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Abstract. In this paper we prove the C∞-well posedness of the Cauchy problem for quasi-
linear hyperbolic equations of second order with coefficients non-Lipschitz in t ∈ [0, T ] and
smooth in x ∈ Rn.

0. Introduction. In this paper we consider Cauchy problems for quasi-linear hyper-

bolic equations with coefficients non-Lipschitz in the time variable and smooth in spatial

variables. Our goal is to prove C∞-well posedness for the Cauchy problem

(CP1)





Pu[u] = utt −
n∑

j,k=1

ajk(t, x;u, ut,∇u)uxjxk + ρ(t, x;u, ut,∇u) = 0

for (t, x) ∈ (0, T )× Rn,
u = ϕ(x), ut = ψ(x) at t = 0.

(0.1)

The paper [2] is devoted to the study of Cauchy problems for second order hyperbolic

equations with coefficients depending on the time variable of the form

utt −
n∑

j,k=1

ajk(t)uxjxk +

n∑

j=1

bj(t)uxj + c(t)u = 0, (0.2)
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132 A. KUBO AND M. REISSIG

where ajk(t) = akj(t) are non-Lipschitz coefficients in the following sense:

|at(t; η)| ≤ C

t
|η|2, a(t; η) :=

n∑

j,k=1

ajk(t)ηjηk (0.3)

for all η = (η, . . . , ηn) ∈ Rn. The authors proved that the Cauchy problem is C∞-well

posed, where its solution possesses the property of regularity loss of derivatives in x. On

the other hand, the condition (0.3) can be weakened to the optimal condition

|at(t, η)| ≤ C

t
log
(1

t

)
|η|2, t ∈ (0, T ], (0.4)

to guarantee C∞-well posedness for the Cauchy problem (0.2). This is shown in [3] for

the model Cauchy problem

utt − a(t)uxx + b(t)ux = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x)

(see also Remark 3.3 from [3]). A more general model with optimal non-Lipschitz condi-

tion of C∞- and Gevrey-type is studied in [5]. Recently, [1] considered the linear Cauchy

problem of the same type as (0.2) with coefficients depending on time and spatial vari-

ables. There the elliptic term satisfies a condition like (0.3). The C∞-well posedness of

the Cauchy problem was proved by using pseudo-differential operators based on an argu-

ment used in [2]. Finally, in the recent paper [7] the question for C∞-well posedness was

studied for the Cauchy problem

utt −
n∑

k,l=1

ak,l(t, x)uxkxl = f(t, x) in [0, T ]× Rn

u(0, x) = ϕ(x), ut(0, x) = ψ(x),

under the main assumption

|Dk
tD

β
xak,l(t, x)| ≤ Ck,β

(1

t

(
ln

1

t

)γ)k

for all k, β and (t, x) ∈ (0, T ] × Rn, where T is sufficiently small and γ ≥ 0. A C∞-well

posedness result was proved after construction of parametrix and the proof of existence

of a cone of dependence.

In this paper we consider the general quasi-linear Cauchy problem (CP1). Our ap-

proach is quite different from those from [2] and [1]. Actually, according to [9], making use

of solutions of a family of nonlinear ordinary differential equations associated with (0.1),

we reduce (CP1) to some Cauchy problem with special asymptotic behaviour in t on the

right-hand side. During this procedure we only lose regularity in x without any loss of

regularity in t. Then, by a standard way, we can derive the time local existence of smooth

solutions.

Finally, by proving the domain of dependence property we obtain C∞-well posedness

of (CP1).

To explain our assumptions we define multi-indices

ξ = (ξ0, ξ1, . . . , ξn+1), η = (η1, . . . , ηn), α = (α1, . . . , αn), β = (β0, β1, . . . , βn+1).

We make the following assumptions with Dx = (∂x1
, . . . , ∂xn) and Dξ = (∂ξ0 , . . . , ∂ξn+1

):
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(A-I) (strict hyperbolicity)

There exists a positive constant C0 such that
n∑

j,k=1

ajk(t, x; ξ)ηjηk ≥ C0|η|2, η ∈ Rn \ {0},

ajk(t, x; ξ) = akj(t, x; ξ), j, k = 1, . . . , n, j 6= k,

for all (t, x) ∈ [0, T ]× Rn, ξ ∈ Rn+2.

(A-II) (regularity properties)

Let K be an open ball in Rn+2. Then

i) ajk ∈ C1
(
(0, T ];B∞(Rn ×K)

)
,

ii) ρ ∈ C
(
(0, T ];B∞(Rn ×K)

)
,

sup
ξ∈K
|Dα

xρ(t, x; ξ)| ∈ L2
(
(0, T )× Rn

)
for |α| ≥ 0.

(A-III) (asymptotic behaviour near t = 0)

We assume

i) |∂tajk(t, x; ξ)| ≤ Cjk/t , |Dα
xD

β
ξ ajk(t, x; ξ)| ≤ Cjkαβ/tr with a fixed 0 ≤ r < 1

and for all multi-indices α and β,

ii) |Dα
xD

β
ξ ρ(t, x; ξ)| ≤ Cαβ/tq , with a fixed 0 ≤ q < 1 and for all multi-indices α

and β with |α| ≥ 0 and |β| > 0.

Throughout this paper we use the following notation.

By Hm(Rn) with a non-negative integer m we denote the usual Sobolev space with

the norm ‖ · ‖m. Sometimes we denote (·, ·)L2(Rn), ‖ · ‖L2(Rn) by (·, ·), ‖ · ‖ respectively.

For any integer m ≥ 0 we put

‖h(t, x; ξ)‖(m)(t) =
∑

|α|+|β|≤m
sup

(x,ξ)∈Rn×K

∣∣Dα
xD

β
ξ h(t, x; ξ)

∣∣.

We define for 0 < t ≤ T the function space

W (m)
(
Rn;K

)
(0, T ] =

{
h(t, x; ξ); ‖h‖(m)(t) <∞

}
.

With a positive parameter κ and with L0 :=
[
n
2

]
+ 2 we introduce

Πκ =
{
g = g(t, x) ∈

1⋂

j=0

Cj
(
[0, T ];HL0−j(Rn)

)
: ‖g‖L0

+ ‖gt‖L0−1 < κ
}
.

From now on, κ is taken sufficiently small that (g, gt,∇g) ∈ K for g ∈ Πκ. Moreover,

we introduce the energies

E[v](t) = ‖∂tv‖2 +
n∑

j,k=1

(ajkvxj , vxk),

Em[v](t) = ‖∂tv‖2m +
∑

|α|≤m

n∑

j,k=1

(ajkD
α
x vxj , D

α
x vxk),

for any integer m ≥ 0. Finally, we sometimes use the notation h(α)(t, x; ξ) = Dα
xh(t, x; ξ),

h(β)(t, x; ξ) = Dβ
ξ h(t, x; ξ) and Λu = (u, ut,∇u).
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The main results of our paper are given in the following theorems.

Theorem 0.1 (H∞-well posedness). Assume that the assumptions (A-I) to (A-III)

are satisfied and (ϕ(x), ψ(x)) ∈ H∞(Rn)×H∞(Rn) fulfil
(
ϕ(x), ψ(x),∇ϕ(x)

)
∈ K. Then

there exist a constant T ∗ > 0 and a unique solution u := u(t, x) ∈ C1
(
[0, T ∗];H∞(Rn)

)
of

(CP1) for T = T ∗. Moreover, the solution possesses the domain of dependence property.

