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Abstract. We study the decay of the motions of a viscous fluid subject to gravity without
surface tension with a free boundary at the top. We show that the solutions of the linearization
about the equilibrium state decay, but not exponentially in a uniform manner. We also discuss
the consequences of this for the non-linear equations.

1. Introduction. For systems of parabolic equations for functions defined on a
bounded domain it seems plausible for reasons of compactness of the operators involved
that if all solutions converge to an equilibrium state, then this convergence should occur
at an exponential rate. This is indeed even true for some examples of compressible viscous
fluid flow without surface tension on the boundary, although the system of equations in
question is not really parabolic. Zajączkowski [12] showed that for such a fluid not ex-
posed to an exterior force, but with a positive external pressure, and with small initial
values all solutions converge exponentially in a uniform way to an equilibrium solution.
We show that this is no longer true as soon as the fluid is exposed to the force of gravity.

This paper consists of two unequal parts. The first one is rigorous and shows that
the solutions of the linearization of the equation around the equilibrium do not decay
exponentially in a uniform fashion. It consists of Sections 2 to 4. Then, in a less rigorous
form, in Sections 5 and 6, we compute the linearization of the equations and discuss the
consequences of the linear result for the actual non-linear equations for the fluid. These
considerations could also be made more rigorous, but that would go beyond the scope of
the present paper.

Now we describe the precise form of our mathematical problem. We consider the flow
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of a barotropic or incompressible viscous fluid without surface tension in a variable region

Ωt = {(x1, x2, x3) : −h ≤ x3 ≤ f(x1, x2, t)}
in 3-space with some fixed h > 0. Both f and the functions introduced later are assumed
to be periodic with period lk in the xk directions (k = 1, 2). Then we can obtain these
functions from their values on the basic cell

Ω0
t = {(x1, x2, x3) : 0 ≤ x1 ≤ l1, 0 ≤ x2 ≤ l2,−h ≤ x3 ≤ f(x1, x2, t)} .

It is clear that although the region Ωt we consider is not bounded, the periodicity assures
that all function spaces on this domain have all the compactness properties such spaces
for bounded domains usually have. We can alternatively also see this as a problem on the
compact manifold we obtain by gluing opposite ends of the intervals [0, lk] in x1 and x2

direction together. With a little bit more effort we could carry out our considerations
on a ball as well, but we want to spare ourselves the unpleasant aspects of spherical
coordinates. Let us denote the regions obtained by setting f = 0 asR andR0 respectively.
As we want to describe barotropic and incompressible fluids at once we use the fluid
velocity v(x, t) and the fluid pressure p(x, t) as the relevant variables. Then the inverse
G : (0,+∞) → (0,+∞) of the equation of state gives us the density ρ as ρ = G(p). We
will assume that G is twice continuously differentiable on (0,+∞), that G′(p) ≥ 0 and
that either G is constant or G′(p) > 0 throughout, and also that G′(p) is bounded at
infinity, but not usually at zero. The stress tensor T in the fluid is given by

T(v, p) =
[
Tij(v, p)

]
=
[
−pδij + Dij(v)

]

with

D(v) =
[
Dij(v)

]
=
[
ν1

( ∂vi
∂xj

+
∂vj
∂xi

)
+ (ν2 − ν1)δij div(v)

]
,

where ν1 and ν2 are the viscosity coefficients. Also let e3 = (0, 0, 1). Then the equations

ρ(vt + v · ∇v)− div(T(v, p)) = −gρe3

ρt + div(ρv) = 0
(1)

are fulfilled in the interior of the fluid. (g is the acceleration due to gravity.) We assume
that the pressure at the top side equals p0 > 0, and the velocity equals zero at the bottom.
Let n be the outward normal to the top part of ∂Ωt. Then, as we leave the surface tension
out of consideration, our boundary conditions are

T(v, p) · n |{x3 = f(x1, x2, t)} = −p0n
v |{x3 = −h} = 0.

(2)

We assume that ν1 and ν2 fulfil the condition ν2 > ν1/3 > 0. This inequality implies that
Dij(v)vixj is a positive semidefinite quadratic form in ∇v which is zero only if Dij(v) = 0.
We obtain another equation, which is due to the fact that all fluid particles at the position
x(t) = (x1(t), x2(t), x3(t)) are moving at the speed (v1(x(t), t), v2(x(t), t), v3(x(t), t)) and
particles once on the boundary always stay there. So by differentiating the equation
x3(t) = f (x1(t), x2(t), t) with respect to time we obtain

v3 (x1, x2, x3, t) =
2∑

k=1

fxk(x1, x2, t)vk(x1, x2, x3, t) + ft(x1, x2, t),(3)
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if x3 = f(x1, x2, t).
Note that if G is constant, then the equation ρt + div(ρv) = 0 becomes div(v) = 0.

Also note −gρe3 = −ρ∇(gx3), so by defining U = −gx3 we have −gρe3 = ρ∇U .
If (ve, pe) on a constant domain Ωe is a time-independent solution of (1) with ve = 0,

then (1) becomes

∇pe = −G(pe)ge3.(4)

This means that pe only depends on x3 and so with the boundary condition

pe (x1, x2, f(x1, x2, t), t) = p0

we get f is constant. This allows us to compute the equilibrium solution for compressible
and incompressible fluids as the solution of an ordinary differential equation, but we
will not do that. It is easy to see our conditions imply that the solution is three times
differentiable, that we can find such a solution for any given mass, and that we can
choose h in relation to the quantity of the fluid in such a way that for the equilibrium
state we have Ωe = R.

