dx+ C(δ̃)

∫

Rn
ρ(x− y) dx.(23)

Connecting the estimates (19)–(23) and choosing ε, δ, δ̃ small enough we arrive at
the differential inequality

d

dt

∫

Rn
|u|qρ(x− y) dx ≤ −aq

2

∫

Rn
|u|qρ(x− y) dx+ C

(
M(v), ‖ρ‖L1(Rn), b, q

)
,

which implies the required a priori bounds

sup
t≥0

sup
‖(u0,v0)‖

W
1,p
lu

(Rn)×L2
lu

(Rn)
≤λ
‖u(t, u0, v0)‖Lpzlu (Rn) ≤ λ+ const.(24)

and

lim sup
t→+∞

sup
‖(u0,v0)‖

W
1,p
lu

(Rn)×L2
lu

(Rn)
≤λ
‖u(t, u0, v0)‖Lpzlu (Rn) ≤ const.,(25)

valid for any λ > 0.

Step 3. Estimates obtained for u in (24) and (25) give immediately corresponding
Lplu(Rn) estimates for v, since it may be written in the integral form

v(t, u0, v0) = v0e
−δt +

∫ t

0

e−δ(t−s)
(
βu(s, u0, v0) + h

)
ds.

We have thus estimated the solution (u, v) in the norm of an auxiliary space Y =

Lpzlu (Rn)× Lplu(Rn), p ∈ (n, p0].

Remark 3.8. By using the method described in Remark 2.2 this estimate is sufficient
for validity of assumptions (ii) and (iii). Note that in the present example estimate (2)
has the form

‖F (u, v)‖Lplu(Rn)×Lplu(Rn) = ‖f(u)− αv‖Lplu(Rn) + ‖βu+ h‖Lplu(Rn)

≤ c‖(1 + |u|z)‖Lplu(Rn) + α‖v‖Lplu(Rn) + β‖u‖Lplu(Rn) + ‖h‖Lplu(Rn)

≤ const.
(

1 + ‖(u, v)‖Lpzlu (Rn)×Lplu(Rn) + ‖(u, v)‖zLpzlu (Rn)×Lplu(Rn)

)

=: g (‖(u, v)‖Y ) .

Choose Z = Lpρ(R
n)×Lpρ(Rn),DZ = W 2,p

ρ (Rn)×Lpρ(Rn), recall that n ≤ 4, p ∈ (n, p0],
and observe that assumption (iv) is satisfied automatically. Also, thanks to the embedding

X1/2 = W 1,p
lu (Rn)× Lplu(Rn) ⊂ C0

bd(Rn)× Lplu(Rn), p > n,
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it is easy to verify condition (v). Indeed, for any B bounded in X1/2 and each (φ1, ψ1),
(φ2, ψ2) ∈ B,

‖F (φ1, ψ1)− F (φ2, ψ2)‖Z = ‖f(φ1)− f(φ2)− α(ψ1 − ψ2)‖Lpρ(Rn)

+ β‖φ1 − φ2‖Lpρ(Rn) ≤ (LB + β + α)‖(φ1, ψ1)− (φ2, ψ2)‖Z ,

which proves the claim.

Finally, we need to check condition (vi) of Theorem 2.6. Thanks to the already verified
assumption (iii) there is a bounded set B0 ⊂ X1/2 absorbing bounded subsets of X1/2.
Also B0 is bounded in X1 and positively invariant.

Let tn →∞ and {(un, vn)} be bounded in X1/2. Verification of condition (vi) for the
first coordinate u is similar as in the previous example. For the second coordinate v we
will use its, slightly rearranged, integral representation

v(t, u0, v0) =
[
v0e
−δt + β

∫ τ

0

e−δ(t−s)u(s, u0, v0) ds− e−δt

δ
h
]

+ β

∫ t

τ

e−δ(t−s)u(s, u0, v0) ds+
1

δ
h,

where τ is chosen such that tn ≥ τ for n ≥ n0 and
⋃

t≥τ

(
u(t, un, vn), v(t, un, vn)

)
⊂ B0.

Evidently, the square bracket decays to zero in Lpρ(R
n) as t = tn → ∞. The subsequent

integral term

β

∫ tn

τ

e−δ(tn−s)u(s, un, vn) ds =: wn,

is bounded in W 2,p
lu (Rn) uniformly for n ≥ n0. Hence, as a consequence of Lemma 3.3,

{wn} has a subsequence convergent in Lpρ(R
n) to an element of W 1,p

lu (Rn). The proof of
condition (vi) is thus complete allowing us to conclude that

Corollary 3.9. For p ∈ (n, p0] and Z = Lpρ(R
n)×Lpρ(Rn), the C0-semigroup defined

by (12) on X1/2 = W 1,p
lu (Rn)× Lplu(Rn) possesses an (X1/2 − Z)-global attractor, which

is bounded in W 2,p
lu (Rn)× Lplu(Rn).