Theorem 0.2 (C∞-well posedness). Assume that (A-I) to (A-III) hold and that

(ϕ(x), ψ(x)) ∈ C∞(Rn) × C∞(Rn) satisfy (ϕ(x), ψ(x),∇ϕ(x)) ∈ K. Then (CP1) is

C∞-well posed, this means, there exists a unique solution in C1
(
[0, T ∗];C∞(Rn)

)
, where

the solution possesses the domain of dependence property.

1. Reduction scheme. In this section we reduce (CP1), this problem implies the

finite loss of derivatives for its solutions, by a finite family (Qj), j = 0, 1, . . . , l, of

Cauchy problems for nonlinear ordinary differential equations to an auxiliary Cauchy

problem (CP3), which is of strict hyperbolic type, see [8]. We follow ideas according

to [9]. Let us consider the next Cauchy problems in a strip [0, T ]× Rn:

(Q0)

{
u

(0)
tt + ρ

(
t, x;u(0), u

(0)
t ,∇ϕ

)
= 0,

u(0) = ϕ(x), u
(0)
t = ψ(x) at t = 0,

(1.1)

(Q1)





u
(1)
tt + ρ

(
t, x;u(0) + u(1), (u(0) + u(1))t,∇u(0)

)

=
n∑

j,k=1

ajk(t, x; Λu(0))u
(0)
xjxk + ρ

(
t, x;u(0), u

(0)
t ,∇ϕ

)
,

u(1) = u
(1)
t = 0 at t = 0,

(1.2)

(Q2)





u
(2)
tt + ρ

(
t, x;u(0) + u(1) + u(2), (u(0) + u(1) + u(2))t,∇(u(0) + u(1))

)

=
n∑

j,k=1

(
ajk(t, x; Λ(u(0) + u(1)))(u(0) + u(1))xjxk − ajk(t, x; Λu(0))u

(0)
xjxk

)

+ ρ
(
t, x;u(0) + u(1), (u(0) + u(1))t,∇u(0)

)
,

u(2) = u
(2)
t = 0 at t = 0,

(1.3)

and in general

(Q`)





u
(`)
tt + ρ

(
t, x;U (`), U

(`)
t ,∇U (`−1)

)

=
n∑

j,k=1

(
ajk(t, x; ΛU (`−1))U

(`−1)
xjxk − ajk(t, x; ΛU (`−2))U

(`−2)
xjxk

)

+ ρ
(
t, x;U (`−1), U

(`−1)
t ,∇U (`−2)

)
,

u(`) = u
(`)
t = 0 at t = 0,

(1.4)

for ` ≥ 2, where we use the abbreviations U (`) := U (`)(t, x) =
∑̀
s=0

u(s)(t, x).

Setting u(t, x) = U (`)(t, x) + v(t, x), we obtain the following results.
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Lemma 1.1. If u(s) ∈ C1
(
[0, T ];H∞(Rn)

)
solves the Cauchy problem (Qs), 0 ≤ s ≤ `,

and v ∈ C1
(
[0, T ];H∞(Rn)

)
solves the Cauchy problem

(CP2)





vtt −
n∑

j,k=1

ajk
(
t, x; Λ(U (`) + v)

)
vxjxk + ρ

(
t, x; Λ(U (`) + v)

)

+ U
(`)
tt −

n∑
j,k=1

ajk
(
t, x; Λ(U (`) + v)

)
U

(`)
xjxk = 0,

v(0, x) = vt(0, x) = 0,

(1.5)

then u := U (`) + v ∈ C1
(
[0, T ];H∞(Rn)

)
solves (CP1).

Proof. It is easily seen that (1.5) can be written in the form

(v + U (`))tt −
n∑

j,k=1

ajk
(
t, x; Λ(U (`) + v)

)
(v + U (`))xjxk + ρ

(
t, x; Λ(U (`) + v)

)
= 0,

and that U (`)|t=0 = ϕ(x) and U
(`)
t |t=0 = ψ(x). Hence the proof is complete.

Lemma 1.2. The Cauchy problem (CP2) with v and u(s) ∈ C1
(
[0, T ];H∞(Rn)

)
,

0 ≤ s ≤ `, is equivalent to the following Cauchy problem for w = v:

(CP3)





Qw[v] = vtt −
n∑

j,k=1

bjk(t, x; Λw)vxjxk +
n∑
j=1

bj(t, x; Λw)vxj

+ b0(t, x; Λw)vt + b(t, x; Λw)v = fl(t, x; Λw),

v(0, x) = vt(0, x) = 0,

(1.6)

where the coefficients bjk, bj, b0 and b satisfy the following conditions:

(B-I) (strict hyperbolicity)
n∑

j,k=1

bjk(t, x; ξ)ηjηk ≥ C0|η|2, η ∈ Rn \ {0},

bjk(t, x; ξ) = bkj(t, x; ξ), j, k = 1, . . . , n, j 6= k,

for all (t, x) ∈ [0, T ]× Rn, ξ ∈ Rn+2 and with C0 from (A-I).

(B-II) (regularity properties)

The regularity behaviour of coefficients can be described in the following way :

i) bjk ∈ C1
(
(0, T ];B∞(Rn ×K)

)
,

ii) h ∈ C
(
(0, T ];B∞(Rn ×K)

)
for h = bj , b0, and b.

(B-III) (asymptotic behaviour near t = 0)

The asymptotic behaviour of coefficients near t = 0 can be described in the fol-

lowing way :

i) |∂tbjk(t, x; ξ)| ≤ Cjk/t , |Dα
xD

β
ξ bjk(t, x; ξ)| ≤ Cjkαβ/t

r, for 0 ≤ r < 1 and for

all multi-indices α, β,

ii) |Dα
xD

β
ξ h(t, x; ξ)| ≤ C ′αβ/t

max{q,r} , for h = bj, b0, b and for all multi-indices

α and β.

Proof. It follows from (1.1)–(1.4) that

U
(`)
tt =

n∑

j,k=1

ajk(t, x; ΛU (`−1))U (`−1)
xjxk

− ρ
(
t, x;U (`), U

(`)
t ,∇U (`−1)

)
.
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We substitute U
(`)
tt in (1.5) by the right-hand side of the above equality. Then we have

to study the following four terms to get the properties (B-I) to (B-III):

i) ρ
(
t, x; Λ(U (`) + v)

)
− ρ
(
t, x; ΛU (`)

)
,

ii) ρ
(
t, x; ΛU (`)

)
− ρ
(
t, x;U (`), U

(`)
t ,∇U (`−1)

)
,

iii)
n∑

j,k=1

(
ajk(t, x; Λ(U (`) + v))− ajk(t, x; ΛU (`−1))

)
U

(`)
xjxk ,

iv)
n∑

j,k=1

ajk(t, x; ΛU (`−1))u
(`)
xjxk .

By the mean value theorem it is seen that bj , b0 and b are determined by i) and iii)

and that fl is determined by ii)–iv). This helps us to understand that the assumptions

(A-I) to (A-III) are transferred to (B-I) to (B-III). Hence the proof is complete.

Now we cite some auxiliary results.

