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Abstract. In this paper we will give a brief survey of recent regularity results for Fourier
integral operators with complex phases. This will include the case of real phase functions. Ap-
plications include hyperbolic partial differential equations as well as non-hyperbolic classes of
equations. An application to an oblique derivative problem is also given.

1. Introduction. Let us start with the definition of a Fourier integral operator with

a complex phase. Informally, it is an operator T that can be locally written in the form

Tu(x) =

∫

Rn

∫

RN

eiΦ(x,y,θ)a(x, y, θ)u(y) dθ dy,

with a symbol a and a complex valued phase function Φ with Im Φ ≥ 0.

Let us give a more rigorous definition now. Let V be a conic subset of Rn × Rn ×
(RN\{0}): (x, y, θ) ∈ V implies (x, y, λθ) ∈ V for all λ > 0. A smooth in V function

Φ = Φ(x, y, θ) is called a regular phase function of positive type if

(i) Φ has no critical points in V : d(x,y,θ)Φ 6= 0 in V .

(ii) Φ is positive homogeneous in θ: Φ(x, y, λθ) = λΦ(x, y, θ) for all λ > 0.

(iii) d(∂θ1Φ), . . . , d(∂θnΦ) are linearly independent over C on CΦR = {(x, y, θ) :

∂θΦ = 0}.
(iv) Im Φ(x, y, θ) ≥ 0 on V .

Let us immediately note that by the equivalence of phase function theorem ([8], [5])

we can rewrite general Fourier integral operators microlocally with N = n. So in the

sequel without loss of generality we will always assume that N = n.
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Let X and Y be open sets in Rn. A smooth function a ∈ C∞(X × Y × Rn) is a

symbol of order m and type ρ, 1/2 ≤ ρ ≤ 1, if for every compact subset K of X×Y , and

any multi-indices α, β, the estimate
∣∣∂βx,y∂αθ a(x, y, θ)

∣∣ ≤ C(α, β,K)(1 + |θ|)m−ρ|α|+(1−ρ)|β|

holds for all (x, y) ∈ K and θ ∈ Rn. The space of such symbols is denoted by Smρ,1−ρ(X×
Y ×Rn). If ρ = 1, we will write Sm for Sm1,0, the space of smooth functions satisfying

∣∣∂βx,y∂αθ a(x, y, θ)
∣∣ ≤ C(α, β,K)(1 + |θ|)m−|α|,

for all (x, y) ∈ K and θ ∈ Rn.

Fourier integral operators of order m and type (ρ, 1 − ρ) are operators that can be

locally written in the form

Tu(x) =

∫

Y

∫

Rn

eiΦ(x,y,θ)a(x, y, θ)u(y) dθ dy,(1)

with some regular phase function Φ of positive type and a symbol a ∈ Smρ,1−ρ. The space

of such operators is denoted by Imρ,1−ρ. As before, we will denote Im1,0 by Im. Condition (iv)

that Im Φ ≥ 0 is necessary for the integral (1) to make sense.

If the phase function Φ is real valued, one defines the canonical relation C in a

neighborhood of (x, y) by

C =
{

(x, dxΦ(x, y, θ)), (y,−dyΦ(x, y, θ)) : dθΦ(x, y, θ) = 0
}
.

The set C is a conic Lagrangian manifold in T ∗X\0 × T ∗Y \0 equipped with the stan-

dard symplectic form σX
⊕−σY . By the equivalence of phase function theorem (see,

for example, [2]), there is a bijection between Fourier integral operators with a fixed

conic Lagrangian manifold C ⊂ T ∗X\0 × T ∗Y \0 and the space of symbols. The set

C ′ = {(x, ξ, y, η)} : ((x, ξ), (y,−η)) ∈ C} is the wave front set of the integral kernel of T .

If the phase function Φ is complex valued, an almost analytic continuation C̃ of C

will be a positive homogeneous Lagrangian manifold in the almost analytic manifold

T ∗X̃\0 × T ∗Ỹ \0. This global description will not be crucial for us as we will discuss

local properties of Fourier integral operators for which the representation (1) is sufficient.

For the details on the analytic continuation and the calculus of operators with complex

phases we refer to [8] and [3].

