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1. Introduction. The purpose of this paper is to analyze the properties of the solu-
tion map

(ug,uy) — u(t,x)
to the Cauchy problem for the wave map equation
ey — Au+ (Jug|* — |Veul?)u =0
with initial data
u(0, z) = up(x), ue (0, ) = uq (x),

in the case when z € R? and the target is the unit sphere S™ (embedded in R"*1), n > 2.
Thus

u: Ry x RZ — 8"
and we have the additional constraint |u| = 1.
For this problem several results of global well-posedness are available under suitable
smallness assumptions on the initial data (see [4], [12], [13], [7]). Moreover, the existence
of a global weak solution in H! is known ([6], [14], [1]) and the existence and uniqueness
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of smooth solutions under suitable assumptions of symmetry is well-known for the case
of geodesically convex two-dimensional targets (see [8], [2]). For the case of target S? the
existence of smooth classical solutions was recently proved by Struwe [10].

A basic question still open concerns the well posedness, even local in time, in the
energy space, i.e., for data in H' x L?. This problem is strictly related to the properties
of continuity and regularity of the solution map. Indeed, the classical definition of well-
posedness implies in particular the continuity of this map; even in a modern sense, we
may remark that the standard proofs of existence and uniqueness, which resort to some
contraction method, have as a natural consequence the Lipschitz continuity of that map.
To quantify this property, denote by E(t,u) the energy of a solution w at the time ¢:

E(t,u) = [|8gu(t, )||72gz) + IVoult, )72 ma)-

Then we may say that the solution map is Lipschitz continuous if we may find a constant
C such that for any two solutions u, v the following inequality holds:

(1) E(t,u—v) <CE(0,u—v), vt € [0,1].
Note that in this definition the existence of the solution map is not assumed.
The solution map is locally Lipschitz continuous if for any solution u one can find
positive constants §, C' such that for any solution v with
E0,u—v) <§

the inequality (1) holds.
Our goal here is to show, by a suitable counterexample, that the solution map is not
locally Lipschitz continuous. More precisely, we prove the following:

THEOREM 1. There exists a smooth solution v : R x R?2 — S™ to the wave map
equation, such that for any C > 0, § > 0, we can construct a smooth solution v :
R x R? — S to the wave map equation so that

E(0,u—v)<$§
and the Lipschitz condition (1) is not satisfied at t = 1.

We remark that the solutions used in the counterexample are radially symmetric,
hence the symmetry assumption does not improve the regularity of the solution map.

2. Well-posedness of the Cauchy problem for semilinear wave equation.
The linear wave equation

(2) OPu— Au=0

with initial data

(3) u(0,z) = up(z) € HY(R™), du(0,z) = ui(z) € L*(R™)
satisfies the energy estimate

(4) IVau(®)lle + 10u(®)l L2 < C ([ Vauollzz + lluillz2)

provided the initial data ug,u; belong to the Hilbert space
(5) H = H'(R") x L}*(R").
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Therefore for any T' > 0 we have a data-solution map R defined in H with values in
C(I;H), I = [-T,T] so that u(t,z) = Ro(uo,u1) is a solution to (2) in distribution sense
in (=7,T) x R™ and satisfies the initial conditions (3).

Moreover, Ry is a bounded (hence continuous) linear operator

Ry : (ug,u1) € H— C(I; H).

A slight generalization of the above definition can be done by taking Banach space

X = X(I) CC(I; H) such that Ry restricted to H is a continuous linear operator
Ry : (uo,ul) e H—-X.

Now we can consider the nonlinear Cauchy problem
(6) Oiu— Au= F(u), t € [-T,T], z € R"
with initial data (3). Here F is a continuous map
(7) F:ueX—-FueY

and Y is a subset of the space of distributions D'((—T,T) x R™). The classical well-
posedness usually is connected with the continuity of the mapping data-solution,
(up,u1) — u(t). More precisely, we shall say that the Cauchy problem (6) is well-posed
in H if there exists a Banach spaces X = X(T) C C(I, H) and one can find a positive
r > 0 and a continuous operator

R: {(uo,ul) € H: ||(U(),U1)HH < ’I’} — X :X(T),

so that u(t) = R(ug,u1)(t) is a solution in distribution sense of (6) and satisfies the
initial condition (3). The well-posedness of the Cauchy problem for the wave maps in
(t,xz) € R x R is studied in [11].

In [3] even weaker regularity of R is assumed, namely the uniform continuity of the
mapping data-solution is studied for the case of Schrodinger type equations.

In the case when a standard contraction argument (see [9]) works one can show that
the mapping

R : (ug,u1) — u(t)

is locally Lipschitz continuous. More precisely, one can find a positive » > 0 and C' so
that

(8) |u—dllx < Cll(uo,ur) — (to, @)l

for (ug,u1) € H, (g, @1) € H, satisfying

(9) ([ (wo, wi)l[#r + [0, @) | < 7.

