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The aim of this note is to continue the study of the decay with respect to t — oo
of higher order norms of strong solutions of the Navier-Stokes equations in the whole
space R™, which was first addressed in a paper of M. E. Schonbek and M. Wiegner [3].

In general (for n > 3) a smallness assumption is needed for ensuring existence of such
a solution. T. Kato [2] (see also [6]) showed that

u — Au~+ (uV)u+ Vp=0

divu=0 on (0,00) x R"

u(0) =a
has a global solution u, smooth for ¢ > 0, provided a € L,, , with ||a||,, small enough. Here
L, » denotes the divergence free part of L,,. If moreover additionally a € Lo, the solution
has also finite energy for all times and coincides with the Leray-Hopf solution, for which
the energy |lu(t)||3 tends to zero (see e.g. [4]). Note that for n = 3,4, all Leray-Hopf
solutions with generalized energy inequality fulfil the necessary smallness assumption
after some time Tp; see the discussion in [3] or [6].

Suppose now that ||u(t)||2 < ep(t) with ¢(0) < 1 and

(1) e(t)\Ofort /oo and @(vt) <c,p(t)forallt>0, y<1

with ¢, independent of ¢. This is surely true for algebraic decay rates ¢(t) = (1 +¢)~#
with g > 0, which in turn may be concluded from additional assumptions on the initial
value, as e.g. a € L, with some p, 1 < p < 2, see e.g. Wiegner [4].

From [7] we then know that for t > 0, |u(t)]e < co(t)t=™* and || Du(t)|s <
co(t)t=t for |a] = 2.
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Now the question arises how higher order derivatives behave. Note that even the
finiteness of || D®u(t)||2 for |« > 3 is not a priori clear. In fact, in [3], M. E. Schonbek
and the author had to restrict the dimension to n < 5, in order to show that ||D*u(t)||2 <
ct=Uel/2+1) for all o if p(t) = (1 +1t)7H.

We are going to prove the same result also in dimension 6 and 7 and at the same time
simplify the proof for n < 5. It seems likely that also pointwise space-time estimates may
be derived as in the paper [1] of Amrouche, Girault, M. E. and T. P. Schonbek, which
used the results of [3], hence was also restricted to n < 5.

THEOREM. Let n < 7,a € Ly, N Ly with ||al|, small enough, so that u(t) is a global
smooth solution. Let [|u(t)|s < co(t) with ¢ fulfilling (1). Then

[ D%u(t)||a < cp(t)t™1*1/2  for all a € N.
For the proof we start with

LEMMA 1. Let
ID*0[3 = > | D*]].

|a]=2
Then
2
D2 (ujur) || < ellullZ | D*ul3.

PROOF. As

an 2 Guk 2 82U' Buk 2 ou; 8uk 82uk

— — ) dz=-— ; L2 ) do—2 P
/<0xa> <8x5 v /uj 0x2 \ Ozg v /u] Oty Oxg 0x,0x3 v

we get

/ |Vu|* da < c/ lu| |D*u| [Vul? dz,
hence
/|Vu\4da: < 6/|u|2|D2u|2da:.
Therefore
HDO‘(ujuk)H; < c/ |D%ul|?|u)? dz + c/ |V |2 Vug|? de < c/ |D?ul?|u)? de,
implying the claim. =
The next lemma gives a convolution estimate.

LEMMA 2. Let (&) denote the Fourier transform. Then for ¢ >0, 1 <p <2,

ligra @O, < e, ¥ 1+ =+
PRrROOF. As
() = T
we have

GO < [ [aGolfate =l du
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Therefore
|[€|9a5uk (€)| < 0/ ()] [p|? (€ = p)l dpe + 6/ ()] [u(€ = w) 1§ — pl* dp
= 2cfu(€)] = [u(€) €|
= ||l17aur(€) |, < cllallp|[a)lel?],
by the convolution estimate. m
Now we are in the position to prove the theorem.

PROOF OF THE THEOREM. With the help of the Fourier transformation the solution
may be represented as

—~ _ ~ s 2 —
@(t,€) = (35 — &€l ™) (125 2/2,€) > / N iy (s, €) ds )
Choose first p with max{1, 5 +n} < p < 775 (this causes the dimension restriction). Then

la)l, < [l 2a(/2)|, +Z/ e gyizain(s, &), ds

< clfate/2)|ylle™ "y, 0

Y [ e e, i

t

< cw(t)t—n(Z—p)/(‘ip) + c/ (t — s)_"@_p)/(‘lp)“/g||u(s)||ooHD2u(s)
t/2

< C(p(t)t—"(Q—P)/(Alp) + ct3/2_"(2_p)/(4p)<p2(t)t_1_n/4

I, ds

if —-(2 - p+i>-lep>2 2.
Hence [[ii(t)]], < ep(t)t 2=/ (),
Now we may estimate after multiplication by |£]™:

[1€1™a(t)]|, < |[1€™e e 2t /2)]|,
t
" CZk: /t/2 H |£|qu/]u\k(§) ||'r || |€‘m+liqei(tis)|£|2 ||2T/(T72) ds
Js

with r = ;Tpp > 2 and get
1™ a@)]], < ct™™2(|u(t/2)]5

t
+C/ ()| [€1%(s) || , (£ = 5) = HF/2mmr=2)/00 g
t/2

withg=m —¢e,¢>0.
Suppose now that

(+) llgl“a0)]], < o).
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Then
1€ a@t)]], < co(tyt—m/2

t
Lo / P2 (5)s~M2P)/ () g=a/2(4 _ )= (14e)/2-n(1-1/p)/2 g
/2

as 52 = (% - 2)/(%) =1~ 1, and therefore

|H§|ma(t)||2 < C(p(t)tim/Z +c¢2(t)t7m/2tn/4+1/27n/2 < C@(t)tim/a

provided 1€ 4+ Z(1 — %) <1l&e+n(l- %) < 1. Such an € > 0 can be chosen if

p < 777; hence the estimate (*) can be improved by induction for all ¢ > 0, giving
| DFu(t)||2 < erp(t)t=*/2 for all k € Ny. =

REMARK. By interpolation, for 2 < p < co and j € Ny we have the estimate
ID7u(t)ly < cspiplt) #1222
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