As we demonstrate in Section 5, the linearization of these equations about the equi-
librium solutions is

ρeut − div(D(u)) +∇α = −gG′(pe)αe3,

G′(pe)αt + div(ρeu) = 0,(5)

ϕt = u3

with the boundary conditions

T(u, α) · e3 = (pe)x3
(0)ϕe3 at x3 = 0, and u(x1, x2,−h, t) = 0.(6)

Here u is the “linear equivalent” of v, α that of p, and ϕ that of f . The “linear
equivalent” of the law of the conservation of mass is that

C(t) =

∫

R0

G′(pe)αdx+ ρe(0)

∫

R0∩{x3=0}
ϕdσ

is constant. Note that R0 ∩ {x3 = 0} ⊂ ∂R0.
We prove the following two theorems. The first does not contain anything new, but

is included to make this argument more self-contained and more easily readable, the
second one really states the lack of decay for the linearized equation. They are proved in
Sections 3 and 4. The less rigorous considerations are contained in Sections 5 and 6 and
their results are not stated here. For the notation used see Section 1.1. Before stating our
theorems we define

B1 =
{
u ∈ L2 :

∫

R0

u · ∇Φ dx = 0
(
Φ ∈ H1 with Φ = 0 at x3 = 0

)}
.(7)

Theorem 1. For compressible fluids, given α0 ∈ H1, u0 ∈ L2, ϕ0 ∈ H1/2
∂ , there are

functions
α ∈ C0

(
[0,+∞), H1

)
∩ C1

(
(0,+∞), H1

)
,

v ∈ C0
(
[0,+∞), L2

)
∩ C1

(
(0,+∞), H2

)
,

ϕ ∈ C0
(
[0,+∞), H

1/2
∂

)
∩ C1

(
(0,+∞), H

1/2
∂

)
,
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which solve (5) and (6) for t > 0, while (u, α, ϕ)(0) = (u0, α0, ϕ0).
For incompressible fluids, given u0 ∈ B1, ϕ0 ∈ H1/2

∂ , there are functions

α ∈ C1
(
(0,+∞), H1

)
, v ∈ C0

(
[0,+∞), L2

)
∩ C1

(
(0,+∞), H2

)
,

ϕ ∈ C0
(
[0,+∞), H

1/2
∂

)
∩ C1

(
(0,+∞), H

1/2
∂

)
,

which solve (5) and (6) for t > 0, while (u, ϕ)(0) = (u0, ϕ0).

In many of our statements we use the function G′(pe), which equals zero for incom-
pressible flows and is bounded from above and away from zero for compressible flows to
make a unified statement for both cases.

Theorem 2. If C(0) = 0 for the solutions of Theorem 1, then as t→∞ the functions
u(t), G′(pe)α(t) converge to zero at least weakly in L2, and ϕ(t) weakly in L2

∂ , but for no
s ≥ 0, β1 ∈ [s, s+ 1/2], β2 ∈ [s, s+ 3/2] are there numbers γ > 0, C <∞, such that

‖u(t)‖Hβ2 + ‖G′(pe)α(t)‖Hβ1 + ‖ϕ(t)‖Hs
∂

≤ Ce−γt
(
‖u(0)‖Hβ2 + ‖G′(pe)α(0)‖Hβ1 + ‖ϕ(0)‖Hs

∂

)

for all such functions and all t > 0.

The convergence results could be improved, but we do not want to do this here. In
the last two sections we indicate how this translates into a lack of exponential decay for
our non-linear equation.

It should be pointed out that in [3] a problem similar to the nonlinear incompressible
problem is considered, where the periodicity in x1, x2 direction is replaced by the condition
that the perturbations go to zero at infinity in space. Beale shows that at least if one
assumes twice differentiable dependence of the solution on the initial value over the entire
infinite interval, solutions cannot always exist.

I am indebted to W. Zajączkowski from the Institute of Mathematics of the Polish
Academy of the Sciences for many crucial discussions.

1.1. Notation. We denote generic constants by C. The norm of any Banach space B
is denoted by ‖ · ‖B. Let S ⊂ Rm be an open set or its closure. Then Ck+α(S,B) for
(k = 0, 1, 2, . . . , α ∈ [0, 1]) are the spaces of all functions with values in V that are,
locally in S, Hölder-continuous with exponent α, the same being true for the derivatives
up to order k. This means that these are Banach spaces with the usual norms only in the
case that S is compact. By Ck+α

0 (S,B) we denote the space of functions in Ck+α(S,B)

with compact support in S.
Then if Ω is open, Lp(Ω,B) is the closure of C0

0 (Ω,B) with respect to the norm
(∫

Ω

‖u(x)‖pB dx
)1/p

,

and Lploc(Ω,B) consists again of the functions that locally belong to Lp(Ω,B). L∞(Ω,B)

is the set of all elements of L1
loc(Ω,B) that are essentially bounded in addition. If B = Rn

or B = Cn we will leave B out in the notation from now on, unless confusion can arise
from this. For any positive integer k we denote by W k

p (Ω) the set of all functions that
have distributional derivatives up to k-th order that lie in Lp(Ω). For other µ ≥ 0 we
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define Wµ
p (Ω) by appropriate real interpolation (see [10]), and W µ

p0(Ω) is the closure of
the set of infinitely often differentiable functions with compact support in W µ

p (Ω).
For any of the Sobolev spaces W µ

p (Ω), if p = 2 we will always omit the subscript, e.g.
Wµ(Ω) = Wµ

2 (Ω). In addition we define

Wµ
p =

{
u |(0, l1)× (0, l2)× (−h, 0) : u ∈Wµ

p

(
(0, 2l1)× (0, 2l2)× (−h, 0)

)
,

u(x+ l1e1) = u(x), u(x+ l2e2) = u(x)} , Wµ = Wµ
2 .

For function spaces on the surface {x3 = 0} ∩R0 we use the notation W µ
p∂ ,W

µ
∂ or Lp∂ in

an analogous way. We also use the summation convention that if an index occurs in more
that one place in an expression this actually stands for the sum of these expressions in
which this index runs through its natural range.

2. Some preliminary considerations. In Sections 2 and 3 we allow complex-
valued functions for technical reasons. Let us first consider the following two systems
of equations, which are obviously related to the linearized system. They are

− div(D(u)) +∇α + gG′(pe)αe3 = f1,

div(ρeu) = f2,

T(u, α) · e3 = H at x3 = 0, u = 0 at x3 = −h,
(8)

and

− div(D(u)) = f,

D(u) · e3 = H at x3 = 0, u = 0 at x3 = −h.
(9)

We have

Lemma 3. Assume all the variables below fulfil the system of equations (8). Then
∫

R0

Dij(u)uixj dx =

∫

R0∩{x3=0}
H · udσ +

∫

R0

f1u+ ρ−1
e f2α dx.

If they fulfil (9) then
∫

R0

Dij(u)uixj dx =

∫

R0∩{x3=0}
H · udσ +

∫

R0

fu dx.

Proof. Let us first prove the second claim. Multiplying the first equation in (9) by u
we have

−
∫

R0

div(D(u)) · u dx =

∫

R0

f · u dx.

