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1. Introduction. In the paper at hand we study coupled systems of nonlinear initial

boundary value problems where each system is of higher order, and of hyperbolic or

parabolic type.

Our goal is to characterize systematically all admissible couplings between the single

systems .

By an admissible coupling we mean a condition that guarantees the existence, unique-

ness and regularity of solutions to the respective initial boundary value problem. For the

proofs of our results we refer the reader to [3], [4] and [5].

The paper is organized as follows. In Section 1.1 we consider an example in order to

illustrate the goal of our investigations. In Section 2 we formulate the initial boundary

value problems under consideration. Moreover, we list some problems from continuum

mechanics to which our general theory is applicable. In Section 3 we formulate the as-

sumptions and the theorems about existence, uniqueness and regularity of solutions. In

the above sense the regularity assumptions about the coefficients of the differential op-

erators and about the right hand sides define the admissible couplings. In Section 4 we

give a sketch of proof of our main theorem that involves the energy method. In Section 5

we specify the assumptions of our theory for the case of two coupled systems. Finally, in

Section 6 we show some limitations of our theory.
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200 S. EBENFELD

1.1. An example. As an example we consider the following initial boundary value

problem:

(H)
∂2
t u(x, t) +

n∑

i=1

∂iFi

(
Dxu(x, t),D

MF
v

x v(x, t), x, t
)

= f
(

Dxu(x, t), ∂tu(x, t),D
Mf
v

x v(x, t), x, t
)
.

(P)
∂tv(x, t) +

n∑

i=1

∂iGi

(
D
MG,0
u

x u(x, t),D
MG,1
u

x ∂tu(x, t),Dxv(x, t), x, t
)

= g
(

D
Mg,0
u

x u(x, t),D
Mg,1
u

x ∂tu(x, t),Dxv(x, t), x, t
)
.

(BC) u(x, t)
∣∣∣
x∈∂Ω

= 0, v(x, t)
∣∣∣
x∈∂Ω

= 0.

(IC) u(x, 0) = 0, ∂tu(x, 0) = 0, v(x, 0) = 0.

In the above example (H) is a hyperbolic PDE of order two for u whereas (P) is

a parabolic PDE of order two for v. The parameters M describe the strength of the

coupling between the two systems. We note that throughout this paper we will restrict

our attention to zero Dirichlet boundary conditions and zero initial conditions. For the

above example the question of the admissibility of the coupling reads as follows:

Let the constitutive functions Fi, f , Gi and g satisfy suitable structural conditions

(such as smoothness, ellipticity and compatibility). For which values of the parameters M

does the above initial boundary value problem have a unique smooth local in time solution

(u, v)?

Specifying our general theory to the above example we obtain the following answer:

The above initial boundary value problem has a unique smooth local in time solution

(u, v) for the following choices of the parameters M :

MF
v ≤ 0, Mf

v ≤ 1, MG,0
u ≤ 1, MG,1

u ≤ 0,

Mg,0
u ≤ 2, Mg,1

u ≤ 1

or

MF
v ≤ 1, Mf

v ≤ 2, MG,0
u ≤ 0, MG,1

u = −∞,
Mg,0
u ≤ 1, Mg,1

u ≤ 0.

In the above inequalities the notation MG,1
u = −∞ means that the constitutive func-

tions Gi are independent of ∂tu. We note that the first choice of the parameters M covers

the case of nonlinear thermoelasticity, cf. [6] (Jiang-Racke).

2. Statement of the problem. Let T > 0, and let Ω ⊂ Rn be a bounded domain

with a smooth boundary. We consider the following functions:

ujij : Ω× (0, T ) −→ RNjij : (x, t) 7−→ ujij (x, t) (j = 1, 2, 3, ij = 1, . . . , Ij).
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Throughout this paper we will use a double index notation to enumerate the systems

under consideration. The first index j indicates the type of the system:

j = 1 indicates a hyperbolic system satisfying a symmetry condition.

j = 2 indicates a parabolic system satisfying no symmetry condition.

j = 3 indicates a parabolic system satisfying a symmetry condition.

The second index ij enumerates the systems of type j.

2.1. The abstract problem. We make the following definition:

Ajij [u](∇, x, t)ujij :=

mjij∑

|α|,|β|=0

(−1)|α|∂αx
(
Ajij ,αβ [u](x, t)∂βxujij

)
.

