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The Klein-Gordon equation is the equation for relativistic wave-propagation

(KG)
∂2
t uo −∆uo +m2uo = 0, x ∈ Rn, t ≥ 0

uo|0 = ϕ, ∂tuo|0 = ψ, x ∈ Rn,

where m > 0, ∆ =
∑n

j=1 ∂
2
xj (n ≥ 3). The nonlinear counterpart, extensively studied

since early 1960’s, is

(NLKG)
∂2
t u−∆u+m2u+ f(u) = 0, x ∈ Rn, t ≥ 0

u|0 = ϕ, ∂tu|0 = ψ, x ∈ Rn,

where f(u) is a nonlinear function, f(u) ∼= |u|ρ−1u; modified at 0 if necessary, to be

smooth enough, and with

1 +
4

n
< ρ <

n+ 2

n− 2
= ρ∗.

The conditions on f will be made precise below.

Our paper will describe the behavior of local energy and of Lp-norms of solutions to

the KG and NLKG for large values of time. We will assume that F (u) =
∫ u

0
f(v)dv ≥ 0.

The energy

E(t) =
1

2

∫ (
|∂xu|2 + |∂tu|2 +m2|u|2

)
dx+

∫
F (u)dx

is a conserved quantity, E(t) = E(0). Let Xe = H1
2 × L2 with norm ‖ · ‖e defined by

‖u(t)‖2e = ‖u(t)‖2H1 + ‖∂tu(t)‖2L2
.

Our assumptions on ρ and f imply that

E(t) ≤ C‖u(t)‖2e.
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Correspondingly, for Ω ⊂ Rn we define the local energy by

EΩ(t) =
1

2

∫

Ω

(
|∂xu|2 + |∂tu|2 +m2|u|2 + 2F (u)

)
dx

and Xe(Ω) is defined by replacing the global spaces and norms in the definition of Xe

by the corresponding local spaces and norms. The local energy as defined is no longer a

conserved quantity (to get conservation of energy, one has to work with the whole surface

of the light cone).

Global estimates in space-time (Strichartz estimate) for the KG (Strichartz [19],

Segal [15], . . . ): If the data ϕ, ψ belong to Xe, then

‖uo‖Lp(L
1/2
p )
≤ C(‖ϕ‖H1 + ‖ψ‖L2

) ≤ C‖uo(0)‖e

where p ≥ 2, δp = 1
2− 1

p = 1
n+1 . More general, but also much more complex, estimates that

bound u0 in Lq(R, H
s
p(Rn)) are available (Strichartz [19], Marshall-Strauss-Wainger [11],

Brenner [2]; a good exposition is given by Ginibre and Velo [6]). One such example we

will use is that if the data belong to Xe then

uo ∈ L2(R, Hγ
p (Rn)),

where δ =
1

2
− 1

p
∈
( 1

n
,

1

n− 1

)
and γ =

1

2
− 1

n− 1
.

Space-time integrals of solutions of NLKG. Let uo be a solution of KG with the

same data at t = 0 as u, the solution of NLKG. Assume that the data has finite energy

(i.e. u(0), ∂tu(0) belong to Xe). Then one example of a Strichartz-type estimate for the

NLKG due to the author [4] is that if

(1)

δ =
1

2
− 1

p
, 0 ≤ σ ≤ s ≤ 1, θ ∈ (0, 1],

s− σ
1− σ < ρ− 1, (n+ 1 + θ)δ ≤ 1 + s− σ,

(n− 1− θ)δ < 1 < (n− 1 + θ)δ

then

if uo ∈ Lq(R, Hσ
p (Rn)) then u ∈ Lq(R, Hσ

p (Rn)).

In view of our previous example, if the data belong to Xe, then the conditions above are

satisfied for 0 ≤ σ ≤ γ and 1
n < δ < 1

n−1 , and hence

u ∈ L2(R, Hγ
p (Rn)).

The following is a result on (local) energy decay: Let Ωt = {ε(t)t ≤ |x| ≤ (1− ε(t))t},
where 0 < ε(t) < 1, ε(t)→ 0, as t→∞. Let Yt = H1

2 (Rn \ Ωt). Then

Energy Decay Theorem (Strichartz [20]). Let uo be a finite energy solution of the

Klein-Gordon equation. Then

‖uo(t)‖Yt → 0 as t→∞.
Earlier Morawetz [12] proved a result about energy decay on compact subsets Ω of Rn:
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Local Energy Decay Theorem (Morawetz [12]). Let n = 3 and assume that u is

a solution of the NLKG, which is locally a classical solution. Then

EΩ(t) ∈ L1 and EΩ(t)→ 0 as t→∞.
In particular,

‖u(t)‖L2(Ω) ∈ L2 and tends to 0 as t→∞.
We will study the behavior of u(t), a solution of NLKG with finite energy data. Let

Ω be a compact subset of Rn, and let |Ω| denote the volume of Ω in Rn. Then

‖u(t)‖L2(Ω) ≤ |Ω|δ‖u(t)‖Lp(Ω)

where as before, δ = 1
2 − 1

p . If 1
n < δ < 1

n−1 then as mentioned above ‖u(t)‖Lp ∈ L2,

which proves that

‖u(t)‖L2(Ω) ∈ L2 .