Lemma 1.3. Assume that q = q(t, x; ξ) ∈ W (M)(Rn;K)(0, T ] and that v belongs to
1⋂
j=0

Cj
(
[0, T ];HM+1−j(Rn)

)
∩Πκ and [n2 ]+1 ≤M . Then there exists a constant C, which

depends on
1∑
j=0

‖∂jt v‖L0−j, such that for every fixed t ∈ (0, T ]

‖q(t, x; Λv)‖M ≤ C‖q‖(M)

( 1∑

j=0

‖∂jt v‖M+1−j + 1
)
. (1.7)

Corollary 1.1. Suppose that the functions v = v(t, x) and z = z(t, x) belong

to
1⋂
j=0

Cj
(
[0, T ];HM+1−j(Rn)

)
and satisfy v + τz ∈ Πκ for τ ∈ [0, 1]. Moreover, let

q = q(t, x; ξ) ∈W (M)(Rn;K)(0, T ]. If [n2 ] + 1 ≤M , the following estimate is true with a

constant C depending on ‖q‖(M+1)

1∑
j=0

(
‖∂jt z‖L0−j + ‖∂jt v‖M+1−j

)
:

∥∥q(t, x; Λ(v + z))− q(t, x; Λv)
∥∥
M
≤ C

1∑

j=0

‖∂jt z‖M+1−j . (1.8)

Lemma 1.4 (Nersesian, cf. [7, Lemma A.2]). Let us be given the differential inequality

y′(t) ≤ K(t)y(t) + f(t)

for t ∈ (0, T ), where the functions K = K(t) and f = f(t) belong to C(0, T ), T > 0.

Under the assumptions

•
∫ ε

0
K(τ) dτ =∞,

∫ T
ε
K(τ) dτ <∞ for all ε ∈ (0, T ),

• lim
ε→0

∫ t
ε

exp
(∫ t
s
K(τ) dτ

)
f(s) ds exists for all ε ≤ t ≤ T ,

• y(ε) exp
(∫ t
ε
K(τ) dτ

)
= o(ε),

every solution of the differential inequality belonging to C[0, T ] ∩ C1(0, T ) satisfies

y(t) ≤
∫ t

0

exp
(∫ t

s

K(τ) dτ
)
f(s) ds.
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Let us now investigate the asymptotic behaviour of the solutions u(0), . . . , u(`) to the

Cauchy problems (Q0),. . . ,(Q`), respectively.

Proposition 1.1. If (ϕ(x), ψ(x)) ∈ H∞(Rn) × H∞(Rn), (ϕ(x), ψ(x),∇ϕ(x)) ∈ K,

and l is a fixed nonnegative integer, then there exists a solution u(s) := u(s)(t, x) of the

problem (Qs) and a joint life span [0, T1] such that U (s) ∈ C1
(
[0, T1];H∞(Rn)

)
∩Πκ for

all 0 ≤ s ≤ l. Moreover, the solutions u(s) satisfy for 1 ≤ s with ν = min{1 − q, 1 − r}
the estimates

‖∂jt u(s)‖2m ≤ Cmtsν+1−j , j = 0, 1. (1.9)

Proof. The time local solvability of the problem (Qs), s = 0, 1, . . . , l, is well-known in

[0, T1]×Rn for an appropriate constant T1 > 0. The regularity u(s) ∈ C1([0, T ];H∞(Rn))

follows from the assumptions (A-II) and (A-III) and the nonlinear ordinary differential

equation in (Qs), 0 ≤ s ≤ l, by using (A-II)ii). Let us derive the above estimates.

First, we deal with the problem (Q0). By the standard energy method we have

∂t
∥∥u(0)

t

∥∥2 ≤ 2
∣∣∣
(
ρ
(
t, x;u(0), u

(0)
t ,∇ϕ

)
, u

(0)
t

)∣∣∣ ≤ ‖ρ‖2 +
∥∥u(0)

t

∥∥2
. (1.10)

Integrating over (0, t), t ∈ [0, T1], we have for sufficiently small T1

∥∥u(0)
t

∥∥2
(t) ≤ C

∫ t

0

‖ρ‖2(τ) dτ + ‖ψ‖2. (1.11)

From (1.11) it follows immediately that

∥∥u(0)
∥∥2

(t) ≤ C
(
t

∫ t

0

‖ρ‖2(τ) dτ + t‖ψ‖2 + ‖ϕ‖2
)
. (1.12)

Differentiating m times with respect to x both sides of the equation from (1.1),

m ≥ [n2 ] + 1, we obtain, by following the same procedure from (1.10) to (1.12), by using

Lemma 1.3 and taking into account property (A-II)ii), the inequality

1∑

j=0

∥∥∂jt u(0)
∥∥2

m
(t) ≤ Cm

(
t

∫ T1

0

(
‖ρ‖(m)(τ) + ‖ρ‖2m(τ)

)
dτ + (1 + t)‖ψ‖2m + ‖ϕ‖2m

)
. (1.13)

In fact, for |α| ≤ m we have

∂t
∑

|α|≤m

∥∥Dα
xu

(0)
t

∥∥2 ≤ 2
∣∣∣
( ∑

|α|≤m
Dα
xρ, D

α
xu

(0)
t

)∣∣∣

≤ Cm
(
‖ρ‖(m)

( 1∑

j=0

‖∂jt u(0)‖2m + ‖ϕ‖2m+1 + 1
)

+
(
‖ρ‖2m + ‖u(0)

t ‖2m
))
.

Multiplying both sides by exp
(
−C ′m

∫ t
0
‖ρ‖(m)(τ) dτ

)
with a sufficiently large positive C ′m

we have from (1.11) and (1.12) in the same manner

1∑

j=0

∥∥∂jt u(0)
∥∥2

m
≤ Cm

(
t exp

(
C ′m

∫ T1

0

‖ρ‖(m)(τ) dτ
)∫ T1

0

(
‖ρ‖(m) + ‖ρ‖2m

)
(τ) dτ

+ (1 + t)‖ψ‖2m + ‖ϕ‖2m
)
.
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Since ‖ρ‖(m) ∈ L1(0, T1), we arrive at (1.13). From (1.13) it is clear that a sufficiently

small T1 guarantees that (u(0), u
(0)
t ,∇u(0)) ⊂ K.

Now we consider problem (Q1). We apply in (1.2) the mean value theorem to

ρ
(
t, x;U (1), U

(1)
t ,∇u(0)

)
− ρ
(
t, x;u(0), u

(0)
t ,∇ϕ

)
.

Then using Lemma 1.3 we obtain for the solution of (1.2) the estimate

∥∥u(1)
t

∥∥2
(t) ≤ C

(∫ t

0

‖ρ‖(1)(τ) dτ +

n∑

j,k=1

∫ t

0

‖ajk‖(0)(τ) dτ
)

×
(

1 + sup
t∈[0,T1]

1∑

j=0

∥∥∂jt u(1)
∥∥2

2−2j
(t)
)
.

The application of (A-III) yields

∥∥u(1)
t

∥∥2
(t) ≤ Ctν

(
1 + sup

t∈[0,T1]

1∑

j=0

∥∥∂jt u(1)
∥∥2

2−2j
(t)
)
, (1.14)

where ν = min{1− q, 1− r}. Hence for sufficiently small T1 we obtain
∥∥∂jt u(1)

∥∥2
(t) ≤ Ctν+1−j , j = 0, 1. (1.15)

In the same way as (1.13) we have
∥∥∂jt u(1)

∥∥2

m
(t) ≤ Cmtν+1−j , j = 0, 1. (1.16)

Therefore there exists a positive constant T1 (eventually we have to choose a smaller

one than in the previous step) such that the inequalities (1.16) hold for t ∈ [0, T1] and

(U (1), U
(1)
t ,∇U (1)) ⊂ K.