3. Stereographic projection for wave maps. The Cauchy problem for wave maps
is the semilinear problem

(10) (ug — Au) + Q(Ou)u = 0,
with initial data

(11) u(0,z) = up(x) € HY(R?), dyu(0,z) = u(z) € L*(R3?),
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where

(12) Q(9u) = |0ul* — |Vyul’.

Our first step is the reduction of the vector-valued wave equation (10) to a scalar one.
For the purpose, we compose the wave map

u: (t,r) e R xR? — u=u(t,z) € S§?

with the stereographic projection

(13) u = (u1,ug,u3) €S? — z € CU oo,
where
oy + 1us
14 ug
and the south pole S = (0,0, —1) is mapped in co. The inverse map is
2Rez 2Imz 1—|z?
14 = —0F, = s = .
(1) BETERE 2T TR P T TP

The metric induced by the projection is (1 + |2]?)?|dz|?.
The lines through the origin are geodesics on C. Hence, we can take a geodesic of
type
~v:Imz = h(Rez), h(s) = As
in C, where A is a real constant. This geodesics generates a wave map u = u, (see [7]).
Indeed, taking
X(t,z) = Rez(t, z),
from (14) we get
2X 2h(X) 1—X2-h%(X)
TR X R T TR XE R0 Y T T XE T R
Substitution of this ansatz into the wave map equation gives the following scalar equation
(16) M(X)DX — L(X)Q(0X) =0,
where
L(X) = 4h(X)W (X)(-3X% + h*(X) + 1)
— (1= (W(X))?)(2X® — 6XR2(X) — 2X),
M(X)=—=X*+ (1+h*X))* - 2X°h(X)N'(X)
—2X (14 A(X))W( X)W (X).
To verify that the wave map equation is reduced to this scalar equation, we start with
the relation

(15) U1

(17)

92X B 1— X2+ h*(X) - 2Xh(X)W(X)
09 ey = 2o (e )
2h(X) - —2XR(X)+ (1 + X% — R2(X))h'(X)
09 n e = 25X ( (1+ X2+ 2 (X))’ )
and
1- X2 - n2(X) X + hX))K' (X)
(20) S i R (e )



ON LIPSCHITZ CONTINUITY OF THE SOLUTION MAP 99

The above three relations imply

1+ (M(X))?
1+ X2+ h2(X))2
For the second derivative (note that h” = 0) we have

(22) a 2X 20,0, X) My (X) — 4(0, X )2 Ly (X)
TE1+ X2+ R2(X) (14 X2+ h2(X))3 ’

(21) Q(du) = 4Q(9X)

where

Li(X) = X(1+ X* +1*(X))(1+ (R (X))?)

(23) +2(X + h(X)W (X)) (1 — X% + h*(X) — 2X h(X)h' (X)),
M; = (1— X2+ h*(X) - 2Xh(X)W(X))(1+ X2 + h*(X)).

These relations imply

( 2X ) _ 2(0X)My(X) —4Q(0X)L1(X)

1+ X2 4 h2(X) (1+X2+h%(X))3 ’
so combining this identity and (21), we obtain (16).
In the special case h(X) = AX, where A is a real constant, we obtain

(24)

L(X) =4A2X (-3X?2 + A’X? +1) - 2X (1 — A*)(X? - 34%X?% 1)
=2X(1+ A% (1 — X2(1 + A?%)),
M(X)=—-X*4+ (14 A2X?%)2 - 24%2X* —242X?(1 + A%2X?)
= (1 - X214 A?)(1+ X3(1 + A42)).
The equation (16) suggests us to take X so that the equation

(25)

(26) O0X + f(X)Q(0X) =0
be satisfied. Here
(27) FX) = 2X(1+ A%)

1+ X2(1+ A2)°
It is clear that (26) implies (16). This scalar nonlinear wave equation can be transformed
into linear wave equation (see [5]) by the aid of the transform

X s
Y = G(X) = / FO) s F(s) = / f(0) do.
0 0
So using (27), we find F(s) = —In(1 + B%s?), where B = /1 + A2 and
Y = B! arctan(BX).
In conclusion, given any solution of the linear wave equation
(28) oy =0

the function

(29) X = B~ 'tan(BY)
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is a solution of the scalar nonlinear wave equation (26) and from (15) we see that the
function u = w4 (¢, x) defined by

in(2BY Asin(2BY
(30) ulz%, mz%, ug = cos(2BY), B=+1+ A2
is a wave map. The special solutions of (28) we shall use have the form
d
(31) Y(t.o)=Re [ sin(re)e=0p(e) oF
R? gl

With this choice we have
Y(0,2) =0, [|[0:Y (¢, )|z + [[VaY (¢, )|[2 < Cllellre

for any ¢ > 0. These relations and (30) imply

[0rua(0, )l L2 + [[Vaua(0, )|z < Cllel Lz,
(32) 071|A1 - AQ‘ H‘PHL2
< Hat(uAl(O ) —ua,(0 )HL2+HV (uAl(O ) —ua,(0 )HL2
Sﬂ&*AMMW

with some constant C' independent of ¢, A, A1, As. Indeed, we have

Bua(0) = 8,Y (0,2)(2,24,0), Voua(0) = V,Y(0,2)(2,24,0).