Continuity properties of Fourier integral operators have been under study for a long

time. For example, some earlier references on operators with real valued phase functions

arising as solutions to wave equations can be found in [1], [10], [11]. Certain convolu-

tion and singular integral operators have been studied in [21], [7]. Lp-estimates for a

class of operators with convex characteristics were established in [23]. General estimates

have been finally given by Seeger, Sogge, and Stein in [20]. A survey of these properties

can be found in [12]. Seeger, Sogge, and Stein came up with a so-called factorization

condition which has been extensively analyzed in [16]. This condition was proved to be

automatically satisfied in a number of important cases in [14], in particular in applica-

tions to strictly hyperbolic equations in R ×R3. Best possible orders for Lp-continuity

were determined in [15] in terms of the dimension of the singular support of the operator.
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The calculus of operators with complex phases was developed in [8]. Many applica-

tions of this theory can be found in [9]. An alternative approach to such operators is in [6].

L2-continuity of operators of order zero was established in [9] and in [5] in more general-

ity. An application of this theory to solutions of Cauchy problems for partial differential

equations can be found in [26]. Applications to spectral problems have been investigated

in [19]. The Lp-properties of Fourier integral operators with complex phases have been

established in [17]. There one can also find applications to non-hyperbolic partial differ-

ential operators, oblique derivative problems, etc. Proofs of most theorems of this paper

can be found in [17].

The author is grateful to the Engineering and Physical Sciences Research Council,

Great Britain, for grant GR/R67583/01.

2. Estimates for Fourier integral operators with complex phases. Our main

assumption on the phase function will be the following local graph type condition:

(L) There exists τ ∈ R such that the real valued phase function Re Φ+τ Im Φ defines

a local graph in T ∗X × T ∗Y ,

which means that

det ∂x∂θ (Re Φ + τ Im Φ) 6= 0, det ∂y∂θ (Re Φ + τ Im Φ) 6= 0

in the support of the symbol a. It also means that the projections from the canonical

relation defined by the phase function Re Φ+τ Im Φ to T ∗X\0 and T ∗Y \0 are diffeomor-

phic. Because of the symplectic structure they will be symplectomorphic as well, which

implies that any one of these conditions on determinants implies the other one. If Φ is

real valued, (L) is just the standard local graph condition for T . Without this condition

even L2-properties of T will be much more complicated.

Theorem 1. Let a Fourier integral operator T ∈ Im have the form (1) with a reg-

ular phase function Φ of positive type satisfying condition (L), and a symbol a ∈ Sm.

Let 1 < p < ∞. Then T is continuous from Lpcomp(Y ) to Lploc(X), provided that

m ≤ −(n− 1)|1/p− 1/2|.
The proof is based on the complex interpolation between the L2-boundedness of op-

erators of order zero and the boundedness of operators of order −(n − 1)/2 from the

Hardy space H1 to L1. The L2-boundedness of operators from I0 follows from the fact

that operators from I0 with complex phases are also operators with a real phase of order

zero and type (1/2, 1/2), ([8], [17]). The latter are locally bounded in L2 ([4]). Proof of

Theorem 1 for real phase functions has appeared in [20]. The general case of complex

phases was treated in [17].

Properties of operators in Lp-spaces imply properties in other function spaces as well.

First, one can derive Lp−Lq result for 1 < p ≤ q ≤ 2 and 2 ≤ p ≤ q <∞.

Theorem 2. Let a Fourier integral operator T ∈ Im have the form (1) with a reg-

ular phase function Φ of positive type satisfying condition (L), and a symbol a ∈ Sm.

Let 1 < p ≤ q ≤ 2. Then T is continuous from Lpcomp(Y ) to Lqloc(X), provided that

m ≤ 1/q − n/p+ (n− 1)/2. The dual statement holds for 2 ≤ p ≤ q <∞.
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The proof of this theorem is the complex interpolation between the L2-boundedness

of operators of order zero, the boundedness of operators of order −(n − 1)/2 from the

Hardy space H1 to L1, and the boundedness of operators of order −n/2 from the Hardy

space H1 to L2. For the latter we write T ∈ I−n/2 as

T = S ◦ (I −∆)−n/4, S = T ◦ (I −∆)n/4.

Now, S ∈ I0 is bounded from L2 to L2, and (I −∆)−n/4 is bounded from H1 to L2 by

the Hardy space version of the Hardy-Littlewood-Sobolev theorem ([22]).