Finally, we sketch how to handle (Q2). In (1.3) we apply the mean value theorem to

ρ
(
t, x;U (2), U

(2)
t ,∇U (1)

)
− ρ
(
t, x;U (1), U

(1)
t ,∇u(0)

)
,

and

n∑

j,k=1

(
ajk(t, x; ΛU (1))U (1)

xjxk
− ajk(t, x; Λu(0))u(0)

xjxk

)
.

Taking account of (1.16), in the same way as (1.14) we obtain

∥∥u(2)
t

∥∥2
(t) ≤ C

(∫ t

0

‖ρ‖(1)(τ) dτ
(
tν+1 + sup

τ∈[0,t]

1∑

j=0

‖∂jt u(2)‖2(τ)
)

+

n∑

j,k=1

∫ t

0

‖ajk‖(1)(τ) dτ
(
tν + sup

τ∈[0,t]

1∑

j=0

‖∂jt u(2)‖2(τ)
))

,

(1.17)

where C depends on ‖U (1)‖2 and ‖U (1)
t ‖. A sufficiently small t gives
∥∥u(2)

t

∥∥2
(t) ≤ Ct2ν .

In the same manner as (1.16) we have
∥∥∂jt u(2)

∥∥2

m
(t) ≤ Cmt2ν+1−j , j = 0, 1. (1.18)

Thus taking T1 small enough, we obtain (1.18) and (U (2), U
(2)
t ,∇U (2)) ⊂ K for t ∈ [0, T1].
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Repeating the above procedure, we can find a positive constant T1 such that the

following properties hold for t ∈ [0, T1], m ≥ 0, and 2 ≤ s ≤ l:
∥∥∂jt u(s)

∥∥2

m
≤ Cmtsν+1−j , j = 0, 1,

and (U (s), U
(s)
t ,∇U (s)) ⊂ K. This completes the proof.

Remark 1.1. In each step of the previous proof we have shown that ΛU (s) ⊂ K,

s = 0, 1, . . . , l, for (t, x) ∈ [0, T1]× Rn. Therefore we can take κ and T1 so small that for

every g ∈ Πκ,

2Λ
(
U (l) + g

)
⊂ K.

Remark 1.2. By using the mean value theorem the right-hand side fl of the auxiliary

Cauchy problem (CP3) can be represented with |α| = 1 and with constants θα, θβ ∈ (0, 1)

in the following way:

fl(t, x; Λv) =
∑

|α|=1

−ρ(0,0,α)
(
t, x;U (l), U

(l)
t ,∇U (l) + θα(∇(u(l)))α

)
(∇u(l))α

+
∑

|β|=1

n∑

j,k=1

a
(β)
jk

(
t, x; Λ(U (l) + v) + θβ(Λ(u(l) + v))β

)
(Λu(l))βU (l)

xjxk
(1.19)

+

n∑

j,k=1

ajk
(
t, x; Λ(U (l−1))

)
u(l)
xjxk

.

Taking account of Proposition 1.1 and conditions (A-III) we deduce that sufficiently small

T1 and κ imply
∫ T1

0

τ−lν/2
∥∥fl
(
τ, x; Λv

)∥∥
m

(τ) dτ ≤ Cm sup
t∈[0,T1]

t−lν/2
1∑

j=0

∥∥∂jt u(l)(t)
∥∥
m+2−2j

for all v ∈ C1
(
[0, T ];H∞(Rn)

)
∩ Πκ. Thus we have explained the asymptotic behaviour

of fl near t = 0 and use in the following a fixed κ.

From now on, we put (without loss of generality, since the general case max{q, r} < 1

can be studied in the same way) q = r = 1
2 , therefore ν = 1

2 , for our convenience.

2. Energy estimates. In this section we derive energy estimates for the solution v

of the auxiliary problem (CP3).

2.1. Basic energy estimate

Proposition 2.1. Under the assumptions (B-I) to (B-III) there exist positive

constants l0 and Cl,L0
such that for v, w ∈ C2

(
[0, T ];H∞(Rn)

)
satisfying (1.6) with

EL0−1[w](t) ≤ DL0
and w ∈ Πκ (for the definition of Πκ see Introduction), that is,

vtt −
n∑

j,k=1

bjk(t, x; Λw)vxjxk +

n∑

j=1

bj(t, x; Λw)vxj

+ b0(t, x; Λw)vt + b(t, x; Λw)v = fl(t, x; Λw),

v(0, x) = vt(0, x) ≡ 0,
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the following basic energy estimate holds for l ≥ l0:

EL0−1[v](t) ≤ Cl,L0
t(l+1)/2. (2.1)

Proof. Taking account of our partial differential equation we have

∂t‖vt‖2 = 2(vtt, vt) = 2
( n∑

j,k=1

bjkvxjxk , vt

)
− 2
( n∑

j=1

bjvxj + b0vt + bv − fl, vt
)

= −2
( n∑

j,k=1

(∂xkbjk)vxj , vt

)
− 2
( n∑

j,k=1

bjkvxj , vxkt

)
− 2
( n∑

j=1

bjvxj + b0vt + bv − fl, vt
)

;

the last equality can be derived by integration by parts. Taking account of

− 2
( n∑

j,k=1

bjkvxj , vxkt

)
= −2∂t

( n∑

j,k=1

bjkvxj , vxk

)

+ 2
( n∑

j,k=1

(∂tbjk)vxj , vxk

)
+ 2
( n∑

j,k=1

bjkvtxj , vxk

)
,

we see that

−2
( n∑

j,k=1

bjkvxj , vxkt

)
= −∂t

( n∑

j,k=1

bjkvxj , vxk

)
+
( n∑

j,k=1

(∂tbjk)vxj , vxk

)
.

Therefore it follows from the above equality that

∂tE[v](t) = −2
( n∑

j,k=1

(∂xkbjk)vxj , vt

)

+
( n∑

j,k=1

(∂tbjk)vxj , vxk

)
− 2
( n∑

j=1

bjvxj + b0vt + bv − fl, vt
)
.

On the other hand,

∂tbjk
(
t, x; Λv

)
=
∑

|γ|=1

b
(γ)
jk

(
t, x; Λv

)
∂t(Λv)γ +

(
∂tbjk

)
(t, x; Λv).

Since w ∈ C2
(
[0, T ];H∞(Rn)

)
, using (B-III) we then deduce that

|∂tbjk|, |∂xkbjk|, |bj |, |b0| and |b| ≤ C 1
t .

Hence

∂tE[v](t) ≤ C1

t
E[v](t) + 2|(fl, vt)|. (2.2)

Note that according to (1.19) the function fl can be written in the form

fl(t, x; Λv) =
∑

|ν|=1

Fν,l(t, x; Λv)(Λu(l))ν +
∑

|ν′|=2

Fν′,l(t, x)Dν′
x u

(l), (2.3)
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where Fν,l and Fν′,l are appropriate functions satisfying (B-III)ii) for h = Fν,l. Then we

have with a positive parameter ε

2|(fl, vt)| ≤ C
∑

|ν|=1,|ν′|=2

tl/2
(
‖Fν,l‖(0)(t) + ‖Fν′,l‖(0)(t)

)

×
(1

ε
t−l/2

1∑

j=0

∥∥∂jt u(l)
∥∥2

2−2j
+ εt−l/2

∥∥vt
∥∥2
)
,

(2.4)

where C depends on
∑1
j=0 ‖∂

j
t u

(l)‖L0−j < κ. Differentiating m times with respect to x

both sides of (1.6), 0 ≤ m ≤ [n2 ] + 1, we get for |α| = m the identity

(Dα
x v)tt −

n∑

j,k=1

bjk(Dα
x v)xjxk +

n∑

j=1

bj(D
α
x v)xj + b0(Dα

x v)t + b(Dα
x v) =

∑

η<α

(
α

η

)

×
( n∑

j,k=1

(Dη
xbjk)Dα−η

x vxjxk +

n∑

j=1

(Dη
xbj)D

α−η
x vxj + (Dη

xb0)Dα−η
x vt + (Dη

xb)D
α−η
x v

)
.