Integrating by parts we get∫

R0

Dij(u) · uixj dx−
∫

∂R0

n · D(u) · udσ =

∫

R0

f · u dx.

Now the integrals over all boundaries except the top boundary drop out and there we
have n · D(u) · u = H · u, so

−
∫

R0∩{x3=0}
H · u dσ +

∫

R0

Dij(u)uixj dx =

∫

R0

f · u dx.

This proves our second claim.
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For the first one notice that any solution of (8) also fulfils (9) with H replaced by
H + αe3 and f replaced by f1 −∇α− gG′(ρe)αe3. Then we have for such solutions
∫

R0

Dij(u)uixj dx =

∫

R0

(
f1 −∇α− gG′(ρe)αe3

)
· u dx+

∫

R0∩{x3=0}
H · u+ αu3 dσ.

Now ∫

R0

−∇α · udx =

∫

R0

α div(u) dx−
∫

R0∩{x3=0}
αu3 dσ,

as again all other boundary integrals vanish, and so
∫

R0

Dij(u)uixj dx =

∫

R0

(
f1 − gG′(ρe)αe3

)
· u+ α div(u) dx+

∫

R0∩{x3=0}
H · u dσ.

Also we can now solve div(ρeu) = f2 for div(u) to obtain
∫

R0

α
(
div(u)−G′(pe)gu3

)
dx =

∫

R0

ρ−1
e f2α− αu3

(
ρ−1
e ρex3

+G′(pe)g
)
dx.

As due to (4)

ρ−1
e ρex3

+G′(pe)g = ρ−1
e G′(pe)pex3

+G′(pe)g = ρ−1
e G′(pe) (pex3

+ ρeg) = 0,

our claim is now obvious.

Lemma 4. The system (8) can be solved uniquely for all H ∈ H1/2
∂ , f1 ∈ L2, f2 ∈ H1,

and

‖u‖H2 + ‖α‖H1 ≤ C
(
‖f1‖L2 + ‖f2‖H1 + ‖H‖

H
1/2

∂

)
.

If f1 = 0 and f2 = 0 then also

‖u‖Hµ+3/2 + ‖α‖Hµ+1/2 ≤ C‖H‖Hµ
∂

for all µ ≥ 0.

Proof. First we prove the solvability and the first estimate. By Lemma 3 with f1 = 0,
f2 = 0, H = 0 we get that D(u) = 0 for such a solution, which implies u = 0 using
the boundary condition at the bottom. Then also α = 0 at the top due the boundary
condition there, and ∇α + gG′(pe)αe3 = 0, which implies α only depends on x3, and is
zero everywhere because it is zero at x3 = 0. So we get the uniqueness of the solution of
this equation. As this is an elliptic system in the sense of [2] and the boundary conditions
are complementing (see, e.g., [8]), we get the a priori estimate

‖u‖H2 + ‖α‖H1 ≤ C
(
‖f1‖L2 + ‖f2‖H1 + ‖H‖H1/2

)
.(10)

This allows us to use the continuity method to conclude that the equation is solvable for
all f1, f2, H from the spaces indicated above if this is true for one choice of G, ν1, ν2

permitted here, e.g. G = 1, ν1 = 1, ν2 = 1. Then we must solve

− div(Du) +∇α = f1,

aα+ div(u) = f2,

−Dj3(u) + δj3α = Hj at x3 = 0, u = 0 at x3 = −h
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for a = 0, which is again equivalent to solving it for very small a. For a 6= 0 we can solve
for α to obtain α = a−1 (f2 − div(u)). So then the system is equivalent to

− div(Du)− a−1∇ div(u) = f1 − a−1∇f2

with the boundary condition

−Dj3(u)− a−1δj3 div(u) = H̃j = Hj − a−1δj3f2 at x3 = 0, u = 0 at x3 = −h.
Now for a > 0 according to [5], Lemma 3.3, this can be solved for all f1, f2 and H̃ = 0,
and so one only needs to find functions with the right boundary values which do not
need to solve the equation. It is easy to see one can find such functions of the form
u = x3w(x1, x2), where w is a vector field on x3 = 0. Then at x3 = 0 we have

Dj3(u) + a−1δj3 div(u) = wj
(
1 + δj3(1 + a−1)

)
,

and so functions with arbitrary boundary values exist.
Now the second part is clear from [2] if µ− 1/2 is a non-negative integer, and can be

extended by interpolation theory (see [10]) to all µ ≥ 1/2.
To treat the case µ < 1/2 let ∆2 be the Laplacian only in the x1, x2 directions. Then

let û, α̂ be the solution of our problem for the boundary condition ∆−1
2 H with f1 = 0,

f2 = 0. As ∆2 and the operator we consider here commute, ∆2û, ∆2α̂ solve our original
problem and

‖∆2û‖Wµ+3/2 + ‖∆2α̂‖Wµ+1/2 ≤ ‖û‖Wµ+7/2 + ‖α̂‖Wµ+5/2

≤ C
∥∥∆−1

2 H
∥∥
Wµ+2
∂

≤ C ‖H‖Wµ
∂
,

which proves our claim in general.

3. Analytic semigroups. We want to show that our time evolution equations can
be solved by an analytic semigroup. To this end we first consider the system of equations

zρeu− div(D(u)) +∇α+ gG′(pe)αe3 = f̂1,

zG′(pe)α+ div(ρeu) = G′(pe)f̂2,

T(u, α) · e3 = H at x3 = 0, u = 0 at x3 = −h
(11)

for Re(z) ≥ 0, and we obtain the following result.

Lemma 5. For f̂1 ∈ L2, f̂2, α ∈ H1, H ∈ H1/2
∂ , u ∈ H2 fulfilling the equation (11)

we have, if z is sufficiently large,

|z| ‖u‖L2 + ‖u‖H2 ≤ C
[∥∥f̂1

∥∥
L2 +

∥∥G′(pe)f̂2

∥∥
H1

]
+ |z|1/2‖H‖

H
1/2

∂

.

