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1. Introduction. This article reports joint work with Ingo Witt of Potsdam Uni-

versity, Germany, and intends to give an overview on how to apply the theory of edge

Sobolev spaces to weakly hyperbolic Cauchy problems. Edge Sobolev spaces are natural

spaces for functions living on manifolds with edge type singularity, and have been used

successfully in the investigation of elliptic boundary value problems on such manifolds,

[8], [15].

The hyperbolic operators considered here are of the form

L = ∂2
t + 2

n∑

j=1

λ(t)cj(t)∂t∂xj −
n∑

i,j=1

λ(t)2aij(t)∂xi∂xj

+

n∑

j=1

λ′(t)bj(t)∂xj + c0(t)∂t,

(1.1)

where (t, x) ∈ R × Rn, ∂t = ∂
∂t , ∂x = ∇x, the coefficients aij , bj , cj ∈ C∞([−T0, T0],R),

and λ(t) = tl∗ with some l∗ ∈ N+ = {1, 2, 3, . . .}. The operator L is supposed to be

(weakly) hyperbolic, i.e., the characteristic roots τ = τ(t, ξ), defined as solutions to

τ2 + 2

n∑

j=1

λ(t)cj(t)τξj −
n∑

i,j=1

λ(t)2aij(t)ξiξj = 0, ξ ∈ Rn,

are real-valued. We assume strict hyperbolicity in case t 6= 0. In other words, these roots
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are distinct for t 6= 0, more precisely,
( n∑

j=1

cj(t)ξj

)2
+

n∑

i,j=1

aij(t)ξiξj ≥ α0|ξ|2, α0 > 0, ∀(t, ξ) ∈ [−T0, T0]× Rn.

Hyperbolic operators with coinciding charateristic roots are called weakly hyperbolic, and

can exhibit astonishing phenomena not observed in the strictly hyperbolic case. These

phenomena depend in a crucial way on the coefficients of the lower order derivatives ∂xj .

For instance, if the influence of these coefficients is “too large”, then the Cauchy problem

with initial data prescribed at t = 0 is not well-posed in C∞. As shown in [9] and [11], nec-

essary and sufficient for the C∞ well-posedness is that the t-exponent of these coefficients

be at least l∗ − 1.

If these so-called Levi conditions are satisfied, then we have well-posedness of (even

quasilinear) Cauchy problems in the function spaces Ck([0, T ], Hs(Rn)) for large s (see

[10], [11], [13]) and in Ck([0, T ], C∞(Rn)) ([2], [4]). For an interesting counter-example,

see [3].

As the simplest possible example, consider the operator

L = ∂2
t − t2∂2

x − (4m+ 1)∂x, m ∈ N.(1.2)

In [12], Qi constructed the solution v = v(t, x) to Lv = 0, v(0, x) = v0(x), vt(0, x) = 0:

v(t, x) =

m∑

j=0

Cjmt
2j(∂jxv0)(x+ t2/2), Cjm 6= 0.(1.3)

This explicit representation shows two facts. First, the solution suffers from a so-called

loss of regularity : v0 ∈ Hs(R) only implies v(t, ·) ∈ Hs−m(R). If s − m < 5/2, then

this simple Cauchy problem has no classical solution. Second, singularities of the initial

datum v0 propagate only to the left. The right characteristic transports no information

at all.

We can observe even more phenomena when we prescribe initial data at the line = −1,

and pass through t = 0. Singularities will branch, but not always. In [16], Taniguchi and

Tozaki studied the Cauchy problem

vtt − t2l∗vxx − bl∗tl∗−1vx = 0, (∂jt v)(−1, x) = vj(x), j = 0, 1,

and assumed that the initial data have a singularity for some x0. Since the equation is

strictly hyperbolic for t < 0, this singularity propagates, in general, along each of the two

characteristic curves starting at (−1, x0). When these characteristic curves cross the line

t = 0, they split, and the singularities then propagate along four characteristics for t > 0.

However, in certain cases, determined by a discrete set of values for b, one or two of these

four characteristic curves do not carry any singularities, see Figure 6 in Section 6.

The theory of edge Sobolev spaces will enable us to show that semilinear versions of

the Taniguchi-Tozaki example behave in the same way.

The linking element between the theory of edge Sobolev spaces and the theory of

weakly hyperbolic equations are so-called edge-degenerate differential operators, which

are the typical differential operators on manifolds with edge singularities. The operator
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L from (1.1) can be written in the form

L = t−2P (t, t∂t,Λ(t)∂x), Λ(t) =

∫ t

0

λ(t′) dt′,

where P (t, τ, ξ) is a polynomial in (τ, ξ) of degree 2; and every operator of this form is

edge-degenerate.

We will define edge Sobolev spaces Hs,δ;λ((0, T ) × Rn), where s ≥ 0 denotes the

Sobolev smoothness with respect to (t, x) for t > 0 and δ ∈ R is an additional parameter.

More precisely, the following embeddings are continuous:

Hs
comp(R+ × Rn) ⊂ Hs,δ;λ((0, T )× Rn) ⊂ Hs

loc(R+ × Rn).