Therefore applying the same way as for deriving (2.2) to the left-hand side, we have using

Lemma 1.3 with a constant C1,n > C1 the energy estimate

∂tEL0−1[v](t) ≤ C1,n

t
EL0−1[v](t)

+ C
∑

|ν|=1,|ν′|=2

tl/2
(
‖Fν,l‖(L0−1)(t) + ‖Fν′,l‖(L0−1)(t)

)

×
(1

ε
t−l/2

1∑

j=0

∥∥∂jt u(l)
∥∥2

L0+1−2j
+ εt−l/2

∥∥vt
∥∥2

L0−1

)
.

Take an integer l0 so that l0/2 > C1,n. The application of Lemma 1.4 yields for l≥ l0
the energy estimate

EL0−1[v](t) ≤ C
∫ t

0

exp
(∫ t

s

C1,n

τ
dτ
)
sl/2

∑

|ν|=1,|ν′|=2

(∥∥Fν,l
∥∥

(L0−1)
+
∥∥Fν′,l

∥∥
(L0−1)

)
(s) ds

× sup
τ∈[0,t]

(1

ε
τ−l/2−1

1∑

j=0

∥∥∂jt u(l)
∥∥2

L0+1−2j
+ ετ−l/2

∥∥vt
∥∥2

L0−1

)
.

Since l/2 ≥ C1,n, taking ε sufficiently small we get

EL0−1[v](t) ≤ Ctl/2
∫ t

0

∑

|ν|=1,|ν′|=2

(∥∥Fν,l
∥∥
L0−1

+
∥∥Fν′,l

∥∥
L0−1

)
(s) ds

× sup
0≤τ≤t

τ−l/2
1∑

j=0

∥∥∂jt u(l)(τ)
∥∥2

L0+1−2j
.

Recalling Proposition 1.1 with ν = 1
2 and (A-III) we conclude that

EL0−1[v](t) ≤ Cl,L0
t(l+1)/2. (2.5)

Therefore we arrive at (2.1).
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2.2. Energy estimates of higher order

Proposition 2.2. The statements of the previous proposition hold if we replace L0−1

by m, m ≥ L0 − 1.

Proof. We will prove (2.1) by induction after replacing L0 − 1 by m. Suppose that

we have with constants Cl,p, 0 ≤ p ≤ m− 1, the estimates

Ep[v](t) ≤ Cl,pt(l+1)/2. (2.6)

In the same way as in the proof of Proposition 2.1 we derive for |α| = m and with a

positive parameter ε the estimate

∂tE[Dα
x v](t) ≤ C1 + ε

t
E[Dα

x v](t)

(I) + 2
(
Dα
x fl(t, x; Λv), Dα

x vt
)

(II) +
∑

γ<α

(
α

γ

) n∑

j,k=1

2
(
Dα−γ
x bjkD

γ
xvxjxk , D

α
x vt
)

(III) +
t

ε

∑

γ<α

(
α

γ

)( n∑

j=1

∥∥Dα−γ
x bjD

γ
xvxj

∥∥2
+
∥∥Dα−γ

x b0D
γ
xvt
∥∥2

+
∥∥Dα−γ

x bDγ
xv
∥∥2
)
.

Analogously to the derivation of (2.4), by using Lemma 1.3 we have

2
∣∣(Dα

xfl, D
α
x vt)

∣∣ ≤ C
∑

|ν|=1,|ν′|=2

(∥∥Fν,l
∥∥

(m)
+
∥∥Fν′,l

∥∥
(m)

)

×
(1

ε

1∑

j=0

∥∥∂jt u(l)
∥∥2

m+2−2j
+ ε
∥∥vt
∥∥2

m

)
.

(2.7)

Moreover,

(II) ≤
n∑

j,k=1

(
C(m)‖bjk‖(1)

(
‖vxjxk‖2m−1 + ‖vt‖2m

))
+
C

t
Em−1[v](t). (2.8)

Finally, it follows from (B-III)ii) that

(III) ≤ C

t
Em−1[v](t). (2.9)

Put Am(t) = sup
j,k

C(m)‖bjk‖(1)(t). Summarizing (2.7) to (2.9) and taking ε so small

that l0/2 (> C1,n) > C1 + ε we obtain for l ≥ l0 the inequality

∂tEm[v](t) ≤ l

2t
Em[v](t) +Am(t)Em[v](t)

+ C
∑

|ν|=1,|ν′|=2

(
‖Fν,l‖(m) + ‖Fν′,l‖(m)

)(1

ε

1∑

j=0

∥∥∂jt u(l)
∥∥2

m+2−2j
+ ε
∥∥vt
∥∥2

m

)

+
C

t
Em−1[v].

(2.10)
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By applying Lemma 1.4 we conclude that

Em[v](t) ≤ C
∫ t

0

exp
(∫ t

r

( l/2
τ

+Am(τ)
)
dτ
)

×
(
rl/2

∑

|ν|=1,|ν′|=2

(∥∥Fν,l
∥∥

(m)
+
∥∥Fν′,l

∥∥
(m)

)
(r)

× sup
0≤τ≤t

(τ−l/2
ε

1∑

j=0

∥∥∂jt u(l)(τ)
∥∥2

m+2−2j
+ ετ−l/2

∥∥vτ
∥∥2

m

)
+
C

r
Em−1[v](r)

)
dr.

(2.11)

From (B-III)i) it follows immediately that exp
(∫ t

0
Am(τ) dτ

)
is bounded for t ∈ [0, T ].

Taking ε sufficiently small, in the same way as in the derivation of (2.5) we conclude that

Em[v](t) ≤ cl,mt(l+1)/2 + CEm−1[v](t) (2.12)

and with (2.6)

Em[v](t) ≤ Cl,mt(l+1)/2. (2.13)

Thus the proof is complete.

Remark 2.1. From both propositions we conclude immediately that Em[v](t) ≤ Dm

and v ∈ Πκ for sufficiently small T = T (m).

3. Linear problem. In this section we consider the following linear Cauchy problem

(LP) corresponding to (CP3) in (0, T )× Rn:

(LP)





L[v] = ∂2
t v −

n∑

j,k=1

bjk(t, x)∂2
xjxk

v +
n∑

j=1

bj(t, x)∂xjv + b0(t, x)∂tv

+ b(t, x)v = fl(t, x),

v(0, x) = vt(0, x) = 0,

(3.1)

where bjk satisfy (B-I), (B-II)i) and (B-III)i), bj , b0 and b satisfy (B-II)ii) and (B-III)ii)

and fl(t, x) ∈ C
(
[0, T ];H∞(Rn)

)
satisfies ‖fl‖2s(t) ≤ Cstl for every integer s ≥ 0.