Theorem 3. Let a Fourier integral operator T ∈ I0 have the form (1) with a regular

phase function Φ of positive type satisfying condition (L) and a symbol a ∈ Sm. Let

1 < p <∞ and α ∈ R.

Then T is continuous from the Sobolev space
(
Lpα+(n−1)|1/p−1/2|

)
comp

(Y ) to the space(
Lqα
)

loc
(X). It is also bounded from the Lipschitz space Lip(α + (n − 1)/2)comp(Y ) to

Lip(α)loc(X).

This theorem follows from properties of pseudo-differential operators and Lipschitz

spaces. Finally we note that Lp−Lq estimates with p ≤ 2 ≤ q are quite different in

nature and we do not discuss them here. Let us now state briefly several results for

real valued phases. Operator T ∈ Im is continuous from Lpcomp(Rn) to Lqloc(Rn) when

m ≤ n(1/q − 1/p) and p ≤ 2 ≤ q. Also, when the rank of ∂2
θθΦ equals n − 1, this order

can be improved. For 1 < p, q < ∞, T is continuous from Lpcomp(Rn) to Lqloc(R
n) when

m ≤ 1/q− n/p+ (n− 1)/2 if q ≤ p′, and when m ≤ n/q− 1/p− (n− 1)/2 if q ≥ p′. Here

p′ = p/(p−1) is the conjugate index to p. We refer to [22, IX] for details. Various geometric

conditions for Lp−Lq continuity of Fourier multipliers have been studied in [24], [25].

3. Estimates for solutions to partial differential equations. LetX be a smooth

n-dimensional manifold. We consider the Cauchy problem
{
Pu = 0, t ∈ [0, T ],

∂jt u(0, x) = fj(x), 0 ≤ j ≤ m− 1,
(2)

for an operator P (t, x, ∂t, ∂x), (t, x) ∈ [0, T ] ×X, and u = u(t, x). As usual, let us write

Dt = −i∂t, Dx = −i∂x. Let P be a differential–pseudo-differential operator on [0, T ]×X
of order m of the form

P = Dm
t +

m∑

l=1

Pl(t)D
m−l
t ,(3)

where Pl(t) = Pl(t, x,Dx) are classical pseudo-differential operators of order l on X,

depending smoothly on t.

It is well known that if P is strictly hyperbolic, then the Cauchy problem (2) is

Hs-well posed. The strict hyperbolicity means that the principal symbol p(t, x, τ, ξ) of

P (t, x,Dt, Dx), i.e. the function

p(t, x, τ, ξ) = τm +

m∑

l=1

pl(t, x, ξ)τ
m−l,

has m real distinct roots in τ , where pl(t, x, ξ) are the principal symbols of Pl, positive

homogeneous of degree l in ξ functions, smooth in [0, T ]× (T ∗X\0).
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Now we will consider a more general situation allowing the roots in τ to be complex

valued. We will make the following assumptions:

(A1) P has simple characteristics: for any (x, ξ) ∈ T ∗X\0 and any t ∈ [0, T ], the

roots τj = τj(t, x, ξ) of the polynomial p(t, x, τ, ξ) in τ are distinct, j = 1, . . . ,m.

(A2) Im τj(t, x, ξ) ≥ 0 for all (t, x, ξ) ∈ [0, T ]× (T ∗X\0), j = 1, . . . ,m.

It was proved in [26] that under assumptions (A1) and (A2) the Cauchy problem (2)

for P is well posed. We will not go into detail of what it includes, but for us it is important

that solutions exist and can be represented as a finite sum of Fourier integral operators

with complex phases modulo a smooth error. Such smooth error does not play any role

in the study of local Lp-properties of solutions. As a consequence of Theorems 1–3, we

obtain local Lp-properties of solutions.

Theorem 4. Let P = P (t, x,Dt, Dx) be a classical pseudo-differential operator of

order m of the form (3). Assume that P satisfies properties (A1), (A2). Let 1 < p < ∞
and α ∈ R. Let the Cauchy data fj be compactly supported and fj ∈ Lpα+(n−1)|1/p−1/2|−j ,
for all 0 ≤ j ≤ m−1. Then for each fixed t ∈ [0, T ] the solution u = u(t, x) to the Cauchy

problem (2) satisfies u(t, ·) ∈ (Lpα)loc.