In order to handle the loss of regularity, the elements of the spaces Hs,δ;λ((0, T )×Rn)

have higher Sobolev smoothness at t = 0 in the following sense: There are traces τj ,

τju(x) = (∂jt u)(0, x), with continuous mappings

τj : Hs,δ;λ((0, T )× Rn)→ Hs−βj+βδl∗−β/2(Rn), β =
1

l∗ + 1

for all j ∈ N, j < s− 1/2.

Roughly speaking, these specially crafted function spaces are able to absorb the loss

of regularity, if the parameter δ is chosen suitably. This will allow to attack semilinear

versions of this Cauchy problem by standard fixed point arguments, giving the existence

of a solution for small times. Remember that the usual iteration procedure cannot be

applied in the case of the standard function space C([0, T ], Hs(Rn)), since we have no

longer a mapping which maps this Banach space into itself.

The idea to choose a special function space adapted to the weakly hyperbolic operator

has also been used in [5], [6], and [14].

The paper is organized as follows. We briefly sketch the theory of general edge Sobolev

spaces in Section 2. In Section 3, the special edge Sobolev spaces Hs,δ;λ((0, T )×Rn) are

constructed and their properties are presented. Details of the proofs are available in [7].

If we prescribe initial data at t = −T , we need so-called double-sided edge Sobolev

spaces Hs+,s−,δ+,δ−;λ((−T, T ) × Rn), which are defined in Section 4. The proof of the

Hs,δ;λ((0, T )× Rn) well-posedness of linear and semilinear Cauchy problems for the op-

erator (1.1) is sketched in Section 5. The details of the proofs can be found in [7]. A

semilinar version of the Taniguchi-Tozaki result is given in Section 6. For details, see the

beginning of Section 6.

Finally, we remark that all results presented here are valid for l∗ = 0, too. They then

coincide with the classical results of the strictly hyperbolic theory.

2. Differential operators and Sobolev spaces on manifolds with singulari-

ties. In the following, we give a (very) brief overview of the general theory of manifolds

with conical and edge singularities, the differential operators acting on such manifolds,

and associated Sobolev spaces. This general theory contains much more subjects which

are not presented here: manifolds with corners, pseudodifferential operators, ellipticity,

parametrices, boundary value problems, index theory, function spaces with discrete or

continuous asymptotics, and several others. For sake of brevity, we only consider a very
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simple geometric setting. Detailed expositions can be found in [8] and [15].

2.1. Differential operators and Sobolev spaces on manifolds with conical singularities.

Let Y be a closed compact C∞ manifold. We call the set

Y 4 = (R+ × Y )/({0} × Y ), R+ = {t ∈ R : t > 0},(2.1)

a cone with cone basis Y , or a manifold with conical singularity , see Figure 1. This is a

customary formulation. Strictly speaking, a manifold with conical singularity is in general

no manifold, since it contains the tip of the cone. We hope that this terminology does

not confuse.

Y

Figure 1. A cone Y 4 with cone basis Y

We also introduce the so-called stretched cone Y ∧ with base Y (Figure 2),

Y ∧ = R+ × Y.

Y

Figure 2. The associated stretched cone Y ∧ with cone basis Y

The canonical coordinates on Y ∧ are locally (t, y), where t denotes the distance from

the tip of the cone. If gY denotes a Riemannian metric on Y , then

g = dt2 + t2gY

is a Riemannian metric on Y ∧.

The typical m-th order differential operator on Y ∧ has then the form

P = t−m
m∑

k=0

ak(t)(t∂t)
k,(2.2)

with some coefficients ak ∈ C∞(R+,Diffm−k(Y )), where Diff l(Y ) denotes the space of

all differential operators on Y of order l with C∞ coefficients in local coordinates, which

forms a nuclear Fréchet space. The operators of form (2.2) are called Fuchs type operators.

For the definition of Sobolev spaces on manifolds with conical singularities, we intro-

duce the Mellin transform,

M : C∞0 (R+)→ A(C),

(Mu)(z) =

∫ ∞

0

tz−1u(t) dt,
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where A stands for the analytic functions. The Mellin transform has the inverse transform

(M−1g)(t) =
1

2πi

∫

Γβ

t−zg(z) dz,

with Γβ = {z ∈ C : Re z = β}. The crucial property, which links the Mellin transform

with Fuchs type operators, is

M−1zM = −t∂t.
It is elementary to check that (M(tγu))(z) = (Mu)(z + γ). Then we can also define

Mγ : C∞0 (R+)→ A(C),

(Mγu)(z) = (M(t−γu))(z + γ)

which can be extended to a continuous isomorphism

Mγ : tγL2(R+)→ L2(Γ1/2−γ).

Roughly speaking, the Mellin transform is the composition of the one dimensional Fourier

transform and an “exponential stretching of the t-variable”, in the following sense: Let

(Fv)(%) =

∫

R
e−it%v(t) dt,

Sγ : C∞0 (R+)→ C∞0 (R),

(Sγu)(t) = exp
(
−
(1

2
− γ
)
t
)
u(exp(−t)).