Proposition 3.1. There exists a natural number l1 such that the Cauchy problem

(LP) with l ≥ l1 has a uniquely determined solution v ∈ C1
(
[0, T ];H∞(Rn)

)
satisfying

for every integer s ≥ 0 the energy estimate

Es[v](t) ≤ Cstl
∫ t

0

τ−l
∥∥fl
∥∥2

s
(τ) dτ. (3.2)

Proof. For a positive parameter ε we consider the following ε-shifted problem (LP)ε
of (LP) in (0, T − ε)× Rn:

(LP)ε





Lε[v] = ∂2
t vε −

n∑

j,k=1

bεjk(t, x)∂2
xjxk

vε +

n∑

j=1

bεj(t, x)∂xjvε + bε0(t, x)∂tvε

+ bε(t, x)vε = fl(t, x),

vε(0, x) = ∂tvε(0, x) = 0,

where for any function h = h(t, x) defined in (0, T ) × Rn we write hε = hε(t, x) :=

h(t+ ε, x). It is well-known that there exists a smooth solution vε of (LP )ε belonging to
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C2
(
[0, T − ε];H∞(Rn)

)
. On the same way as for (2.5) we can show that there exists an

integer l1 such that

Es[vε](t) ≤ Cstl
∫ t

0

τ−l‖fl‖2s(τ) dτ (3.3)

for all l ≥ l1 and ε ∈ (0, ε0]. Therefore Es[vε](t) are uniformly bounded in ε. We consider

a sequence {vεi}∞i=0 of solutions of (LP)εi with a sequence {εi}, εi > εi+1 and εi → 0 for

i → ∞. The difference wεi = vεi − vεi−1
, i ≥ 1, satisfies in (0, T − ε0) × Rn the Cauchy

problem
{
Lεi [wεi ] = −(Lεi − Lεi−1

)[vεi−1
],

wεi(0, x) = (∂twεi)(0, x) = 0.

For a fixed s ≥
[
n
2

]
+ 1 we obtain, using the uniform boundedness of Es+1[vε](t) with

respect to ε and following the approach to derive (2.5), the energy estimate

Es[wεi ](t) ≤ Citl1 sup
0≤τ≤t

τ−l1
∑

|α|≤2

∥∥(∂τvεi−1
, ∂αx vεi−1

)
∥∥2

s0
(τ)

≤ Citl1 sup
0≤τ≤t

τ−l1
(
Es[vεi−1

] + Es+1[vεi−1
]
)
≤ CiCs+1t

l,

(3.4)

where the constant Ci depends on

∫ t

0

∥∥bεijk(τ, x)− bεi−1

jk (τ, x)
∥∥
s
(τ) dτ, j, k = 1, . . . , n,

∫ t

0

∥∥hεi(τ, x)− hεi−1(τ, x)
∥∥
s
(τ) dτ

for h = bj , j = 1, . . . , n, b0 and b.

Thus we can choose εi in such a way that Ci ≤ 2−i because of (B-III). Consequently,

{vεi}i≥0 is a Cauchy sequence in
⋂1
j=0 C

j
(
[0, T ];Hs+1−j(Rn)

)
. The limit element v is

the uniquely determined solution of (LP) belonging to
⋂1
j=0 C

j
(
[0, T ];Hs0+1−j(Rn)

)
.

Repeating this approach for all s with suitable sequences {εi,s} gives immediately the

result v ∈ C1
(
[0, T ];H∞(Rn)

)
.

4. H∞-well posedness for (CP3). The results from the previous sections allow us

now to study the quasi-linear Cauchy problem (CP3).

Proposition 4.1. Under the assumptions (B-I)–(B-III) there exists a positive con-

stant T ∗ such that (CP3) with w = v has a uniquely determined solution v belonging to

C2
(
[0, T ∗];H∞(Rn)

)
∩Πκ and satisfying

Es[v](t) ≤ Cst(l+1)/2

for each s ≥
[
n
2

]
+ 1 and with a fixed l ≥ l0.

Proof. The proof will be divided into several steps.
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1. An iteration scheme. In order to prove the time local existence of solution to (CP3),

we consider for i = 1, 2, . . . the following iteration scheme in (0, T )× Rn:

(CP3)i





Qi−1[vi] = ∂2
t vi −

n∑

j,k=1

bjk(t, x; Λvi−1)∂2
xjxk

vi +

n∑

j=1

bj(t, x; Λvi−1)∂xjvi

+ b0(t, x; Λvi−1)∂tvi + b(t, x; Λvi−1)vi = fl(t, x; Λvi−1),

vi(0, x) = (∂tvi)(0, x) = 0,

(4.1)

where v0 ≡ 0 and T ≤ T1 with T1 taken from Proposition 1.1.

Lemma 4.1. For a fixed integer s ≥ [n2 ] + 1, there exist positive constants Cs and Ts
such that the solution vi of (CP3)i satisfies for t ∈ [0, Ts] the energy estimate

Es[vi] ≤ Cst(l+1)/2, (4.2)

where Cs is independent of i.

Proof. Let us start our iteration scheme with v0 ≡ 0. Then the application of

Proposition 3.1 gives a solution v1 ∈ C1
(
[0, T ];H∞(Rn)

)
, where T ≤ T1. Here we used

Remark 1.2. Due to (3.2) this solution satisfies the energy estimate

Es[v1] ≤ Cst(l+1)/2.

Together with Remark 1.2 again we see that v1 ∈ C2
(
[0, T ];H∞(Rn)

)
. A sufficiently

small Ts gives Es[v1] ≤ Ds for all t ∈ [0, Ts] and v1 ∈ Πκ. Proposition 2.2 yields im-

mediately (eventually with a larger Cs) the energy estimate Es[v1] ≤ Cst
(l+1)/2. Then

Proposition 2.2 and Remark 2.1 imply (eventually with a smaller Ts) the statement of

Lemma 4.1, especially (4.2), for v2. Now we are able to apply Proposition 2.2 step by step,

where the constants Cs and Ts are unchanged. This brings the statement of Lemma 4.1,

especially (4.2), for vi. Hence we have completed the proof of the lemma.

2. Cauchy sequence property. We show the Cauchy sequence property for {vi}i≥0 in

C
(
[0, T ∗];Hs0+1(Rn)

)
∩C1

(
[0, T ∗];Hs0(Rn)

)
∩Πκ with a fixed s0 ≥

[
n
2

]
+1. The difference

wi = vi − vi−1 solves in (0, T )× Rn the linear Cauchy problem

{
Qi−1[wi] = −(Qi−1 −Qi−2)[vi−1] + f(t, x; Λvi−1)− f(t, x; Λvi−2),

wi(0, x) = ∂twi(0, x) = 0.
(4.3)

Then we will prove the next result.

Lemma 4.2. There exists a positive constant Cs0 such that for t ∈ [0, Ts0 ] and fixed

l ≥ l0 the differences wi+1 and wi, i = 0, 1, 2, . . ., satisfy

Es0 [wi+1](t) ≤ Cs0t(l+1)/2Es0 [wi](t), (4.4)

where Cs0 depends on
1∑
j=0

‖∂jt vk‖2s0+2−j , k = i, i− 1.
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Proof. By the mean value theorem the equation from (4.3) can be written in the

form

Qi[wi+1] =
∑

|γ|=1

gγ
(
t, x; vi−1, vi

)
(Λwi)

γ , (4.5)

where gγ satisfies (B-III). Then there exists a positive constant Cs0 such that in the same

way as in the proof of Proposition 2.2 by taking account of Corollary 1.1 we obtain for a

fixed l ≥ l0 the energy estimate

Es0 [wi+1](t) ≤ Cs0t(l+1)/2 sup
0≤τ≤t

τ−l/2Es0 [wi](τ),

where Cs0 depends on exp
(∫ t

0
As0(τ) dτ

)
,
∫ t

0
‖h‖(s0+1)(τ) dτ for h = gγ , |γ| = 1, and

1∑
j=0

‖∂jt vk‖2s0+2−j , k = i, i− 1. Thus we obtain the desired result.