In addition, we may use the existence of solutions of the Klein-Gordon equation

approximating u in the following sense

Scattering Theorem (Brenner [2], [3], [4]). There exists an everywhere defined

scattering operator on Xe for the NLKG.

In particular there is a solution u+ of the Klein-Gordon equation with finite energy

such that

‖u(t)− u+(t)‖e → 0 as t→∞.
We conclude, using that u+(t) is uniformly continuous in H1

2 , that u is uniformly contin-

uous in L2(Ω). The integrability then implies that

‖u(t)‖L2(Ω) → 0 as t→∞.
Notice that this result, as well as the extension of the Energy Decay Theorem to the

solution of the NLKG, follows from that theorem and the Scattering Theorem above. We

have

‖u(t)‖Yt → 0 as t→∞
where again Yt = H1

2 (Rn \Ωt), with Ωt = {ε(t)t ≤ |x| ≤ (1− ε(t))t}, where 0 < ε(t) < 1,

ε(t)→ 0 as t→∞.

There has been a number of results on pointwise decay in Lp(R
n) of solutions of

the NLKG over the years by e.g. Strauss [17], Morawetz and Strauss [13], Pecher [14],

Brenner [1], [3], [4], . . .

Pointwise Lp Decay Theorem (Brenner [4]). Let u be a solution of NLKG with

sufficiently nice data (data which have sufficiently many derivatives in L1, say). Then if

δ = 1
2 − 1

p < min( 1
n−1 ,

ρ−1
4 ), p ≥ 2, then

‖u(t)‖H1
p
≤ C(1 + t)−nδ.

The work of Grillakis ([8], [9]) on classical solutions for the nonlinear wave equation

for critical exponents ρ = ρ∗ proves that we in this case may use δ = 1
2 for n = 3 (and

p = ∞). This result can be extended to the NLKG. The choice δ = 1
n−1 probably also
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holds for n ≤ 6, even in the critical case ρ = ρ∗. Using the Pointwise Lp Decay Theorem

and our previous estimate of u in Lp(Ω), we get

Local Pointwise Lp Decay Theorem. Let n ≥ 3, and let δ < 1
n−1 . Then

‖u(t)‖H1
2 (Ω) ≤ C

( |Ω|1/n
1 + t

)nδ

for sufficiently “nice” data.

Comment. For n = 3, we may allow δ = 1
2 , as mentioned above. We hope to come

back to this and related questions at a later occasion.

Example. Let Ω = Ω(t) with |Ω(t)| ≤ tαn, 0 ≤ α < 1. Then

‖u(t)‖H1
2 (Ω(t)) ≤ Ct−(1−α)nδ.

Notice that only the size, not the actual position of Ω is involved.

The largest δ-value for which we get decay results for solutions of the NLKG is de-

termined by the singularities of the map

Lp 3 v → E(t)v ∈ Lp, 1/p+ 1/p∗ = 1,

where the solution of the Klein-Gordon equation is given by u(t) = F (t)φ+E(t)ψ, with

φ = u(0), ψ = ∂tu(t). Much indicates that δ ≤ 1
n−1 , including results on classical solutions

for critical case exponents, ρ = ρ∗. Notice also that the maximal rate of decay for the

solutions of the Klein-Gordon equation seems to be O(t−n/2) in Lp(Ω), Ω ⊂⊂ Rn, p ≥ 2.

More should not be expected for sets Ω ⊂ {|x| ≤ t}, in contrast to the rapid decay of

solutions of the wave equation in sets away from the light cone.

We will next give a lower bound for the decay in the context of global Lp-norms.

Theorem. Let u ∈ Xe be a solution of the NLKG, n ≥ 3 and with f satisfying

conditions (i) through (iii) from Appendix 2. Assume that u ∈ Lloc
q (R, Lloc

p (Rn)), with

q, p ≥ 2, and δ = 1
2 − 1

p . Let

Xt = Lp({|x| ≤ t}) ⊇ X = Lp(R
n).