Then we have, for all % ∈ R,

(Mγu)
(1

2
− γ + i%

)
= (FSγu)(%).

Now we are in a position to define Mellin-Sobolev spaces.

Definition 2.1. By Hs,γ(R+), s, γ ∈ R, we denote the closure of C∞0 (R+) under the

norm

‖u‖2Hs,γ(R+) =
1

2πi

∫

Γ1/2−γ

(1 + |z|2)s |(Mu)(z)|2 dz.

If s ∈ N and γ ∈ R, then an equivalent norm is given by

‖u‖2Hs,γ(R+) =
s∑

k=0

∫ ∞

0

∣∣t−γ(t∂t)
ku(t)

∣∣2 dt.

The Mellin-Sobolev spaces form an interpolation scale with respect to the complex in-

terpolation method. We have Hs,γ(R+) = tγHs,0(R+) and H0,0(R+) = L2(R+). In case

s ≥ 0, we have

H0,0(R+) ∩Hs,s(R+) = Hs
0(R+) := {v ∈ Hs(R) : supp v ⊂ R+}.

For completeness, let us give the definition of cone Mellin-Sobolev spaces Hs,γ(Y ∧).

Definition 2.2. Let dimY = d. We say that a function u ∈ Hs
loc(Y ∧) belongs to

Hs,γ(Y ∧) if for every ϕ ∈ C∞0 (Y ∧), supported near some {0} × {p}, p ∈ Y , we have

1

2πi

∫

Γ(d+1)/2−γ

∫

Rdη
(1 + |z|2 + |η|2)s

∣∣Md/2−γ,t→zFy→η(ϕu)(z, η)
∣∣2 dη dz <∞,
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and if a similar condition for v(t, y) = t−d−1u(t−1, y) with −γ instead of γ holds.

Proposition 2.1. If A is a Fuchs type operator of order m, then

A : Hs,γ(Y ∧)→ Hs−m,γ−m(Y ∧), s, γ ∈ R.
If the conical manifold Y 4 looks as in Figure 3, then it is of course more appropriate

to consider function spaces

Ks,γ(Y ∧) = ωHs,γ(Y ∧) + (1− ω)Hs(Y ∧),(2.3)

where Y ∧ is the associated stretched manifold (see Figure 4), and ω ∈ C∞0 (R+) with

ω(t) ≡ 1 near t = 0. Outside a neighbourhood of the tip of the cone, we should employ

the classical Sobolev space Hs(Y ∧).

Figure 3. A compact manifold with conical singularity

Figure 4. The associated stretched manifold

2.2. Differential operators and Sobolev spaces on manifolds with edge singularities.

Let Y 4 be a manifold with conical singularity as in (2.1), and Y ∧ the associated stretched

cone. Then we call

W = Y 4 × Rnx , W = Y ∧ × Rnx , n ≥ 1,

a manifold with edge singularity and a stretched manifold with edge singularity, respec-

tively.

Example 2.1. Take Y = {point}. Then Y ∧ = R+, and W is the half-space R+ ×Rn
with the edge singularity at {0} × Rn.

If gY is a Riemannian metric on the cone base Y , then a Riemannian metric on W is

given by

g = dt2 + t2gY + dx2,

and a typical differential operator on W has the form

P = t−m
∑

k+|α|≤m
ak,α(t, x)(t∂t)

k(t∂x)α,(2.4)
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where ak,α ∈ C∞(R+ × Rnx ,Diffm−k−|α|(Y )). Such operators are called edge-degenerate.

Next, we define abstract edge Sobolev spaces.

Definition 2.3. Let E be a Hilbert space, and S(Rnx , E) be the Fréchet space of

all E-valued Schwartz functions. Let {κν}ν>0 be a strongly continuous group of isomor-

phisms, acting on E, with κνµ = κνκµ for ν, µ > 0 and κ1 = IdE . The abstract edge

Sobolev space Ws(Rnx , (E, {κν}ν>0)) is the closure of S(Rnx , E) under the norm

‖u‖2Ws(Rnx ,(E,{κν}ν>0)) =

∫

Rn
ξ

〈ξ〉2s
∥∥∥κ−1
〈ξ〉û(ξ)

∥∥∥
2

E
dξ,

where û(ξ) = (Fx→ξu)(ξ), and 〈ξ〉 = (1 + |ξ|2)1/2.

Example 2.2. Take E = Hs(Rt), and

κνw(t) = ν1/2w(νt), t ∈ R, ν > 0.

Then Hs(Rt × Rnx) = Ws(Rnx , (Hs(Rt), {κν}ν>0)).

Definition 2.4. Let s, γ ∈ R, and {κν}ν>0 as in Example 2.2. The space

Ws,γ(W) = Ws(Rnx , (Ks,γ(Y ∧), {κν}ν>0))

is called edge Sobolev space with smoothness s and weight γ.