The relation (4.2) implies that Es0 [vi](t) is uniformly bounded for t ∈ [0, Ts0 ]. There-

fore the constant Cs0 from (4.4) can be taken independently of i. Repeatedly using (4.4)

we obtain

Es0 [wi+1](t) ≤
(
Cs0t

(l+1)/2
)i+1

Es0 [w0](t).

Consequently,

Es0 [wi+1](t) ≤ 2−iEs0 [w0](t) (4.6)

for all t ∈ [0, T ∗], where we take T ∗(≤ Ts0) so small that Cs0(T ∗)(l+1)/2 ≤ 2−1. This

gives the Cauchy sequence property for {vi}i≥0 in
⋂1
j=0 C

j
(
[0, T ∗];Hs0+1−j(Rn)

)
. The

limit element v represents the uniquely determined solution of (CP3) with w = v.

3. A continuation argument. Finally, we will show that the solution v of (CP3) with

w = v belongs to C2
(
[0, T ∗];H∞(Rn)

)
with T ∗ taken as above.

Following the above reasoning we show that there exists a constant T ∗s ≤ T ∗ such

that (CP3) with w = v has the solution v ∈ ⋂1
j=0 C

j
(
[0, T ∗s ];Hs+1−j(Rn)

)
for any fixed

s > s0. By the well-known continuation theorem for solutions of Cauchy problems for

quasi-linear strictly hyperbolic equations (see [10]) it is easily seen that the solution v

persists in [0, T ∗]. Here we use that the life span of solutions depends only on a lower

order energy. Thus we have v ∈ ⋂1
j=0 C

j
(
[0, T ∗];Hs+1−j(Rn)

)
. In fact, for any fixed t0

with 0 < t0 < T ∗s our problem is strictly hyperbolic on [t0, T
∗
s ] and v ∈ Πκ in [0, T ∗s ].

Therefore v = v(t, x) is the desired solution of (CP3) with w = v. From the equation we

conclude that v ∈ C2
(
[0, T ∗];H∞(Rn)

)
. This completes the proof of Proposition 4.1.

5. Proof of the main results

5.1. Proof of Theorem 0.1. The existence of a solution u ∈ C1
(
[0, T ∗];H∞(Rn)

)

of (CP1) follows from Proposition 4.1 and Proposition 1.1 by putting u = u(t, x) =

U (l)(t, x) + v(t, x). To finish the proof it remains to derive a uniqueness result.
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Proposition 5.1. Under the assumptions (A-I) to (A-III) there exists an integer s0

such that (CP1) has at most one solution

u ∈
1⋂

j=0

Cj
(
[0, T ∗];Hs0+1−j(Rn)

)
.

Proof. Let u1, u2 be solutions of (CP1) belonging to
⋂1
j=0 C

j
(
[0, T ∗];Hs0+1−j(Rn)

)
.

The difference w = u1 − u2 solves in (0, T ∗)× Rn the Cauchy problem




Pu1
[w] =

n∑

j,k=1

(
ajk(t, x; Λu1)− ajk(t, x; Λu2)

)
∂2
xjxk

u2

−
(
ρ(t, x; Λu1)− ρ(t, x; Λu2)

)
,

w(0, x) = wt(0, x) = 0.

(5.1)

By the mean value theorem the right-hand side of (5.1) is represented in the form

n∑

i=1

fi+1(t, x;u1, u2)wxi + f1(t, x;u1, u2)wt + f0(t, x;u1, u2)w,

where each fi (i = 0, 1, . . . , n+ 1) satisfies for every integer s ≥ 0 the condition

‖fi(t)‖(s) ∈ L1(0, T )

because of (A-III). The equation from (5.1) can be rewritten in (0, T ∗)×Rn in the form

(see [8])

wtt − f1(t, x;u1, u2)wt − f0(t, x;u1, u2)w

=

n∑

j,k=1

ajk(t, x; Λu1)wxjxk +

n∑

j=1

fi+1(t, x;u1, u2)wxi .
(5.2)

Repeating the approach from the second step of the proof of Proposition 1.1 we have for

any integer s > 0, taking eventually T ∗ smaller if necessary,

‖wt‖2s(t) ≤ Cst1/2 sup
t
‖w‖2s+2(t), (5.3)

where Cs depends on
∫ t

0
‖h‖(s)(τ) dτ for h = ajk, a

(γ)
jk , ρ

(γ), |γ| = 1. Then (5.3) implies

‖∂jtw‖2s(t) ≤ Cst3/2−j , j = 0, 1. (5.4)

Applying (5.3) and (5.4) and repeating this procedure, we obtain for an integer l ≥ 0 the

estimate
∥∥∂jtw

∥∥2

s−2l
(t) ≤ Cs,lt3l/2−j , j = 0, 1.

Take l0 and s0 so that 3
2 l0 (> C1,n) > C1 and s0 ≥

[
n
2

]
+ 1 + 2l0. Then similarly to the

proof of (2.13) with fl0 ≡ 0 for the above l0 we have after application of Lemma 1.4 the

energy estimate

Es0−2l0 [w](t) ≤ 0.

Hence we conclude that w ≡ 0 in
⋂1
j=0C

j
(
[0, T ∗];Hs0+1−j(Rn)

)
.
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5.2. Proof of Theorem 0.2. To complete the proof we have only to show the existence

of a domain of dependence. This leads together with Theorem 0.1 to C∞-well posedness

for our starting problem.

Proposition 5.2. The solution of problem (CP1) possesses the domain of dependence

property.

Proof. For solutions u1 and u2 satisfying (CP1) with initial data (ϕ1, ψ1) and

(ϕ2, ψ2) respectively, the proof will be carried out by showing that the difference u1− u2

vanishes in some set K(ti0 , x0) if ϕ1 ≡ ϕ2 and ψ1 ≡ ψ2 on K(ti0 , x0)∩{t = 0} =: D. The

difference z := u1 − u2 satisfies (5.1) and is, consequently, in (0, T ∗) × Rn a solution of

the linear Cauchy problem

∂2
t z −

n∑

j,k=1

ajk(t, x)∂2
xjxk

z −
n∑

j=1

fj+1(t, x)∂xjz − f1(t, x)zt − f0(t, x)z = 0,

z(0, x) = ϕ1(x)− ϕ2(x), zt(0, x) = ψ1(x)− ψ2(x).

(5.5)

Thus z = zt = 0 on D. Take i0 so that 2−i0 = T ∗ (eventually we have to decrease T ∗

a bit). Let us define with f(t, x, ξ; η) :=
n∑

j,k=1

ajk(t, x, ξ)ηjηk for t ∈ (0, T ∗] the function

λf = λf (t) = sup
(x,ξ,η)∈Rn×K×Sn−1

{
|τ | : τ2 − f(t, x, ξ; η) = 0, |η| = 1

}
,

and for i ≥ i0 the functions

λf,i = λf,i(t) = sup
t∈[2−i−1,2−i]

λf (t).

For i ≥ i0 we put

Hi0(ti0 , x0) =
{

(t, x) ∈ [2−i0−1, 2−i0 ]× Rn : |x− x0| < Cf
√

2
(i0+1)ν |ti0 − t|

}
,

Hi0+1(ti0 , x0) =
{

(t, x) ∈ [2−i0−2, 2−i0−1]× Rn : |x− y| < Cf
√

2
(i0+2)ν |2−(i0+1) − t|,

y ∈ Hi0(ti0 , x0) ∩ {t = 2−(i0+1)}
}
,

and in general for i ≥ i0 + 1 we set

Hi(ti0 , x0) =
{

(t, x) ∈ [2−i−1, 2−i]× Rn : |x− y| < Cf
√

2
(i+1)ν |2−i − t|,

y ∈ Hi−1(ti0 , x0) ∩ {t = 2−i}
}
.