In the above definition the square bracket notation Φ[u] means that Φ acts as a nonlinear

operator on the functions ujij . In particular, Ajij [u](∇, x, t) denotes a differential opera-

tor of order 2mjij with coefficients depending on u11, . . . , u3I3 . We consider the following

abstract initial boundary value problem:

∂2
t u1i1 +A1i1 [u](∇, x, t)u1i1 = f1i1 [u](x, t).(H)

∂tu2i2 +A2i2 [u](∇, x, t)u2i2 = f2i2 [u](x, t).(P1)

∂tu3i3 +A3i3 [u](∇, x, t)u3i3 = f3i3 [u](x, t).(P2)

∂αx ujij

∣∣∣
x∈∂Ω

= 0 (|α| = 0, . . . ,mjij − 1).(BC)

u1i1

∣∣∣
t=0

= 0, ∂tu1i1

∣∣∣
t=0

= 0, u2i2

∣∣∣
t=0

= 0, u3i3

∣∣∣
t=0

= 0.(IC)

According to our notation (H) is a collection of hyperbolic PDEs for the functions u1i1

whereas (P1) and (P2) are collections of parabolic PDEs for the functions u2i2 and u3i3

respectively.

2.2. The hyperbolic-parabolic problem. As an application we consider the following

hyperbolic-parabolic initial boundary value problem that generalizes the example given

in the introduction:

∂2
t u1i1 +

m1i1∑

|α|=0

(−1)|α|∂αx
(
F1i1,α(UF1i1 , x, t)

)
= f1i1(Uf1i1 , x, t).(H)

∂tu2i2 +

m2i2∑

|α|=0

(−1)|α|∂αx
(
F2i2,α(UF2i2 , x, t)

)
= f2i2(Uf2i2 , x, t).(P1)

∂tu3i3 +

m3i3∑

|α|=0

(−1)|α|∂αx
(
F3i3,α(UF3i3 , x, t)

)
= f3i3(Uf3i3 , x, t).(P2)

∂αx ujij

∣∣∣
x∈∂Ω

= 0 (|α| = 0, . . . ,mjij − 1).(BC)

u1i1

∣∣∣
t=0

= 0, ∂tu1i1

∣∣∣
t=0

= 0, u2i2

∣∣∣
t=0

= 0, u3i3

∣∣∣
t=0

= 0.(IC)
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In the above initial boundary value problem the Uφjij denote the collections of partial

derivatives of the functions u11, . . . , u3I3 that occur in the constitutive functions φjij
where φ = F, f .

2.3. Applications in continuum mechanics. The single PDE systems in our initial

boundary value problems are suitable to describe a wide range of problems in continuum

mechanics. Some of them are the following:

Elasticity (hyperbolic, second order).

Viscoelasticity (hyperbolic, second order).

Higher gradient materials (hyperbolic, higher order).

Shell theory—Reissner Mindlin Type (hyperbolic, second order).

Shell theory—Kirchhoff Love Type (hyperbolic, higher order).

Heat flow (parabolic, second order).

Heat flow—Müller Type (hyperbolic, second order).

Compressible fluid flow (parabolic, second order).

Multipolar compressible fluids (parabolic, higher order).

Magnetodynamics (parabolic, second order).

Phase transitions—Cahn Allen Type (parabolic, second order).

Phase transitions—Cahn Hilliard Type (parabolic, higher order).

We note that the mathematical structure of some of the above problems can be

identical, but their coupling with other problems can be quite different. Moreover, we

note that many of the above problems immediately fit into the scheme of our hyperbolic-

parabolic problem. However, some other problems have to be transformed and fit only

into the scheme of our abstract problem, such as viscoelasticity and compressible fluid

flow.

3. Statement of the theorem

3.1. The abstract problem. For the case of the abstract initial boundary value problem

problem we make the following assumptions:

(A1) Symmetry condition (j = 1, 3):

Ajij ,βα[u](x, t) =
(
Ajij ,αβ [u](x, t)

)T
.

(A2) Legendre-Hadamard condition (strong ellipticity):
∑

|α|,|β|=mjij

ηT
(
Ajij ,αβ [u](x, t)ξαξβ

)
η ≥ c|ξ|2mjij |η|2.