Proposition 2.2. If A is an edge-degenerate differential operator of order m, then

the following map is continuous :

A : Ws,γ(W)→Ws−m,γ−m(W).

3. Edge Sobolev spaces for weakly hyperbolic operators. The operator L

of (1.1) has the form

L = t−mP (t, t∂t,Λ(t)∂x), Λ(t) =

∫ t

0

λ(t′) dt′,(3.1)

where P (t, τ, ξ) is a polynomial in (τ, ξ) of degree m = 2; hence it is an edge-degenerate

operator. This gives rise to the hope that the theory of edge Sobolev spaces could give

new insights into weakly hyperbolic Cauchy problems. Actually, the operators of the

form (3.1) are a subclass of edge-degenerate differential operators, which is closed under

composition. This hints at some modifications in defining cone Sobolev spaces and the

group of isomorphisms {κν}ν>0.

Definition 3.1. For s ≥ 0, δ ∈ R, we define a function space

H
s,δ;λ
] (R+) = H0,δl∗(R+) ∩Hs,s(l∗+1)+δl∗(R+)

with smoothness s and weight δ. Let ω ∈ C∞0 (R+) be a cut-off function, i.e., ω(t) ≡ 1

near t = 0. Then the cone Sobolev spaces Hs,δ;λ(R+), Hs,δ;λ
0 (R+) are defined by

Hs,δ;λ(R+) = ωHs(R+) + (1− ω)Hs,δ;λ
] (R+),

Hs,δ;λ
0 (R+) = ωHs

0(R+) + (1− ω)Hs,δ;λ
] (R+).

The space Hs,δ;λ(R+) has the norm

‖u‖2Hs,δ;λ(R+) = inf
{
‖ωu0‖2Hs(R+) + ‖(1− ω)u1‖2Hs,δ;λ

]
(R+)

}
,
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the infimum taken over all u0 ∈ Hs(R+), u1 ∈ H
s,δ;λ
] (R+), with u = ωu0 + (1− ω)u1.

This glueing of different spaces will enable us to treat the loss of regularity, controlled

by the parameter δ. Compare also (2.3).

These cone Sobolev spaces have the following properties.

Proposition 3.1.

(a) The spaces Hs,δ;λ(R+) and Hs,δ;λ
0 (R+) do not depend on the choice of the cut-off

function ω, up to the equivalence of norms.

(b) The restriction of S(R) to R+, S(R+), is dense in Hs,δ;λ(R+). If s 6∈ 1/2 + N,

then Hs,δ;λ
0 (R+) is the closure of C∞0 (R+) in Hs,δ;λ(R+).

(c) For fixed δ ∈ R, {Hs,δ;λ(R+)}s≥0 forms an interpolation scale with respect to the

complex interpolation method.

(d) If l∗ = 0, then Hs,δ;λ(R+) and Hs,δ;λ
0 (R+) coincide with the classical spaces

Hs(R+) and Hs
0(R+).

A proof is given in [7].

Definition 3.2. For each δ ∈ R, we define a group {κ(δ)
ν }ν>0 of isomorphisms by

κ(δ)
ν w(t) = νβ/2−βδl∗w(νβt), ν > 0, t ∈ R+,

where β = 1/(l∗ + 1). Then we put

Hs,δ;λ(R+ × Rn) = Ws(Rnx ; (Hs,δ;λ(R+), {κ(δ)
ν }ν>0)),

Hs,δ;λ
0 (R+ × Rn) = Ws(Rn; (Hs,δ;λ

0 (R+), {κ(δ)
ν }ν>0)).

With the use of this definition and Proposition 3.1, the following proposition is easily

proved.

Proposition 3.2.

(a) The restriction of S(R×Rn) to R+×Rn, S(R+×Rn), is dense in Hs,δ;λ(R+×Rn).

If s 6∈ 1/2 +N, then Hs,δ;λ
0 (R+×Rn) is the closure of C∞0 (R+×Rn) in Hs,δ;λ(R+×Rn).

(b) For every fixed δ ∈ R, {Hs,δ;λ(R+ × Rn)}s≥0 forms an interpolation scale with

respect to the complex interpolation method.

(c) If l∗ = 0, then the spaces Hs,δ;λ(R+ × Rn) and Hs,δ;λ
0 (R+ × Rn) coincide with

the classical spaces Hs(R+ × Rn) and Hs
0(R+ × Rn), respectively.

(d) We have the continuous embeddings

Hs
comp(R+ × Rn) ⊂ Hs,δ;λ(R+ × Rn) ⊂ Hs

loc(R+ × Rn).

The functions of Hs,δ;λ(R+ × Rn) have Hs-smoothness away from t = 0. As the

following result shows, these functions will be smoother at t = 0 if δ ∈ R is not too small.

Proposition 3.3. Let s > 1/2, δ ∈ R. Then, for each j ∈ N, j < s − 1/2, the map

S(R+ × Rn)→ S(Rn), u 7→ (∂jt u)(0, x), extends by continuity to a map

τj : Hs,δ;λ(R+ × Rn)→ Hs−βj+βδl∗−β/2(Rn).