4. The solution map for wave maps is not Lipschitz continuous. Take two
real numbers A, A such that

0< A< A,

A is close enough to A, and consider the wave maps u4 and u 4 constructed in (30). If
the solution map is Lipschitz continuous, then the estimate (32) implies that

106 (ua(t, ) = wi(t, )z + [Valualt,) —uzt, )z < ClA = Alfollz.
Dividing by |A — A| and taking the limit A — A, we get
10:0aua(t, )2 + [Vaaua(t,)ll2 < Clle] L2
From (30) we obtain
24 A
Oauy = ﬁY cos(2BY) — o sin(2BY),
2A? I
Oaug = ?Y cos(2BY) + o sin(2BY),
24
Oaus = ffY sin(2BY).
Taking the time derivative, we find the following pointwise estimate
10:0aua(t, z)| = Co(A)|Y (¢, 2)[|0:Y (¢, )] — CL(A)[0:Y (¢, )],
where C(A) > 0 provided A > 0. For space derivatives we have an analogous estimate

[VaOaua(t,z)| = Co(A)Y(t, ) [V Y (E,2)] — CL(A) V.Y (E, 2)|.
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Therefore, we take A > 0, say A = 1, fix it and then the assumption that the solution
map is Lipschitz continuous implies that

Co(AY (¢, )0 Y (t, )|z + Co(AY (£, )V Y (£, )| 2
— CL(A)[0Y (1) |22 = CL(A) VY () |2
<N0:0aualt, )|z + IVaDaualt, )| L2 < Clle] L2
From (31) we have the classical energy estimate
18:Y (¢, )l 2 + IV2Y ()2 < Clle]| 22
and we arrive at
(33) 1Y (£, )0:Y (8, )2 + Y (&, ) VLY (2, )2 < Cligl| 2

Recall that this estimate is valid locally, i.e. only for ||¢|/r2 < r according to (9). It is a
standard argument that shows that the estimate (33) with ||¢||zz < r implies the scale
invariant estimate

(34) 1Y (t,)0:Y (t, )|l 22 + Y (£, ) VoY (2, )22 < CllellZ

without any upper bound on ||¢||zz. It is clear also that if the estimate (34) is valid for
real valued functions Y, then the same estimate is valid for complex valued functions Y
so we can take

3

(3) Vt.a) = [ st (6

In the remaining part of this section we shall show that the estimate (34) will lead to
a contradiction.
In fact, the estimate (34) will imply

(30 [ @y @ oG ae| < ol
for any U € L2. Using the Plancherel identity and (35) we see that this inequality yields
on | [ e neostiehsinthio© s | < Clwli ol
Given any even integer M > 2, we set (compare with [5])
1

(38) om(§) = HAM) ——7%—

€]/ [¢]
where
(39) Ay ={¢eR?:2 < [¢] < M, dist(|¢],8Z+ 1) < 1/2}

and H(A) denotes the characteristic function of the set A. The condition dist(|£|,8Z+1) <
1/2 is needed to assure the inequality
(40) o (&) sin(tol€]) = Coonr(§) 2 0, @r(€) cos(tolé]) = Conr(§) > 0
with C' > 0 and to = w/4. For ¥ we take
— 1
41 Upy)=H2<|{|<M)———F——.



102 P. D’PANCONA AND V. GEORGIEV

For any M > 3 we have the estimates
(42) lemllzmey < C, [[Wmllz2mzy <C

with some constant C independent of M > 3. Further, we take N € 8Z + 1 and M €
16Z + 1 so that

M
3<N <L -
Using the non-negativity property (40), we find

[ [ site =y costalel /) sintalalApons (onrt e T

_ i
¢ - ¢ — .
= /<M<N/|>2N W (€ = menm (€)en(n) §|77|

For [¢] > 3,|n| > 3 and |n| < |¢|/2 we have

€ = nl ~[¢], W€ = n| ~ Infg].
So the estimate (37) and the definition (41) of Uy lead to the estimate

©) dn
(13) Lo wln)de M <0
s<inl<n Jigi>2n €] 1n9/16 &” Il
with some constant C' > 0 independent of M, N. Now the definition (38) of ¢js implies
dn 1 3/8
e (n) — ~ ——s YN
/3<|n|<N Ul Z jln5/8j

2<j<N, je8Z+1

In a similar way

/ om(€) ¢~ Z 1 N 1
€1>2n €] Y6 |¢] 2N§j§M,j€8Z+1jln9/16+5/8j /16

provided M > N2. Consequently, the estimate (43) will lead to
m** N < C

with C' > 0 independent of N. This estimate is an obvious contradiction. This concludes
the proof of Theorem 1.
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