(A3) Compatibility condition:

∂κt u1i1

∣∣∣
t=0

= 0, ∂κ+1
t u1i1

∣∣∣
t=0

= 0,

∂κt u2i2

∣∣∣
t=0

= 0, ∂κt u3i3

∣∣∣
t=0

= 0 (κ = 0, . . . , k + 1)

=⇒ ∂kt fjij [u]
∣∣∣
t=0

= 0.
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(A4) Boundedness condition:

‖ulkl‖Ujij ,lkl (T∗) ≤ R =⇒

∥∥Ajij ,αβ [u]
∥∥
Ajij (T∗)

≤ Φ(R, T ∗)
∥∥fjij [u]

∥∥
Fjij (T∗)

≤ Φ(R, T ∗).

(A5) Lipschitz condition:
∥∥u1

lkl

∥∥
Ujij ,lkl (T∗)

,
∥∥u2

lkl

∥∥
Ujij ,lkl (T∗)

≤ R
∥∥u2

lkl
− u1

lkl

∥∥
Ujij ,lkl (T

∗)
≤ S

=⇒

∥∥Ajij ,αβ [u2]−Ajij ,αβ [u1]
∥∥
Ajij (T∗)

≤ Φ(R, T ∗)S
∥∥fjij [u2]− fjij [u1]

∥∥
Fjij (T∗)

≤ Φ(R, T ∗)S.

In the above assumptions the Ujij ,lkl(T ∗), Ujij ,lkl(T ∗), U jij ,lkl(T ∗), Ajij (T ∗) and

Fjij (T ∗) denote suitable function spaces. The assumptions (A1), (A2) and (A3) are

structural conditions. The regularity assumptions (A4) and (A5) define the admissible

couplings.

Theorem (Local Existence, Uniqueness, Regularity). Let the assumptions (A1)–(A5)

be satisfied. Then there exists 0 < T ∗ ≤ T such that the abstract initial boundary value

problem has a unique smooth solution:

u1i1 ∈
k−1⋂

k=0

Cl+k
(
[0, T ∗], Hµ(k−1−k)+2m1i1 (Ω,RN1i1 )

)

∩ Cl+k
(
[0, T ∗], H

m1i1
0 (Ω,RN1i1 )

)
∩ Cl+k+1

(
[0, T ∗], L2(Ω,RN1i1 )

)
.

u2i2 ∈
k−1⋂

k=0

Cl+k
(
[0, T ∗], Hµ(k−1−k)+m2i2

+m2i20(Ω,RN2i2 )
)

∩ Cl+k
(
[0, T ∗], L2(Ω,RN2i2 )

)
∩H l+k

(
[0, T ∗], H

m2i2
0 (Ω,RN2i2 )

)

∩H l+k+1
(
[0, T ∗], H−m2i2 (Ω,RN2i2 )

)
.

u3i3 ∈
k−1⋂

k=0

Cl+k
(
[0, T ∗], Hµ(k−1−k)+m3i3

+m3i30(Ω,RN3i3 )
)

∩ Cl+k
(
[0, T ∗], H

m3i3
0 (Ω,RN3i3 )

)
∩H l+k

(
[0, T ∗], H2m3i3 (Ω,RN3i3 )

)

∩H l+k+1
(
[0, T ∗], L2(Ω,RN3i3 )

)
.

We note that the scales of function spaces in the above theorem enter into our non-

linear theory in a natural way through the underlying linear theory.

3.2. The hyperbolic-parabolic problem. For the case of the hyperbolic-parabolic initial

boundary value problem we make the following definition:

Ajij ,αβ [u](x, t) :=
∂Fjij ,α

∂(∂βxujij )
(UFjij , x, t).

Moreover, we use the following notation:
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Mφ,0
jij ,lkl

denotes the highest order of spatial derivatives of ulkl that occurs in the

constitutive functions φjij where φ = F, f .

Mφ,1
jij ,1k1

denotes the highest order of spatial derivatives of ∂tu1k1
that occurs in the

constitutive functions φjij where φ = F, f .

We also make the following assumptions:

(B1) Fjij ,α and fjij are smooth functions.

(B2) Symmetry condition (j = 1, 3):

Ajij ,βα[u](x, t) =
(
Ajij ,αβ [u](x, t)

)T
.