Furthermore, the map

Hs,δ;λ(R+ × Rn)→
∏

j<s−1/2

Hs−βj+βδl∗−β/2(Rn), u 7→ {τju}j<s−1/2
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is surjective.

Finally, we describe mapping properties of the usual differential operators.

Proposition 3.4. For s ≥ 0, δ ∈ R, the following maps are continuous :

(a) tl∂kt : Hs+k,δ;λ(R+ × Rn)→ Hs,δ+l/l∗;λ(R+ × Rn) for l = 0, 1, . . . , l∗;
(b) ϕ(t)∂αx : Hs+|α|,δ;λ(R+ × Rn)→ Hs,δ;λ(R+ × Rn) for ϕ = ϕ(t) ∈ S(R+).

The functions of Hs,δ;λ(R+ × Rn) can have power type growth for t → ∞. In other

words, these spaces are not closed under point-wise multiplication, even for large s. Since

we are anyway only interested in solutions to hyperbolic Cauchy problems for finite time

intervals [0, T ], we set

Hs,δ;λ((0, T )× Rn) = Hs,δ;λ(R+ × Rn)
∣∣
(0,T )×Rn ,(3.2)

where 0 < T ≤ T0, with some fixed T0, and equip this space with its infimum norm. An

equivalent norm can be given in case s ∈ N:

Lemma 3.1. Let s ∈ N, δ ∈ R and T > 0. Then the infimum norm of the space

Hs,δ;λ((0, T )× Rn) is equivalent to the norm ‖.‖s,δ;T , which is defined as

‖u‖2s,δ;T =

s∑

l=0

T 2l−1

∫ T

0

∫

Rn
ξ

ϑl(t, ξ)
2
∣∣∂ltû(t, ξ)

∣∣2 dξ dt,

ϑl(t, ξ) =

{
〈ξ〉s−lλ(tξ)

−δ−l, 0 ≤ t ≤ tξ,
〈ξ〉s−lλ(t)−δ−l, tξ ≤ t ≤ T .

Here we have introduced the notation tξ = 〈ξ〉−β, β = 1/(l∗ + 1).

These weighted norms and an elementary, but long, calculation shows the complete-

ness under pointwise multiplication for large integer s:

Proposition 3.5. Suppose that s ∈ N, s+ δ ≥ 0, and min{s, s+ βδl∗} > (n+ 2)/2.

Then Hs,δ;λ((0, T ) × Rn) is an algebra under pointwise multiplication uniformly in T .

This means

‖uv‖s,δ;T ≤ C ‖u‖s,δ;T ‖v‖s,δ;T , ∀u, v ∈ Hs,δ;λ((0, T )× Rn),

where C does not depend on T , 0 < T ≤ T0.

The two conditions s > (n + 2)/2 and s + βδl∗ > (n + 2)/2 are related to the two

different Sobolev regularities of the elements of Hs,δ;λ(R+ × Rn), see Propositions 3.2

and 3.3.

Interpolating with respect to s (see [1]) one can derive

Proposition 3.6. Let f = f(u) be entire with f(0) = 0, i.e., f(u) =
∑∞
j=1 fju

j for

all u ∈ R. Suppose bsc+ δ ≥ 0 and min{bsc, bsc+ βδl∗} > (n+ 2)/2, where bsc denotes

the integer part of s. Then we have the estimates

‖f(u)‖s,δ;T ≤ C1(R) ‖u‖s,δ;T ,
‖f(u)− f(v)‖s,δ;T ≤ C1(R) ‖u− v‖s,δ;T

for u, v ∈ Hs,δ;λ((0, T )× Rn) with ‖u‖s,δ;T ≤ R, ‖v‖s,δ;T ≤ R.

We conclude this section with an embedding lemma.
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Lemma 3.2. For s, s′ ≥ 0, δ, δ′ ∈ R, and T > 0, the embedding

Hs,δ;λ((0, T )× Rn) ⊆ Hs′,δ′;λ((0, T )× Rn)

is continuous if and only if s ≥ s′ as well as s+ βδl∗ ≥ s′ + βδ′l∗.

4. Double-sided edge Sobolev spaces. The specially constructed edge Sobolev

spaces allow the discussion of weakly hyperbolic equations for t ≥ 0. For the double-sided

case, −T ≤ t ≤ T , we glue together two copies of such spaces at the line t = 0:

Definition 4.1. Let s ≥ 0, δ ∈ R. We say that u ∈ Hs,δ;λ((−T, T )×Rn) if u(t, x) ∈
Hs,δ;λ((0, T )×Rn), u(−t, x) ∈ Hs,δ;λ((0, T )×Rn), and u(t, x)−u(−t, x) ∈ Hs,δ;λ

0 ((0, T )×
Rn).

The last condition means that the traces at t = 0 taken from {t > 0} and {t < 0}
coincide. The functions of these spaces have the same Sobolev regularity for t < 0 and

t > 0. This is quite strong a condition; it is more natural to only assume equal smoothness

for t = +0 and t = −0, see Proposition 3.3.