Here we used
√
f(t, x, ξ; η) ≤ Cf t

−ν/2 for |η| = 1 which comes from (A-III)i). Finally,

let us define K(ti0 , x0) =
⋃
i≥i0 Hi(ti0 , x0). Then, taking account of the diameter of

Hi(ti0 , x0) ∩ {t = 2−1−i}, equal to

2Cf

i∑

l=i0

2(l+1)ν/2

2l+1
,

we deduce that the diameter d of D satisfies

d = 2Cf

∞∑

l=i0

2(l+1)ν/2

2l+1
< +∞.
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We take a cut-off function χ = χ(x) which is identical to 1 in a neighbourhood of D

and supported in a ball D∗ ⊃⊃ D. Then we consider the following ε-shifted problem in

(0, T ∗ − εi)×Rn corresponding to (5.5):

(DD)εi





∂2
t uεi −

n∑

j,k=1

aεijk(t, x)∂2
xjxk

uεi =
n∑

j=1

fεij+1(t, x)∂xjuεi

+ fεi1 (t, x)∂tuεi + fεi0 (t, x)uεi ,

uεi(0, x) = (1− χ)ϕ(x), (∂tuεi)(0, x) = (1− χ)ψ(x),

(5.6)

where εi = 1/2i for i ≥ i0 + 1. Note that Cf
√

2
iν ≤ λ−1

fεi ,i. The Cauchy problem (DD)εi
satisfies a domain of dependence property in the sense that

uεi ≡ 0 in K(ti0 , x0).

In fact, for a forward cone K(εi) on D which is defined by

K(εi) =
{

(t, x) ∈
[
0, λfεi ,i · d2

]
× Rn : |x− x0| < λ−1

fεi ,i

∣∣t− λfεi ,i · d2
∣∣
}
,

we have uεi ≡ 0 in K(εi) ∪K(ti0 , x0).

Let us now consider (5.5), (5.6) with data φ(1−χ)ϕ and φ(1−χ)ψ, where φ is some cut-

off function which yields Sobolev behaviour of data. Due to our existence and uniqueness

results (Propositions 4.1 and 5.1) we have unique solutions uεi , z ∈ C1
(
[0, T ∗];H∞(Rn)

)
.

Then the differences wεi := z − uεi satisfy in (0, T ∗ − εi)×Rn the Cauchy problem




∂2
twεi −

n∑

j,k=1

aεijk(t, x)∂2
xjxk

wεi =

n∑

j=1

fεij+1(t, x)∂xjwεi

+ fεi1 (t, x)∂twεi + fεi0 (t, x)wεi + Fεi(t, x, z),

wεi(0, x) = (∂twεi)(0, x) = 0.

Here Fεi depends on ajk − aεijk and fj − fεij . Using (A-II)ii) and (A-III)i) we deduce that

∫ t

0

∥∥aεijk(t, x)− ajk(t, x)
∥∥
s
(τ) dτ +

n+1∑

j=0

∫ t

0

∥∥fεij (t, x)− fj(t, x)
∥∥
s
(τ) dτ → 0,

if i → ∞ for all s ∈ N . Thus we can follow the approach of Section 1 and 4 and obtain

EL0
(z − uεi) → 0 as i → ∞. By using uεi ≡ 0 in K(ti0 , x0) we get z ≡ 0, there. Hence,

u1 ≡ u2 in K(ti0 , x0) if u1 = u2, ∂tu1 = ∂tu2 on D. This completes the proof.

Remark 5.1. Our assumptions to coefficients of Pu are weaker than those from [1] in

the case of C∞-well posedness in the following sense: the assumptions on the coefficients

in [1] are:

|Dα
xajk(t, x)| ≤ Cαt−p, 0 ≤ p < 1, α ≥ 0,

|Dα
x∂tajk(t, x)| ≤ C1

αt
−1−γ|α|, 0 ≤ γ < 1, α ≥ 0.

If we compare these with (A-III), then we need only an assumption for the asymptotic

behaviour near t = 0 of ∂tajk, but not of Dα
x∂tajk.

6. Concluding remarks. The goal of this paper is to study second order quasi-

linear model Cauchy problems in the case of coefficients non-Lipschitz in t and smooth



150 A. KUBO AND M. REISSIG

in x. We show that a straightforward approach leads to C∞-well posedness results. With

this respect our strategy, especially the reduction scheme, is applicable. This scheme is

too rough if we are interested in Sobolev solutions, because the loss of derivatives is in

general not precise. One should generalize some of our ideas in several directions. One

interesting point is to study linear Cauchy problems of higher order with non-Lipschitz

coefficients. The authors expect that models can be studied, where time derivative of

coefficients possesses the singular behaviour O( 1
t ). It would be interesting to include

the optimal singular behaviour O( 1
t log( 1

t )) as in [3], [7] or at least O( 1
t (log( 1

t ))
γ) with

γ ∈ (0, 1). But these problems seem to be complicate. With the singular behaviour O( 1
t )

one can try to study general quasi-linear models of higher order. Here one can follow

ideas are developed in [6]. Finally, one can deal with the Cauchy problem for classes of

fully nonlinear hyperbolic equations by using our method (cf. [4]).

Acknowledgments. The authors would like to express many thanks to DFG for

financial support for the first author from August to October 2001 and to the Faculty of

Mathematics and Computer Science of TU Bergakademie Freiberg for hospitality.

References

[1] M. Cicognani, The Cauchy problem for strictly hyperbolic operators with non-absolutely
continuous coefficients, Tsukuba J. Math. (to appear).

[2] F. Colombini, D. Del Santo and T. Kinoshita, Well-posedness of the Cauchy problem
for a hyperbolic equation with non-Lipschitz coefficients, preprint.

[3] F. Colombini, D. Del Santo and M. Reissig, About some optimal regularity for non-
Lipschitz coefficients, preprint.

[4] P.-A. Dionne, Sur les problèmes de Cauchy hyperboliques bien posés, J. Analyse Math. 10
(1962/63), 1–90.

[5] F. Hirosawa, On the Cauchy problem for second order strictly hyperbolic equations with
non-regular coefficients, preprint.

[6] K. Kajitani and K. Yagdjian, Quasilinear hyperbolic operators with the characteristics of
variable multiplicity , Tsukuba J. Math. 22 (1998), 49–85.

[7] A. Kubo and M. Reissig, Construction of parametrix for hyperbolic equations with fast
oscillations in non-Lipschitz coefficients, Mathematical Research Note, Institute of Mathe-
matics, University of Tsukuba, 2002-003.

[8] M. Reissig, Weakly hyperbolic equations with time degeneracy in Sobolev spaces, Abstr.
Appl. Anal. 2 (1997), 239–256.

[9] M. Reissig and K. Yagdjian, On the Cauchy problem for quasilinear weakly hyperbolic
equations with time degeneration, Izv. Nats. Akad. Nauk Armenii Mat. 28 (1993), No. 2,
35–57 (in Russian); English transl.: J. Contemp. Math. Anal. 28 (1993), No. 2, 31–50.

[10] M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Progr. Math. 100, Birk-
häuser, Boston, 1991.