Theorem 5. Let P be as in Theorem 4. Let 1 < p ≤ q ≤ 2 and α ∈ R. Let

the Cauchy data fj be compactly supported and fj ∈ Lpα+1/q−n/p+(n−1)/2−j , for all

0 ≤ j ≤ m− 1. Then for each fixed t ∈ [0, T ] the solution u = u(t, x) to the Cauchy

problem (2) satisfies u(t, ·) ∈ (Lpα)loc. The dual statement holds for 2 ≤ p ≤ q <∞. Also,

if fj ∈ Lip
(
α+ (n− 1)/2− j

)
comp

, then u(t, ·) ∈ Lip(α)loc.

For p ≤ 2 ≤ q, Lp−Lq estimates for operators with constant coefficients can be found

in [24], [25]. The orders of regularity can be used to determine global time asymptotics

for solutions of Cauchy problems. For example, see [13] for second order equations.

4. Factorization conditions. It turns out that orders in Theorems 1–3 are not

sharp in a number of cases. In general, if the phase function Φ is real valued and the

operator T is elliptic, the orders are sharp, provided that the rank of ∂2
θθΦ(x, y, θ) is

maximal. Because of the homogeneity of Φ the maximal rank is equal to n− 1. However,

if rank ∂2
θθΦ(x, y, θ) ≤ k in the support of a, for some k, 0 ≤ k ≤ n − 1, the optimal

orders for the Lp-boundedness depend on k. If k = 0, it is shown in [15] that by a change

of variables T becomes a pseudo-differential operator. In this case T ∈ I0 is bounded

from Lpcomp to Lploc, i.e. there is no loss of smoothness in Lp-spaces for all 1 < p <∞. An

important ingredient to determine the orders is the following factorization type condition:

(F) Let condition (L) hold with some real τ , |τ | < 1/
√

3. Let k, 0 ≤ k ≤ n − 1, be

such that

rank ∂2
θθ (Re Φ(x, y, θ) + τ Im Φ(x, y, θ)) ≤ k

in the support of a, with the equality for (x, y, θ) in a set Ω 6= ∅. We assume now that

the mapping

ker (Re Φ(x, y, θ) + τ Im Φ(x, y, θ))
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can be smoothly extended from Ω to the support of a as a mapping to the Grassmanian

of (n− k)-dimensional linear subspaces of Rn.

The geometric meaning of this condition can be explained as follows. Let Ψ = Re Φ +

τ Im Φ with some real τ , |τ | < 1/
√

3, for which Ψ defines a local graph, i.e. condition (L)

is satisfied. Then condition (F) is equivalent to the smooth factorization condition for the

real valued phase function Ψ, introduced in [20]. Namely, let

ΛΨ =
{(
x, y, dxΨ(x, y, θ), dyΨ(x, y, θ)

)
: dθΨ(x, y, θ) = 0

}
⊂ T ∗(X × Y ).

Then condition (F) is equivalent to saying that for every λ ∈ ΛΨ, there exists a homo-

geneous of zero order map πλ, smooth in a neighborhood of λ in ΛΨ, of constant rank,

rank dπλ = n+ k, such that

πX×Y |ΛΨ
= πX×Y |ΛΨ

◦ πλ,
in a neighborhood of λ. Here πX×Y is the canonical projection from T ∗(X × Y ) to

X×Y . The mapping defined by kerπλ corresponds to the extension of ker
(
Re Φ(x, y, θ)+

τ Im Φ(x, y, θ)
)

from condition (F), lifted to ΛΨ. This equivalence is discussed in [17] in

detail.

Note that condition (F) holds trivially when k = 0 or k = n− 1. So, in this cases we

only have to assume condition (L). Now we will formulate the Lp-properties of operators

under condition (F). For k = n−1 this theorem extends Theorem 1 to operators in Imρ,1−ρ.

Theorem 6. Let a Fourier integral operator T ∈ Imρ,1−ρ have the form (1) with a

regular phase function Φ of positive type satisfying condition (F) with some k, a symbol

a ∈ Smρ,1−ρ, and 1/2 ≤ ρ ≤ 1. Let 1 < p < ∞. Then T is continuous from Lpcomp(Y ) to

Lploc(X), provided that m ≤ −
(
k + (n− k)(1− ρ)

)
|1/p− 1/2|.