Definition 4.2. Let s−, s+ ≥ 0, δ−, δ+ ∈ R and suppose that

s− + βδ−l∗ = s+ + βδ+l∗, s+ ≤ s−.
We say that u ∈ Hs−,s+,δ−,δ+;λ((−T, T ) × Rn) if u ∈ Hs+,δ+;λ((−T, T ) × Rn) and

u(−t, x) ∈ Hs−,δ−;λ((0, T )× Rn). The norm is given by

‖u(t, x)‖2Hs−,s+,δ−,δ+;λ((−T,T )×Rn)

= ‖u(t, x)‖2Hs+,δ+;λ((0,T )×Rn) + ‖u(−t, x)‖2Hs−,δ−;λ((0,T )×Rn) .

We are allowed to define the norm this way because Lemma 3.2 implies the continuous

embedding Hs−,δ−;λ((0, T )× Rn) ⊂ Hs+,δ+;λ((0, T )× Rn).

Such function spaces enable us to consider functions with Sobolev regularities s− >
s− + βδ−l∗ > s+ in the regions {t < 0}, {t = 0}, {t > 0}, respectively. The following

example shows that such situations really occur.

Example 4.1. Consider the operator of Taniguchi and Tozaki,

L = ∂2
t − t2l∗∂2

x − bl∗tl∗−1∂x, x ∈ R, b ∈ R, l∗ ∈ N+.(4.1)

In [16], the solution v(t, x) to the Cauchy problem

Lv = 0, (∂jt v)(0, x) = vj(x), j = 0, 1,

was expressed in the form

v̂(t, ξ) = exp(−iΛ(t)ξ)1F1 (β(1 + b)l∗/2, βl∗, 2iΛ(t)ξ) v̂0(ξ)

+ t exp(−iΛ(t)ξ)1F1 (β(1 + b)l∗/2 + β, β(l∗ + 2), 2iΛ(t)ξ) v̂1(ξ),

where Λ(t) = tl∗+1/(l∗ + 1), and 1F1(α, γ, z) is the confluent hypergeometric function

with the asymptotic behaviour

1F1(α, γ, z) =
Γ(γ)

Γ(γ − α)
e±iπαz−α

(
1 + O(|z|−1)

)
+

Γ(γ)

Γ(α)
ezzα−γ

(
1 + O(|z|−1)

)



EDGE SOBOLEV SPACES 115

for |z| → ∞. If we fix t 6= 0, and introduce the notation

α−0 = −β(1 + b)l∗/2, α+
0 = −β(1− b)l∗/2,

α−1 = α−0 − β, α+
1 = α+

0 − β,

then we have, for |ξ| → ∞, the asymptotic behaviour

v̂(t, ξ) = (exp(−iΛ(t)ξ)O(|ξ|α−0 ) + exp(iΛ(t)ξ)O(|ξ|α+
0 ))v̂0(ξ)

+ (exp(−iΛ(t)ξ)O(|ξ|α−1 ) + exp(iΛ(t)ξ)O(|ξ|α+
1 ))v̂1(ξ).

(4.2)

In general, one of the exponents α−0 , α+
0 and one of the exponents α−1 , α+

1 is positive,

the other one is negative. We observe a loss of max{α−0 , α+
0 } derivatives when we start

from t = 0 in positive or negative direction, and a loss of max{−α−0 ,−α+
0 } derivatives

when we arrive at t = 0, coming from t < 0 or t > 0.

5. Weakly hyperbolic Cauchy problems. We apply the theory of edge Sobolev

spaces to weakly hyperbolic equations, starting with the Cauchy problem

Lw(t, x) = f(t, x), (∂jtw)(0, x) = wj(x), j = 0, 1,(5.1)

where 0 ≤ t ≤ T0. To discuss existence and regularity of the solution, we denote by ŵ(t, ξ)

the partial Fourier transform of w and introduce the weight function

g(t, ξ) = ω(Λ(t)〈ξ〉)t−1
ξ + (1− ω(Λ(t)〈ξ〉))λ(t)|ξ|, (t, ξ) ∈ [0, T0]× Rn,

where ω ∈ C∞(R+) is a cut-off function which is identically equal to 1 in a neighbourhood

of the origin. Then we obtain the first order system

DtW (t, ξ) = A(t, ξ)W (t, ξ) + F (t, ξ),(5.2)

A(t, ξ) =

(
(Dtg(t, ξ))/g(t, ξ) g(t, ξ)

(λ(t)2|ξ|2a(t, ξ)− iλ′(t)|ξ|b(t, ξ))/g(t, ξ) −2c(t, ξ)λ(t)|ξ|+ ic0(t)

)
,

W (t, ξ) = t(g(t, ξ)ŵ(t, ξ), Dtŵ(t, ξ)),

F (t, ξ) = t(0,−f̂(t, ξ)),

where we have set Dt = −i∂t, and

a(t, ξ) =
n∑

i,j=1

aij(t)
ξiξj
|ξ|2 , b(t, ξ) = −

n∑

j=1

bj(t)
ξj
|ξ| , c(t, ξ) =

n∑

j=1

cj(t)
ξj
|ξ| .