Proof. Let us first consider the incompressible case. Then G′ = 0 and ρe = const.
Then we can use Lemma 3 with f1 = f̂1 − zρeu, and f2 = 0, which gives us the result

z

∫

R0

ρe|u|2 dx+

∫

R0

Dij(u)uixj dx =

∫

R0∩{x3=0}
H · u dσ +

∫

R0

f̂1u dx,

so also

|z|
∫

R0

ρe|u|2 dx ≤ C
[
‖u‖L2

∂
‖H‖L2

∂
+
∥∥f̂1

∥∥
L2‖u‖L2

]
,
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and

|z|1/2‖u‖L2 ≤ C
[
‖u‖1/2

L2
∂

‖H‖1/2
L2
∂

+
∥∥f̂1

∥∥1/2

L2 ‖u‖1/2L2

]

≤ C‖u‖1/2
L2
∂

‖H‖1/2
L2
∂

+ C|z|−1/2
∥∥f̂1

∥∥
L2 +

1

2
|z|1/2‖u‖L2 .

Subtracting 1
2 |z|1/2‖u‖L2 and multiplying by |z|1/2 we get

|z| ‖u‖L2 ≤ C
∥∥f̂1

∥∥
L2 + C|z|1/2‖u‖1/2

L2
∂

‖H‖1/2
L2
∂

.(12)

Using our equation and the estimate (10) we also get

‖u‖H2 ≤ C
[∥∥f̂1

∥∥
L2 + ‖H‖

H
1/2

∂

+ |z|1/2‖u‖1/2
L2
∂

‖H‖1/2
L2
∂

]
.

By means of the interpolation inequality 10.1 in [4] and the trace estimate

‖u‖L2
∂
≤ C‖u‖H1(13)

we obtain that

|z|1/2‖u‖H1 ≤ C
[∥∥f̂1

∥∥
L2 + ‖H‖

H
1/2

∂

]
+ C|z|1/2‖H‖1/2

L2
∂

‖u‖1/2H1 .

Thus, again estimating the last product by a sum of suitable squares and subtracting,

|z|1/2‖u‖H1 ≤ C
(∥∥f̂1

∥∥
L2 + ‖H‖

H
1/2

∂

)
+ C|z|1/2‖H‖L2

∂
.

Now (12) also implies

|z| ‖u‖L2 ≤ C
∥∥f̂1

∥∥
L2 + C|z|1/2

(
‖u‖H1 + ‖H‖L2

∂

)
,

and, estimating ‖u‖H1 with the previous inequality we get

|z| ‖u‖L2 ≤ C
∥∥f̂1

∥∥
L2 + C

(∥∥f̂1

∥∥
L2 + ‖H‖

H
1/2

∂

+ |z|1/2‖H‖L2
∂

)
,(14)

and this directly implies our claim in this case.
Now let us address the compressible fluid problem. To that end we first consider the

system of equations

zρeu− div(Du) = f

with the boundary condition u = 0 at the bottom and Du ·e3 = H at the top. Then from
the second equation in Lemma 3 we can conclude

|z|
∫

R0

ρe|u|2 dx ≤ C
[
‖u‖L2

∂
‖H‖L2

∂
+ ‖f‖L2‖u‖L2

]
,

so we have

|z| ‖u‖2L2 ≤ C
[
‖u‖L2

∂
‖H‖L2

∂
+ |z|−1‖f‖2L2

]
+

1

2
|z| ‖u‖2L2 ,

and

|z| ‖u‖L2 ≤ C|z|1/2‖u‖1/2L2
∂

‖H‖1/2
L2
∂

+ C‖f‖L2 .(15)

As the boundary conditions for the equation are complementing (see [8]) we also get

‖u‖H2 ≤ C|z|1/2‖u‖1/2
L2
∂

‖H‖1/2
L2
∂

+ C
[
‖f‖L2 + ‖H‖

H
1/2

∂

]
.
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With the interpolation inequality 10.1 in [4] and the trace estimate (13) we get

|z|1/2‖u‖H1 ≤ C
[
‖f‖L2 + ‖H‖

H
1/2

∂

]
+ C|z|1/2‖u‖1/2H1 ‖H‖1/2L2

∂

,

and so

|z|1/2‖u‖H1 ≤ C
[
‖f‖L2 + ‖H‖

H
1/2

∂

]
+ C|z|1/2‖H‖L2

∂
.(16)

Now (15) implies

|z| ‖u‖L2 ≤ C|z|1/2
(
‖u‖L2

∂
+ ‖H‖L2

∂

)
+ C‖f‖L2 ,

and so we get, estimating ‖u‖L2
∂

with (16) as before and using [2], that

|z| ‖u‖L2 + ‖u‖H2 ≤ C
(
‖f‖L2 + |z|1/2‖H‖

H
1/2

∂

)
.(17)

Now we can apply this to our original problem by solving the equation zG′(pe)α +

div(ρeu) = G′(pe)f̂2 for α to obtain α = z−1f̂2 − (G′(pe)z)
−1 div(ρeu) and so we get

zρeu− div(D(u)) +∇
[
z−1f̂2 − (G′(pe)z)

−1 div(ρeu)
]

+ gG′(pe)
[
z−1f̂2 − (G′(pe)z)

−1 div(ρeu)
]
e3 = f̂1,

T
(
u, z−1f̂2 − (G′(pe)z)

−1 div(ρeu)
)
· e3 = H at x3 = 0, u = 0 at x3 = −h.

With (17) this leads to

|z| ‖u‖L2 + ‖u‖H2 ≤ C
[∥∥f̂1

∥∥
L2 + |z|−1

[
‖u‖H2 +

∥∥f̂2

∥∥
H1

]]

+ C|z|1/2
(
‖H‖

H
1/2

∂

+ |z|−1
[∥∥f̂2

∥∥
H

1/2

∂

+ ‖u‖
H

3/2

∂

])
,

which for large z implies

|z| ‖u‖L2 + ‖u‖H2 ≤ C
[∥∥f̂1

∥∥
L2 +

∥∥f̂2

∥∥
H1

]
+ C|z|1/2‖H‖

H
1/2

∂

.(18)

Putting the results (18) for compressible and (14) for incompressible fluids together we
get

|z| ‖u‖L2 + ‖u‖H2 ≤ C
[∥∥f̂1

∥∥
L2 +

∥∥G′(pe)f̂2

∥∥
H1

]
+ |z|1/2‖H‖

H
1/2

∂

,

as G′(pe) = 0 in the incompressible case, and in the compressible case (G′(pe))−1 is
bounded on [−h, 0], and so our lemma is proved.