Similar to Theorems 2 and 3, we get estimates in other spaces.

As we have already mentioned, in some cases the factorization condition (F) holds

automatically. In addition to k = 0 and k = n − 1, this happens in spaces of small

dimensions for operators T commuting with translations. The following two theorems

were proved in [17].

Theorem 7. Let a Fourier integral operator T ∈ Imρ,1−ρ have the form (1) with a

regular phase function Φ of positive type satisfying condition (L), a symbol a ∈ Smρ,1−ρ,

and 1/2 ≤ ρ ≤ 1. Let 1 < p <∞. Assume that T commutes with translations and that Φ

is a complex valued function which is real analytic in (x, y, θ) on the support of a. Assume

that there exists a real τ , |τ | < 1/
√

3, and an integer k, 0 ≤ k ≤ 2, such that

rank ∂2
θθ(Re Φ + τ Im Φ) ≤ k

in the support of a. Then T is continuous from Lpcomp(Y ) to Lploc(X), provided that

m ≤ −
(
k + (n− k)(1− ρ)

)
|1/p− 1/2|.

If the dimension n ≤ 4, we can allow k = 3 as well.

Theorem 8. Let n ≤ 4. Let a Fourier integral operator T ∈ Imρ,1−ρ have the form (1)

with a regular phase function Φ of positive type satisfying condition (L), a symbol

a ∈ Smρ,1−ρ, and 1/2 ≤ ρ ≤ 1. Let 1 < p < ∞. Assume that T commutes with trans-

lations and that Φ is a complex valued function which is real analytic in (x, y, θ) on the
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support of a. Assume that there exists a real τ , |τ | < 1/
√

3, and an integer k, such that

rank ∂2
θθ(Re Φ + τ Im Φ) ≤ k

in the support of a. Then T is continuous from Lpcomp(Y ) to Lploc(X), provided that

m ≤ −
(
k + (n− k)(1− ρ)

)
|1/p− 1/2|.

We have similar estimates in other spaces.

Theorem 9. Let a Fourier integral operator T ∈ Im satisfy conditions of Theorem 7

or Theorem 8. Let 1 < p ≤ q ≤ 2. Then T is continuous from Lpcomp(Y ) to Lqloc(X),

provided that m ≤ (n− k)/q − n/p+ k/2. The dual statement holds for 2 ≤ p ≤ q <∞.

Theorem 10. Let a Fourier integral operator T ∈ I0 satisfy conditions of Theorem 7

or Theorem 8. Let 1 < p < ∞ and α ∈ R. Then T is continuous from the Sobolev

space
(
Lpα+k|1/p−1/2|

)
comp

(Y ) to (Lqα)loc (X). It is also bounded from the Lipschitz space(
Lip(α+ k/2)

)
comp

(Y ) to
(
Lip(α)

)
loc

(X).

5. Further estimates. An important application of Theorem 8 is the estimate for

the solutions of the Cauchy problem (2) in R×Rn with n ≤ 4. In this case it was shown

in [17] that the factorization type condition (F) is satisfied and we get

Theorem 11. Let P be a classical pseudo-differential operator with analytic (in ξ)

symbol of order m of the form (3) in R ×Rn, n ≤ 4. Assume that coefficients Pj of P

may depend on time, but are constant in x. Assume that P has simple characteristics

τj = τj(t, ξ), j = 1, . . . ,m, that satisfy

Im τj(t, ξ) ≥ 0,

for all ξ and t ∈ [0, T ]. Assume that

rank ∂2
ξξτj(t, ξ) ≤ k,

for all ξ, t ∈ [0, T ], and 1 ≤ j ≤ m. Let 1 < p < ∞, α ∈ R. Let the Cauchy data fj be

compactly supported and fj ∈ Lpα+k|1/p−1/2|−j , 0 ≤ j ≤ m−1. Then for all fixed t ∈ [0, T ]

we have u(t, ·) ∈ (Lpα)loc. We also have the estimate

‖u(t, ·)‖Lpα ≤ CT
m−1∑

j=0

‖fj‖Lp
α+k|1/p−1/2|−j

, ∀t ∈ [0, T ].

Similar estimates hold in Sobolev Lq- and Lipschitz spaces.