The existence and uniqueness of W (t, ξ) as a solution to a linear system of ordinary

differential equations is clear. It remains to study the regularity of w(t, x), or the decay

of W (t, ξ) for |ξ| → ∞. Therefore we consider the fundamental matrix X(t, t′, ξ),

DtX(t, t′, ξ) = A(t, ξ)X(t, t′, ξ), X(t, t, ξ) = I, 0 ≤ t′, t ≤ T0,(5.3)

which is connected to W via W (t, ξ) = X(t, t′, ξ)W (t′, ξ) + i
∫ t
t′ X(t, t′′, ξ)F (t′′, ξ)dt′′.

The following lemma is the key to the estimate of W .
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Lemma 5.1. There is a constant C > 0 such that

‖X(t, t′, ξ)‖ ≤ C

(
g(t, ξ)

g(t′, ξ)

)Q0+1

, 0 ≤ t′ ≤ t ≤ T0,(5.4)

‖X(t, t′, ξ)‖ ≤ C

(
g(t, ξ)

g(t′, ξ)

)−Q0

, 0 ≤ t ≤ t′ ≤ T0,(5.5)

holds for all ξ ∈ Rn, where Q0 is defined as

Q0 = −1

2
+ sup

ξ

|b(0, ξ) + c(0, ξ)|
2
√
c(0, ξ)2 + a(0, ξ)

.(5.6)

A proof can be found in [7].

Assuming s ∈ N+, we can then employ the equivalent norms ‖·‖s,Q;T defined in

Lemma 3.1, and deduce the following a priori estimate after a direct, but long, calculation.

Proposition 5.1. Let s ∈ N+, Q ≥ Q0, A = βQl∗, and assume wj ∈ Hs+A−βj(Rn),

j = 0, 1, and f ∈ Hs−1,Q+1;λ((0, T ) × Rn). Then the solution w to (5.1) satisfies the

estimate

‖w‖s,Q;T ≤ C0

(
‖w0‖Hs+A(Rn) + ‖w1‖Hs+A−β(Rn) + T ‖f‖s−1,Q+1;T

)

for all 0 < T ≤ T0. The constant C0 depends on s and Q, but not on T .

The parameter A equals the number of lost derivatives, when we pass from {t = 0}
to {t > 0}. Example 4.1 shows that the lower bound A0 = βQ0l∗ for A cannot be chosen

smaller.

Remark 5.1. By interpolation in s, we can easily relax the assumption “s ∈ N+” in

Proposition 5.1 to “s ∈ R, s ≥ 1”.

Exploiting Proposition 3.6 and the a priori estimate of Proposition 5.1, the well-

posedness of the Cauchy problem

Lu = f(u), (∂jt u)(0, x) = uj(x), j = 0, 1,(5.7)

for small time intervals [0, T ] can be proved by standard fixed point arguments.

Theorem 1. Let s ∈ N and assume that min{s, s+ βQ0l∗} > (n+ 2)/2, where Q0 be

the number from (5.6). Suppose that f = f(u) is entire with f(0) = 0. Let Q ≥ Q0 and

A = βQl∗. Then, for uj ∈ Hs+A−jβ(Rn), j = 0, 1, a small number T > 0 can be found

in such a way that there is a uniquely determined solution u ∈ Hs,Q;λ((0, T )×Rn) to the

Cauchy problem (5.7).

6. Branching of singularities for semilinear equations. How do singularities of

initial data propagate for nonlinear nonstrictly hyperbolic equations?

In opposite to the strictly hyperbolic case, the characteristics of a weakly hyperbolic

operator may intersect tangentially, and surprising phenomena can happen, even in the

linear case. For an equation

vtt − t2l∗vxx − bl∗tl∗−1vx = 0

with initial data prescribed at t = 0 or t = −1, respectively, the explicit representation

of the solution by means of special functions (see Example 4.1) enables us to show that
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singularities of the initial data can propagate as shown in Figures 5 and 6, respectively.

Depending on the parameter b in a subtle way, some branch (dotted line) carries no

singularities (see [12], [16]).

t=0

Figure 5. The example of Qi

t=0

t=−1

Figure 6. The example of Taniguchi and Tozaki

The results of this section will tell us that the same pictures can be drawn in the

semilinear case, that is

utt − t2l∗uxx − bl∗tl∗−1ux = f(u).

The main difficulty here is the loss of regularity. More precisely, there are two losses:

the first, when we arrive at t = 0, coming from t < 0; and the second, when we start

from t = 0 and pass to t > 0. (Moreover, another loss of regularity would occur when we

started at t = 0 and went backwards in time, compare Example 4.1.) It is not obvious

how these two losses interact with the nonlinearity f = f(u).