If we add the variable ϕ on [0, l1]× [0, l2] and the equations

H = (pe)x3
(0)ϕe3, zϕ = u3 + h,(19)

to (11) we get

Lemma 6. For f̂1 ∈ L2, f̂2, α ∈ H1, h ∈ Hµ
∂ , u ∈ H2 fulfilling the equation (11)

together with (19) we have, if z is sufficiently large

|z| ‖u‖L2 + ‖u‖H2 + |z| ‖G′(pe)α‖H1 + |z| ‖ϕ‖Hµ
∂

≤ C
[∥∥f̂1

∥∥
L2 +

∥∥G′(pe)f̂2

∥∥
H1 + ‖h‖Hµ

∂

]

for µ ∈ [1/2, 3/2].
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Proof. From Lemma 5 we get

|z| ‖u‖L2 + ‖u‖H2 ≤ C
[∥∥f̂1

∥∥
L2 +

∥∥G′(pe)f̂2

∥∥
H1

]
+ |z|1/2

∥∥z−1(h+ u3)
∥∥
H

1/2

∂

,

and so

|z| ‖u‖L2 + ‖u‖H2 ≤ C
[∥∥f̂1

∥∥
L2 +

∥∥G′(pe)f̂2

∥∥
H1 + ‖h‖

H
1/2

∂

]
,

from which we easily get the estimates for the other variables using the equations.

This estimate provides the most important building block for using the theory of
analytic semigroups for our equation. For the compressible case this is indeed fairly easy
in view of [7]. We can then use

{
(u, α, ϕ) : u ∈ L2, α ∈ H1, ϕ ∈ Hµ

∂

}

(1/2 ≤ µ ≤ 3/2) as the basic space, with the subspace of all elements in
{

(u, α, ϕ) : u ∈ H2, α ∈ H1, ϕ ∈ Hµ
∂

}

fulfilling the boundary conditions (6) as the domain of definition, and the definition of
the operator is clear from the form of the estimates.

For incompressible flows first let

B = {(u, ϕ) : u ∈ B1, ϕ ∈ Hµ
∂ } .

(For B1 see (7).) As the domain of definition D(A) of our operator we take
{

(u, ϕ) ∈ B : u ∈ H2, u = 0 at x3 = −h, D(u) · n = ωn for an ω ∈ H1/2
∂

}
.

Now we need to see that D(A) is dense in B. As u and ϕ are not really related in B and
D(A), we only need to show that

D1 =
{
u ∈ B1 ∩H2 : u = 0 at x3 = −h, D(u) · n = ωn for an ω ∈ H1/2

∂

}

is dense in B1. Assume u ∈ B1 and ∫

R0

u · v dx = 0

for all v ∈ D1. By Lemma 4 there is a function w ∈ D1 and a g ∈ H1 such that
u = − div(D(w)) + ∇g, div(w) = 0, w = 0 at x3 = −h and −D(w) · e3 + ge3 = 0 at
x3 = 0. Then

0 =

∫

R0

(− div(D(w)) +∇g) · v dx =

∫

R0

(Dij(w)− δijg) vixj dx

=

∫

R0

Dij(w)vixj − div(v)g dx =

∫

R0

Dij(w)vixj dx.

As w ∈ D1 we can choose v = w and obtain D(w) = 0, and due to the boundary condition
at x3 = −h we have w = 0. So g = 0 at x3 = 0, and u = ∇g, so by the definition of B1

we have u = 0. This proves that D(A) is dense in B.
The reader will have noticed that as is usual for incompressible flows the pressure has

disappeared from the space. This makes the definition of the operator a little bit tricky.
For (u, ϕ) ∈ D(A) let

A(u, ϕ) = (− divD(u) +∇α, u3)
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where α is given by the conditions

α = pex3
(0)ϕ+ e3 · D(u) · e3

on {x3 = 0} and ∫

R0

(
− divD(u) +∇α

)
∇Φ dx = 0

for all Φ ∈ H1 with Φ = 0 at x3 = 0. With these definitions it is easy to verify the
conditions of Theorem 2.1 in [4], which gives us Theorem 1. The consideration for incom-
pressible flows is in part parallel to that done in Beale’s paper [3].

4. The evolution of the linearized system. In this section we first formulate a
conservation law. From here all our solutions are real-valued.

Lemma 7. Let I be a real interval and assume u, α, ϕ with u ∈ C0(I,H2)∩C1(I, L2),
α ∈ C1(I,H1), ϕ ∈ C1(I, L2

∂) solve the system of equations (5) with the boundary condi-
tions (6). Then with

E(u, α, ϕ)(t) =
1

2

[
−pex3

(0)

∫

R0∩{x3=0}
ϕ2 dσ +

∫

R0

ρeu
2 + ρ−1

e G′(pe)α
2 dx

]

we have
dE

dt
= −

∫

R0

Dij(u)uixj dx.

Proof. Apply Lemma 3 with f1 = −ρeut, and f2 = −G′(pe)αt, H = pex3
(0)ϕe3,

also assuming the solutions are real. This gives us∫

R0

Dij(u)uixj dx =

∫

R0∩{x3=0}
pex3

(0)ϕu3 dσ −
∫

R0

ρeutu+G′(pe)ρ
−1
e αtα dx,

and as ϕt = u3 we immediately get our claim.

We need to define a family of operators before we can go on.

Definition 8. Let µ ≥ 0. For f ∈ Hµ
∂ with

f =

∞∑

k,m=−∞
akm exp

(
2πi
(
k
x1

l1
+m

x2

l2

))

let

Dµf =
∞∑

k,m=−∞

(
1 + k2 +m2

)µ/2
akm exp

(
2πi
(
k
x1

l1
+m

x2

l2

))
.

Then it is clear that Dµ : Hα+µ
∂ → Hα

∂ is an isomorphism for α ≥ 0. Also we can
apply Dµ to functions defined on (0, l1)× (0, l2)× (−h, 0) by fixing x3 and applying Dµ

with respect to x1 and x2. We also denote this operator by Dµ.
Lemma 7 now implies that E(u, α, ϕ) is a decreasing function of time. We can dif-

ferentiate the equations (5) and (6) with respect to time and obtain that E(ut, αt, ϕt) is
also decreasing, and due to the fact that our operator generates an analytic semigroup
time derivatives of arbitrary order exist for t > 0. Likewise all coefficients occurring in
the equation are independent of x1 and x2, so if (u, α, ϕ) is a sufficiently regular solution



66 G. STRÖHMER

of our equation, then (Dµu,Dµα,Dµϕ) also is a solution, and so E(Dµu,Dµα,Dµϕ) as
well as E(Dµut, Dµαt, Dµϕt) are decreasing.