The Lp-estimates in this paper are in general sharp. In fact, if the phase function

is real valued and the symbol is elliptic, then the loss of (n − 1)|1/p − 1/2| derivatives

in Lp is sharp when the singular support of the Fourier integral operator has the highest

dimension n− 1 at some point. This corresponds to the rank of ∂2
θθ(Re Φ + τ Im Φ) being

equal to n − 1 at some point. However, Theorems 8–9 show that if the factorization

condition (F) holds for Re Φ + τ Im Φ, and the rank of its Hessian is less than or equal

to k, then there is a loss of only k|1/p− 1/2| derivatives. In particular, if k = 0, there is

no loss of smoothness in Lp.

It was shown in [15] that if the rank of this Hessian is equal to k at some point

and the symbol is elliptic, then there must be a loss of at least k|1/p − 1/2| derivatives
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in Lp. Hence in Theorem 8 under the factorization condition (F) the loss of k|1/p− 1/2|
derivatives is sharp.

It is natural to investigate what happens if the factorization condition (F) fails. Let

us now give an example of [18].

Theorem 12. Let T ∈ Im be a Fourier integral operator in R3 with symbol a ∈ Sm
and the real valued phase function

Φ(x, y, θ) = 〈x− y, θ〉 − 1

θ3
(y1θ1 + y2θ2)2,

microlocally in a cone |(θ1, θ2)| ≤ C|θ3| for some C > 0. Let 1 < p < ∞. Then the

factorization condition (F) fails, but T is still continuous from Lpcomp(R3) to Lploc(R
3),

provided that m ≤ −|1/p− 1/2|.
Since the rank of the Hessian of Φ does not exceed k = 1, according to [15] one has

to lose at least |1/p− 1/2| derivatives whenever a is elliptic. Theorem 12 shows that one

loses exactly |1/p − 1/2| derivatives even though the factorization condition (F) fails.

Similar examples are readily generalized to other values of n and k.

6. The oblique derivative problem. Let X be a compact n-dimensional manifold

and let Γ be a smooth compact hypersurface in X. Assume that X\Γ is the union of two

disjoint open sets X+ and X−, having Γ as their common boundary.

Let Smc be the set of classical symbols of order m: a ∈ Smc if a ∈ Sm1,0 and

a(x, θ) ∼
∞∑

j=0

am−j(x, θ)

is a representation as a convergent asymptotic series locally in all open conic subsets of

T ∗X\0, with all am−j being positively homogeneous of degree m− j in θ.

Let P ∈ Ψ1
c(X) be a classical pseudo-differential operator on X of order one of the

form

P (x,Dx) = m(x,Dx) + iQ(x,Dx),(4)

where m(x,Dx) is a real vector field on X and Q ∈ Ψ1
c(X) has a real principal symbol

q = q(x, ξ). We assume that q changes its sign on Γ:

q(x, ξ) ≤ 0 for x ∈ X−, q(x, ξ) ≥ 0 for x ∈ X+.(5)

Let K ⊂ X be the set of all points x ∈ X such that q(x, ξ) = 0 for some ξ 6= 0. This

set K contains Γ because of inequalities (4) and smoothness of q.

We will assume that m does not vanish on K, that no maximal curve of the vector

field m is entirely contained in K, and that m is transversal to Γ and points into X+.

Outside of characteristics of P , a microlocal parametrix for P exists and is unique.

Let P−1 be the right parametrix for P . This parametrix was constructed in [9] and it was

shown that P ◦ P−1 ≡ I and P−1 ◦ P = I − F , where F is a Fourier integral operator of

order zero with a complex valued phase function. It was shown in [9] that P−1 is bounded

from
(
L2
α

)
comp

(X±) to L2
α(X) and from L2

α(X) to L2
α(X), for all α. It turns out that

this parametrix P−1 is a Fourier integral operator with complex phase and our estimates

of Theorem 1 extend the L2 estimates to Lp spaces.
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Theorem 13. Let 1 < p < ∞, α ∈ R and q ≥ 2. Then P−1 is continuous from the

space
(
Lpα+(n−1)|1/p−1/2|

)
comp

(X±) to (Lpα)loc (X) and from
(
L2
α+n(1/2−1/q)

)
comp

(X) to

(Lqα)loc (X).
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[26] F. Trèves, Introduction to Pseudodifferential and Fourier Integral Operators, vol. 2:
Fourier Integral Operators, Plenum Press, London, 1980.