Then there is a constant c > 0 such that
( 1

T

∫ t+T

t

‖u(τ)‖qXτdτ
)1/q

≥ ct−nδ,

for t ≥ 1, and t ≥ T > 0.

Comment. We may replace Xt in our Theorem by Yt = Lp({ε(t)t ≤ |x| ≤ (1−ε(t))t})
where ε(t) denotes any positive function that tends to 0 as t→∞.

Proposition. Let uo be a non-trivial finite energy solution of the Klein-Gordon equa-

tion. Then there is a constant co = co(data) > 0 such that

‖uo(t)‖L2(Rn) → co > 0.

Lemma. Let u be a finite energy solution of the NLKG. Then there are constants

co = co(data) > 0 as above and t∗ ≥ 1, such that

‖u(t)‖H1
2 (|x|>t) → 0 as t→∞
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and
1

8
co ≤ ‖u(t)‖2L2(|x|≤t), t ≥ t∗ .

Proof. The first statement follows from the Scattering and Energy Decay theorems.

The second follows from that and the Proposition.

Proof of the Theorem. The steps of the proof of the Theorem are now obvious

(following Glassey’s proof for the Klein-Gordon equation [7]):

1

8
co ≤ ‖u(t)‖L2(|x|≤t) ≤ ‖u(t)‖Lp(|x|≤t)t

nδ

and the results follows by taking the meanvalue over (t, t+ T ) for t ≥ T .

Proof of the Proposition. Let F denote the Fourier transform, let B(ξ) = (|ξ|2 +

m2)1/2 and Bu(x) be the inverse Fourier transform of B(ξ)Fu(ξ). Define

Φ =
1

2
(φ+ iB−1ψ) and Ψ =

1

2
(φ− iB−1ψ)

where

φ = u(0), ψ = ∂tu(0).

Then the solution u of the Klein-Gordon equation can be written in the form

u(t) = exp(itB)Φ + exp(−itB)Ψ

and, using duality, we have∫
|u(t)|2dx =

∫
|Φ|2dx+

∫
|Ψ|2dx+ 2 Re

∫
exp(2itB)ΦΨ̄ dx.

Now, by Parseval’s formula, using the notation v̂ = Fv, we obtain∫
exp(2itB)ΦΨ̄ dx =

∫
exp(2itB(ξ))Φ̂(ξ)

¯̂
Ψ(ξ) dξ.

Since gradξ B(ξ) 6= 0 for ξ 6= 0, and Φ,Ψ belong to L2, as well as their Fourier trans-

forms (so that the products belong to L1, respectively), we can apply the (generalized)

Riemann-Lebesgue lemma to see that the right hand side tends to 0 as t→∞. Since∫
|Φ|2dx+

∫
|Ψ|2dx =

∫
|φ|2dx+

∫
|B−1ψ|2dx,

the Proposition is proved.

Appendix 1. Strichartz estimates. Let u be a solution of the Klein-Gordon equa-

tion with data in X
1/2
e = H

1/2
2 ×H−1/2

2 . Let 0 ≤ σ ≤ 1
2 , 2 < r ≤ q and let δq = 1

2 − 1
q

and δr = 1
2 − 1

r . Then

uo ∈ Lloc
r (R;H1/2−σ

q (Rn))

provided

(n+ 2)δq ≥ 1 + 2σ,(α)

nδq + δr ≤ 1 + σ.(β)

We may replace Lloc
r by Lr (global in time estimate) if in addition

(γ) σ ≥ δq − δr (≥ 0).
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If r = 2 (that is δr = 0), equality in (β) and (γ) is not allowed. This could be handled

by using weaker spaces, e.g. Besov spaces of suitable order. For the wave equation, only

(α) and (β) with equality matter (and local = global). In this case we use homogeneous

Sobolev norms. We may also replace Lr by Hs
r if we replace σ by σ + s.

The proof is based on some duality and restriction estimates, and then a careful use

of Besov space estimates. We refer the reader to [2] and [6].

Appendix 2. Conditions on the nonlinearity of f . Let f(u) ∈ C1 with f(R) ⊆ R

and assume that

(i) F (u) =

∫ u

0

f(v)dv ≥ 0,

(ii)
|f ′(u)| < |u|ρ0−1, |u| ≤ 1

|f ′(u)| < |u|ρ1−1, |u| ≥ 1

where

1 +
4

n
< ρ0, ρ1 <

n+ 2

n− 2
= ρ∗,

(iii) uf(u)− 2F (u) ≥ αF (u) for some α > 0 and F is not flat at 0 or ∞.

The last condition ensures that we avoid local concentration of energy.
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