4. Appendix. For convenience, throughout the paper we consider an integrable
weight function ρ of the form

ρ(x) =
(
1 + |εx|2

)−ν
, ν >

n

2
.(26)

For p ∈ (1,∞) we define

Lpρ(R
n) =

{
φ ∈ Lploc(Rn) : ‖φ‖Lpρ(Rn) =

(∫

Rn
|φ(x)|pρ(x) dx

)1/p

<∞
}
.
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Following [M-S], in applications we work in locally uniform spaces

Lplu(Rn) =
{
φ ∈ Lploc(R

n) : ‖φ‖Lplu(Rn) = sup
y∈Rn

(∫

Rn
|φ(x)|pτyρ(x) dx

)1/p

<∞

and lim
|z|→0

∥∥τzφ− φ
∥∥
Lplu(Rn)

= 0
}
,

where τzρ(x) = ρ(x− z), x, z ∈ Rn.

Remark 4.1. Note that Lplu(Rn) contains both Lp(Rn) and L∞(Rn). Also,

sup
y∈Rn

(∫

{|x−y|<1}
|φ(x)|p dx

)1/p

and sup
y∈Rn

(∫

Rn
|φ(x)|pρ(x− y) dx

)1/p

define equivalent norms of Lplu(Rn) (see [Ca-Dl, Lemma 1]), which property is useful in
many considerations. In particular, the definition of Lplu(Rn) is independent of the specific
choice of the weight function ρ inside an admissible class of such function (see e.g. [Ca-Dl]
for details).

Based on the Lplu(Rn) spaces one can introduce in a natural way Sobolev type lo-
cally uniform spaces W k,p

lu (Rn) (see [M]), containing all elements φ ∈ Lplu(Rn) having
distributional derivatives Dσφ ∈ Lplu(Rn), |σ| ≤ k, such that

‖φ‖Wk,p
lu (Rn) =

∑

|σ|≤k
‖Dσφ‖Lplu(Rn) <∞.

As shown in [Ch-Dl1] the set Ckbd(Rn), consisting of functions having bounded derivatives
up to the order k, is dense in W k,p

lu (Rn) for each p ∈ (1,∞).
We prove below an embedding of locally uniform spaces into Hölder type spaces. Our

target space will be Cµ(Rn), which consists of functions φ ∈ C0
bd(Rn) being uniformly

Hölder continuous in Rn and normed by

‖φ‖Cµ(Rn) = sup
x∈Rn

|φ(x)|+ sup
x,y∈Rn, x6=y

|φ(x)− φ(y)|
|x− y|µ ,

(see [T, p. 67], where such a space is denoted by Bµ(Rn)).

Lemma 4.2. Let 0 < µ < 1− n
p and ρ : Rn → (0,∞) be given by (26). Then

W 1,p
lu (Rn) ⊂ Cµ(Rn).(27)

Proof. For y, z ∈ Rn, 0 < |z| ≤ 1, we have

|φ(y + z)− φ(y)|
|z|µ ≤ sup

|z|≤1, z 6=0

|τ−yφ(z)− τ−yφ(0)|
|z|µ

≤ c‖τ−yφ‖W 1,p({|x|<1}) = c‖φ‖W 1,p({|x−y|<1}),

so that substituting z = x− y we obtain

sup
|x−y|≤1, x6=y

|φ(x)− φ(y)|
|x− y|µ ≤ ‖φ‖W 1,p

lu (Rn)
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(see Remark 4.1). Using next the embedding W 1,p
lu (Rn) ⊂ C0

bd(Rn) (see [Ch-Dl1, Corol-
lary 1]), we observe that

‖φ‖Cµ(Rn) = sup
x∈Rn

|φ(x)|+ sup
x,y∈Rn, x6=y

|φ(x)− φ(y)|
|x− y|µ

≤ 3 sup
x∈Rn

|φ(x)|+ sup
|x−y|≤1, x6=y

|φ(x)− φ(y)|
|x− y|µ ≤ C‖φ‖W 1,p

lu (Rn),

where in the last estimate we decompose Rn = {y : |x− y| ≤ 1} ∪ {y : |x− y| > 1}. The
proof is complete.
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