This means that if E(Dµu,Dµα,Dµϕ) is small at the beginning, it will always be
small, and if E(Dµut, Dµαt, Dµϕt) is small at the beginning, it will always be small
also. So to obtain slow decay we want to construct a big initial value with a small time
derivative. To do this consider the equation

− div (T(u0, α0)) = −α0G
′(pe)ge3,

div(ρeu0) = 0,

with the boundary condition T(u0, α0) · n = H at the top and u0 = 0 at the bottom.
We already proved the solvability of this equation. So we first give ourselves ϕ0 and then
solve our equation with H = pex3

(0)e3ϕ0 to obtain u0 and α0. This means that if we
take these as initial values for a solution we have ut(0) = 0, αt(0) = 0, and ϕt(0) = u3(0).
From here we will use ‖Dµh‖L2

∂
as the norm ‖h‖Hµ

∂
of h. We have with µ ≥ 0 by Lemma 4

‖u3(0) |{x3 = 0}‖H1+µ
∂
≤ C ‖u3(0)‖H3/2+µ ≤ C ‖ϕ0‖Hµ

∂
,

and so the mapping ϕ0 → u3(0) |{x3 = 0} is compact as a mapping from Hµ
∂ into

itself. Therefore we can, given ε > 0, choose ϕ0 in such a way that ‖ϕ0‖Hµ
∂

= 1 and
‖u3(0) |{x3 = 0}‖Hµ

∂
≤ ε. As ϕt(0) = u3(0) |{x3 = 0}, we have ‖ϕt(0)‖Hµ

∂
≤ ε. Now also

∫

R0

ρe(Dµut)
2(t) dx+

∫

R0

G′(pe)ρ
−1
e (Dµαt)

2(t) dx

− pex3
(0)

∫

{x3=0}∩R0

(Dµϕt)
2(t) dσ ≤ 0 + 0− pex3

(0)

∫

{x3=0}∩R0

(Dµϕt)
2(0) dσ,

and so

−pex3
(0)

∫

{x3=0}∩R0

(Dµϕt)
2(t) dσ ≤ −pex3

(0)

∫

{x3=0}∩R0

(Dµϕt)
2(0) dσ,

which gives us ‖ϕt(t)‖Hµ
∂
≤ ‖ϕt(0)‖Hµ

∂
≤ ε for all times t ≥ 0. This implies

‖ϕ(t)‖Hµ
∂

=
∥∥∥ϕ(0) +

∫ t

0

ϕt(τ) dτ
∥∥∥
Hµ
∂

≥ ‖ϕ(0)‖Hµ
∂
−
∫ t

0

‖ϕt(τ)‖Hµ
∂
dτ

≥ 1− εt = (1− εt) ‖ϕ(0)‖Hµ
∂
.

Now for β1 ∈ [µ, µ+ 3/2], β2 ∈ [µ, µ+ 1/2] let

‖(u0, α0, ϕ0)‖N = ‖u0‖Hβ1 + ‖α0‖Hβ2 + ‖ϕ0‖Hµ
∂
.

Then we have, as we just saw,

‖(u, α, ϕ)(0)‖N ≤ C ‖ϕ0‖Hµ
∂
,

and, if εt < 1,

‖(u,G′(pe)α, ϕ)(t)‖N ≥ ‖ϕ(t)‖Hµ
∂
≥ (1− εt) ‖ϕ(0)‖Hµ

∂

≥ C−1(1− εt) ‖(u, α, ϕ)(0)‖N .
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Together with our assumption of uniform exponential decay this implies

C ′e−γt ‖(u,G′(pe)α, ϕ)(0)‖N ≥ ‖(u, α, ϕ)(t)‖N ≥ C−1(1− εt) ‖(u, α, ϕ)(0)‖N ,
and so 1 − εt ≤ CC ′e−γt for all t > 0, ε > 0, which is a contradiction. This proves the
part of the claim about lack of decay.

Now we have to prove there is any decay at all. This is the content of the following
lemma.

Lemma 9. Let u, α, ϕ with u ∈ C0
(
[0,∞), H2

)
∩C1

(
[0,∞), L2

)
, α ∈ C1

(
[0,∞), H1

)
,

ϕ ∈ C1([0,∞), L2
∂) solve the system of equations (5) with the boundary conditions (6),

and let C(t) = 0. Then u(t), G′(pe)α(t) converge to zero weakly in L2, and ϕ(t) does so
weakly in L2

∂.

Proof. From Lemma 7 we obtain by integration that

E(u, α, ϕ)(T1)− E(u, α, ϕ)(T2) =

∫ T2

T1

∫

R0

|Du|2 dx dt

for all T > 0. The same is true for the time derivatives. As a result
∫ T+1

T

∫

R0

|Du|2 + |Dut|2 dx dt→ 0,

and so ∫

R0

|Du|2 dx→ 0

as t → ∞. As ‖u‖L2
is bounded, we can select a sequence of times tk for which

u(tk) ⇀ u∞, and now Du∞ = 0, so by this and the boundary condition at the bot-
tom we get u∞ = 0. So u(t) actually converges weakly to zero in L2. In the same way
we can show ut converges weakly to zero in L2. Multiplying the first equation by an
arbitrary function vector v ∈ C∞(R) which is periodic in the x1 and x2 directions and
zero at x3 = −h, and integrating it over R0 we get I1 − I2 + I3 = 0 with

I1 =

∫

R0

ρeut(t)v dx, I2 =

∫

R0

div
(
T(u(t), α(t))

)
v dx, I3 =

∫

R0

gG′(pe)α(t)v3 dx.

Now lim
t→∞

I1 = 0, and if (0, α∞, ϕ∞) denotes any vector function which is a weak limit of

(u(tk), α(tk), ϕ(tk)) for a sequence tk →∞, then

lim
t→∞

I3 =

∫

R0

gG′(pe)α∞v3 dx,

and, integrating by parts,

I2 =

∫

R0

−Tij(u(t), α(t))vixj dx+

∫

R0∩{x3=0}
Tij (u(t), α(t)) vinj dσ = I21 + I22.