The edge Sobolev spaces Hs−,s+,δ−,δ+;λ((−1, 1) × Rn) seem to be an optimal tool

for handling this problem, because they are able to absorb all these losses of regularity

provided that the parameters s±, δ± are chosen carefully. Furthermore, they are algebras

if the smoothness parameters s± are large enough; hence the superposition f = f(u)

maps these spaces into themselves if f is entire.

This way, it can be deduced that u belongs to the same edge Sobolev space as v, cf.

Proposition 5.1. If we are able to prove that u− v has higher regularity than v, then we

have shown that u and v share the same singularity transporting characteristics.

Theorem 2. Let s satisfy the assumptions of Theorem 1, and uj ∈ Hs+βQ0l∗−βj(Rn),

j = 0, 1, where Q0 is given by (5.6). Let u, v ∈ Hs,Q0;λ((0, T )× Rn) be the solutions to

Lu = f(u), (∂jt u)(0, x) = uj(x), j = 0, 1,

Lv = 0, (∂jt v)(0, x) = uj(x), j = 0, 1.

Then the difference u− v belongs to Hs+β,Q0;λ((0, T )× Rn).

Proof. From Proposition 3.6 we obtain f(u) ∈ Hs,Q0;λ((0, T )×Rn). The embedding

lemma 3.2 then yields f(u) ∈ Hs−1+β,Q0+1;λ((0, T ) × Rn). The difference u − v solves

L(u− v) = f(u) and has vanishing initial data for t = 0. We apply Remark 5.1 and the

proof is complete.
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Example 6.1. Consider Qi’s operator L from (1.2). Then l∗ = 1, β = 1/2, and

Q0 = 2m. Remark 5.1, and Theorems 1, 2 imply that the solutions u, v satisfy

u, v ∈ Hs,2m;λ((0, T )× R), u− v ∈ Hs+1/2,2m;λ((0, T )× R)

provided that u0 ∈ Hs+m(R), u1 ∈ Hs+m−1/2(R). Proposition 3.2 then yields

u, v ∈ Hs
loc((0, T )× R), u− v ∈ Hs+1/2

loc ((0, T )× R).

The explicit representation (1.3) of v confirms that our statements on the smoothness

of v are exact. We find that the strongest singularities of u coincide with the singularities

of v. The latter can be looked up in (1.3) in case u1 ≡ 0.

Now we consider the Cauchy problems

Lu = f(u), (∂jt u)(−1, x) = εuj(x), j = 0, 1,(6.1)

Lv = 0, (∂jt v)(−1, x) = εuj(x), j = 0, 1,(6.2)

with L from (1.1), and our goal is to replicate the Taniguchi-Tozaki results (Figure 6)

for (6.1).

Theorem 3. Let Q0 be the number from (5.6), set Q+ = Q0, Q− = −1 − Q0, s+ +

βQ+l∗ = s− + βQ−l∗, and suppose that bs±c+Q± ≥ 0, s± ≥ 1, and

min{bs±c, bs±c+ βQ±l∗} >
n+ 2

2
.

Finally, assume that wj ∈ Hs−−j(Rn), j = 0, 1, and that f = f(u) is an entire function

with f(0) = f ′(0) = 0. Then there are (for sufficiently small ε > 0) unique solutions

u, v ∈ Hs−,s+,Q−,Q+;λ((−1, 1)× Rn)

to (6.1) and (6.2), respectively. Their difference u− v satisfies

u− v ∈ Hs−+β,s++β,Q−,Q+;λ((−1, 1)× Rn).

Proof (sketched). Using (5.5) and inverting the time direction, we can obtain an

a priori estimate for solutions to a linear equation Lw = f(t, x), where −1 ≤ t ≤ 1:

‖w‖Hs−,s+,Q−,Q+;λ((−1,1)×Rn)

≤ C(‖w0‖Hs− (Rn) + ‖w1‖Hs−−1(Rn) + ‖f‖Hs−−1,s+−1,Q−+1,Q++1;λ((−1,1)×Rn)).

The proof of this estimate runs similar to the proof of Proposition 5.1. This gives

us v ∈ Hs−,s+,Q−,Q+;λ((−1, 1) × Rn). The assumptions on s±, Q± imply that B =

Hs−,s+,Q−,Q+;λ((−1, 1) × Rn) is an algebra under pointwise multiplication. The super-

position f = f(u) maps this edge Sobolev space into itself, since f is entire. From

f ′(0) = 0 and Proposition 3.6, we then can deduce that ‖f(u)‖B ≤ C(R) ‖u‖2B pro-

vided ‖u‖B < R. Banach’s fixed point theorem is applicable if ε > 0 is small enough.

This proves u ∈ Hs−,s+,Q−,Q+;λ((−1, 1)×Rn). From Lemma 3.2 it can be concluded that

f(u) ∈ B ⊂ Hs−−1+β,s+−1+β,Q−+1,Q++1;λ((−1, 1)× Rn).

The difference u− v solves L(u − v) = f(u) and has vanishing Cauchy data for t = −1.

An application of the above mentioned a priori estimate concludes the proof.
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