Now

I21 =

∫

R0

−Dij (u(t)) vixj + α(t) div(v) dx→
∫

R0

α∞ div(v) dx,

as Du→ 0, and by the boundary condition

I22 =

∫

R0∩{x3=0}
pex3

(0)ϕ(t)v3 dσ →
∫

R0∩{x3=0}
pex3

(0)ϕ∞v3 dσ.
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So we get∫

R0

−α∞ div(v) + gG′(pe)α∞v3 dx−
∫

R0∩{x3=0}
pex3

(0)ϕ∞v3 dσ = 0.(20)

This implies that α∞ only depends on x3 and fulfils the differential equation (α∞)x3
=

−gG′(pe)α∞, and so it has a limit at x3 = 0, which we denote by α∞(0). Due to this
equation α∞ also cannot change sign in [−h, 0]. Integrating by parts we get

∫

R0∩{x3=0}
(α∞(0) + pex3

(0)ϕ∞) v3 dσ = 0.

So α∞(0) = −pex3
(0)ϕ∞, and ϕ∞ is a constant. As pex3

(0) < 0 both ϕ∞ and α∞(0) have
the same sign, and the sign of α∞ cannot change in [−h, 0], so both ϕ∞ and α∞ must
have the same sign where they are defined, due to the differential equation (4). Also as
C(t) = 0 we have

∫

R0

G′(pe)α∞ dx+ ρe(0)

∫

R0∩{x3=0}
ϕ∞ dσ = 0.

This is only possible if G′(pe)α∞ = 0 and ϕ∞ = 0, as they both have the same sign. So
we have shown that, weakly in L2, our solutions converge to zero.

5. The linearization of the equation. As we will see in the last section, the
following approach to the linearization of equations is sufficient to draw conclusions about
the lack of exponential decay of the non-linear equations.

We consider a one-parameter family (v(ε), p(ε), f(ε)) of solutions of our equations,
which depend smoothly on their variables, and (v(0), p(0), f(0)) = (0, pe, 0).

We do not want to prove the existence of such families, but by a careful analysis of
“short term” existence proofs one can see that such solutions, as the initial value ap-
proaches an equilibrium state, exist for times converging to infinity. Then it is technically
difficult to show that the solutions depend differentiably on a parameter, if the initial
values do, but does not require any tools beyond what is available in [5] and [3].

Now the linearization is the equation obtained by differentiating (1) and (2) with
respect to ε at ε = 0, where we denote the derivatives of these functions by

u =
∂v

∂ε
(0), α =

∂p

∂ε
(0), ϕ =

∂f

∂ε
(0),

which are defined on R0,R0, and [0, l1]× [0, l2] respectively. We can take these derivatives
of the differential equations themselves in the interior directly, but have to think a little
more about the boundary conditions. As an example let us consider the expression ρvt.
Away from the top boundary we have

∂

∂ε
(ρvt) = ρ

∂

∂ε
(vt) + vt

∂

∂ε
(ρ) = ρe

∂2

∂ε∂t
(v) + 0 = ρeut,

using v(t, 0) = 0. In a similar way we obtain

ρeut − div(D(u)) +∇α = −gG′(pe)αe3,

and

G′(pe)αt + div(ρeu) = 0.
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As f → 0 as ε→ 0 this is actually valid in all of R0.
We cannot do this as easily for the boundary conditions, but have to transform our

variable domains to a fixed one, which we can of course choose as R0. Let us consider
the effects of such transformations on the linearization. So let Tt(y, ε) for fixed t, ε be a
diffeomorphism fromR0 to Ωεt , and let Tt(y, 0) = y, and assume T is sufficiently smooth as
a function of all its variables. This is true for the transformation describing the transition
from Euler to Lagrange coordinates, and also others. Then if h(x, t, ε) for fixed ε, t is
defined on Ωεt , and h̃(y, t, ε) = h (Tt(y, ε), t, ε), for a function h, and h(x, t, 0) = he(x),
then

∂h̃

∂ε
(y, t, 0) = hxk(y, t, 0)

∂(Tt)k
∂ε

(y, 0) +
∂h

∂ε
(Tt(y, 0), t, 0)

= hexk(y)
∂(Tt)k
∂ε

+
∂h

∂ε
(y, t, 0),

so

∂h̃

∂ε
(y, t, 0) = hexk(y)

∂(Tt)k
∂ε

+
∂h

∂ε
(y, t, 0).(21)

So for any variable whose value at equilibrium is independent of the space variables, the
linearization is independent of the coordinate system which we are using.

For our considerations we want to use the coordinate transformation

Tt(y1, y2, y3, ε) =
(
y1, y2, y3 +

y3 + h

h
f(y1, y2, t, ε)

)
,

which has the properties we just required, and

∂Tt
∂ε

(y, t, 0) =
(

0, 0,
y3 + h

h
ϕ(y1, y2, t, 0)

)
,

which equals ϕe3 on the upper boundary. Let x = Tt(y). With

∂xk
∂ym

=
∂Tk
∂ym

and
∂yk
∂xm

=
∂T−1

k

∂xm

then in these coordinates the boundary conditions transform to

T̃(y, t) · n(y, t) = p0n(y, t),

where D is transformed into

D̃(ṽ) =
[
D̃ij(ṽ)

]
=

[
ν1

(∂yk
∂xj

∂ṽi
∂yk

+
∂yk
∂xi

∂ṽj
∂yk

)
+ (ν2 − ν1)δij

∂yk
∂xl

∂ṽl
∂yk

]
,

where ṽ(y, t, ε) = v (Tt(y, ε), t, ε), and of course T̃(y, t) = D̃(ṽ) − δij p̃ with p̃(y, t, ε) =

p (Tt(y, ε), t, ε). For ε = 0 the transformation Tt is the identity, and so, as

∂

∂ε

(
T̃(ṽ, p̃) · n

)
= − ∂

∂ε
(p0n),

we also get, as p0 is constant, that

∂

∂ε

(
T̃(ṽ, p̃)

)
· n + T̃(ṽ, p̃) · ∂n

∂ε
= −p0

∂n
∂ε
.
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Now T̃ij(ṽ, p̃)(y, t, 0) = −δijpe(0) = −δijp0 due to the boundary condition, and so

0 =
∂

∂ε

(
T̃(ṽ, p̃)

)
· n =

∂

∂ε

(
D̃(ṽ)

)
· n− ∂

∂ε
(p̃)n.

Using (21) this is easily seen to imply

T(u, α) · e3 = D(u) · e3 − αe3 = (pe)x3
ϕe3.

Now we have derived the boundary conditions (6) and the first two equations of (5).
Now the last of these equations follows by the differentiation of (3) with respect to ε after
transforming to a fixed domain and keeping the relationship between the variables with
and without ˜ in mind.

This finishes the computation of the linearization.

6. Decay and the linearization. As the equilibrium solution and the solution ap-
proaching it have different domains of definition, it needs to be clarified what concept
of distance between these two functions one might want to use. This is, however, not as
problematic as it may seem. As we can extend this equilibrium solution a bit above zero,
it is still defined on the set Ω0

t , provided f is small, and then we can use function spaces
for this domain for defining the distance.

The following discussion is for the compressible case alone. At the end we will indicate
the changes necessary in the incompressible case.

Let us first define what is meant by exponential decay in this case. To this end we
introduce the spaces

B1(Ω0
t ) =

{
(v, p) : v ∈ Hβ1(Ω0

t ), p ∈ Hβ2(Ω0
t )
}

for velocity and pressure, and

B̂1 =
{
f : f ∈ Hµ([0, l1]× [0, l2])

}

for the boundary, where µ ≥ 0 is real but β1 ∈ [µ, µ + 3/2], β2 ∈ [µ, µ + 1/2] now must
be integers.

As we cannot necessarily expect to even have a solution for initial values in these
spaces, as the functions are not necessarily regular enough, we assume there are two
more Sobolev spaces, B2(Ω0

t ) and B̂2 dense in B1(Ω0
t ) and B̂1, and chosen so that if

(u0, p0) ∈ B2(Ω0
0), and f0 ∈ B̂2, a solution will exist for some time, and the length of

the interval of existence goes to infinity as the distance between the equilibrium and the
initial values goes to zero in B2(Ω0

0), B̂2. Now by uniform exponential convergence to the
equilibrium state we mean that in addition to the assumptions made so far there are two
constants 0 < γ,C <∞ such that

(22) ‖(v, p)(t)− (0, pe(y))‖B1(Ω0
t )

+ ‖f(t)‖
B̂1

≤ Ce−γt
(
‖(v, p)(0)− (0, pe(y))‖B1(Ω0

0) + ‖f(0)‖
B̂1

)
,

for all solutions (v, p, f) sufficiently close to this equilibrium in the Banach spaces B2

and B̂2, and which also have the same mass. Now we want to see what consequences we
can draw from the estimate (22) for the linearization of our equation.



DECAY OF SURFACE WAVES ON VISCOUS FLUIDS 71

So now assume (u0, α0) ∈ B2(R0) and ϕ0 ∈ B̂2 and
∫

R0

G′(pe)α0 dx+ ρe(0)

∫

R0∩{x3=0}
ϕ0 dx = 0.(23)

This is the type of initial values we have considered in Sec. 3 and 4. Then we might think
we can use (εu0, εα0 + pe, εϕ0) as a family of initial values for the non-linear equation
giving rise to a family of solutions. They do, however, not all have the same mass. To
remedy that we can add a function d(ε) to ϕ0 to get (εu0, εα0 +pe, εϕ0 +d(ε)). As it will
turn out we have d′(0) = 0, and so

∂

∂ε

(
εu0, εα0 + pe, εϕ0 + d(ε)

)
= (u0, α0, ϕ0)

at ε = 0. Now let us determine d.
We have

M =

∫ l1

0

∫ l2

0

∫ εϕ0(x1,x2)+d(ε)

−h
G(pe(x3) + εα0(x)) dx3 dx2 dx1.(24)

Now we have, if we consider M as a function of d,

∂M

∂d
=

∫ l1

0

∫ l2

0

G
(
pe(εϕ0(x1, x2) + d) + εα0(x1, x2, εϕ0(x1, x2) + d)

)
dx2 dx1,

and if we have chosen B2 and B̂2 in such a way that they are continuously embedded
in L∞, then ∂M

∂d > 0 for small ε. This means that such d exist and depend differentiably
on ε. Then for the solution M is independent of ε and t, and so, differentiating (24) with
respect to ε at ε = 0, we deduce that
∫ l1

0

∫ l2

0

G(p0) [ϕ0(x1, x2) + d′(0)] dx2 dx1 +

∫ l1

0

∫ l2

0

∫ 0

−h
G′ (pe(x))α0 dx3 dx2 dx1

equals zero. Therefore due to (23) this implies

0 = d′(0)

∫ l1

0

∫ l2

0

G(p0) dx2 dx1,

and so d′(0) = 0.
If we now use the solutions with the initial values (εu0, pe + εα0, εϕ0 + d(ε)) and

denote them by (v(t, ε), p(t, ε), f(t, ε)), suppressing all other variables, we obtain, also
dividing by ε,
∥∥∥∥
(
v(t, ε)− v(0, 0)

ε
,
p(t, ε)− p(t, 0)

ε

)∥∥∥∥
B1(Ω0

t )

+

∥∥∥∥
f(t, ε)− f(t, 0)

ε

∥∥∥∥
B̂1

≤ Ce−γt
(∥∥∥∥
(
v(0, ε)− v(0, 0)

ε
,
p(0, ε)− p(0, 0)

ε

)∥∥∥∥
B1(Ω0

0)

+

∥∥∥∥
f(0, ε)− f(0, 0)

ε

∥∥∥∥
B̂1

)
.

Assuming differentiability as a function of ε all the quotients stay bounded as ε → 0,
and so the contribution to the norms coming from the differences between Ω0

t (ε) and
Ω0
t (0) = R0 go to zero as ε → 0, assuming also that these norms are obtained by

integration of the functions and their derivatives. So letting ε→ 0 we get

‖(u, α)(t)‖B1(R0) + ‖ϕ(t)‖
B̂1
≤ Ce−γt

(
‖(u, α)(0)‖B1(R0) + ‖ϕ(0)‖

B̂1

)
.
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In addition u(0) = u0, α(0) = α0, ϕ(0) = ϕ0 + d′(0) = ϕ0. Due to the density of the
“B2 spaces” in the “B1 spaces” we can now conclude that the linearized equation should
exhibit uniform exponential decay, and as we have shown in Theorem 2 this is not the case,
so the assumption about exponential decay of the solutions of the non-linear equation
also cannot be true. For incompressible fluids we must omit p from consideration and do
not need to worry about changing the mass, as then

∫ l1

0

∫ l2

0

ϕ0(x1, x2, t) dx2 dx1 = 0,

which already assures the mass is constant.
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