(B3) Legendre-Hadamard condition (strong ellipticity):
∑

|α|,|β|=mjij

ηT
(
Ajij ,αβ [u](x, t)ξαξβ

)
η ≥ c|ξ|2mjij |η|2.

(B4) Compatibility condition:

∂kt
(
fjij (0, x, t)

)∣∣∣
t=0

= 0 (k = 0, . . . , l + k).

(B5) Regularity assumptions (I):

MF,0
1i1,1i1

= m1i1 , MF,1
1i1,1i1

= −∞, Mf,0
1i1,1i1

≤ m1i1 ,

Mf,1
1i1,1i1

≤ 0. MF,0
2i2,2i2

= m2i2 , Mf,0
2i2,2i2

≤ 2m2i2 − 1.

MF,0
3i3,3i3

= m3i3 , Mf,0
3i3,3i3

≤ 2m3i3 − 1.

Regularity assumptions (II):

Mφ,ν
jij ,lkl

≤ Φφ,νjij ,lkl(mjijmlkl).

In the above assumptions the Φφ,ν
jij ,lkl

denote suitable functions specified in [5]. The

assumptions (B1), (B2), (B3) and (B4) are structural conditions. The regularity assump-

tions (B5) define the admissible couplings now. In particular, the regularity assumptions

(B5) imply the previous regularity assumptions (A4) and (A5). We note that by Poincaré’s

lemma the symmetry condition (B2) is equivalent to the following integrability condition:

Fjij ,α(UFjij , x, t) =
∂Ψjij

∂(∂αx ujij )
(UFjij , x, t).

Corollary (Local Existence, Uniqueness, Regularity). Let (B1)–(B5) be satisfied.

Then there exists 0 < T ∗ ≤ T such that the hyperbolic-parabolic initial boundary value

problem has a unique smooth solution:

u1i1 ∈
k−1⋂

k=0

Cl+k+1([0, T ∗], Hµ(k−1−k)+2m1i1 (Ω,RN1i1 ))

∩ Cl+k+1([0, T ∗], H
m1i1
0 (Ω,RN1i1 )) ∩ Cl+k+2([0, T ∗], L2(Ω,RN1i1 )).



ADMISSIBLE COUPLINGS BETWEEN SYSTEMS 205

u2i2 ∈
k−1⋂

k=0

Cl+k+1([0, T ∗], Hµ(k−1−k)+m2i2
+m2i20(Ω,RN2i2 ))

∩ Cl+k+1([0, T ∗], L2(Ω,RN2i2 )) ∩H l+k+1([0, T ∗], H
m2i2
0 (Ω,RN2i2 ))

∩H l+k+2([0, T ∗], H−m2i2 (Ω,RN2i2 )).

u3i3 ∈
k−1⋂

k=0

Cl+k+1([0, T ∗], Hµ(k−1−k)+m3i3
+m3i30(Ω,RN3i3 ))

∩ Cl+k+1([0, T ∗], H
m3i3
0 (Ω,RN3i3 )) ∩H l+k+1([0, T ∗], H2m3i3 (Ω,RN3i3 ))

∩H l+k+2([0, T ∗], L2(Ω,RN3i3 )).

4. Sketch of proof (energy method). In order to prove our main theorem we

make use of the so called energy method, see e.g. [1] (Dafermos-Hrusa), [7] (Kato) and

[8] (Majda). Therefore, we proceed in several steps:

1. First, we define of a sequence {uν}∞ν=0 of approximate solutions with the help of

the following recursion scheme:

(a) Let u0 := 0.

(b) Insert the previous solution uν into the coefficients Ajij ,αβ [ · ] and right hand

sides fjij [ · ].
(c) Solve the linearized initial boundary value problem for uν+1.

The crucial point in this step is that we cannot make use of the full regularity of uν

as we insert it into the Ajij ,αβ [ · ] and fjij [ · ]. Therefore, we linearize the single systems

successively in the following way, cf. [6] (Jiang-Racke):

∂tvk +Bk[v](∇, x, t)vk = gk[v](x, t) (k = 1, . . . ,K)

=⇒ ∂tv
ν+1
k +Bk[. . . , vν+1

k−1, v
ν
k , . . . ](∇, x, t)vν+1

k = gk[. . . , vν+1
k−1, v

ν
k , . . . ](x, t).

2. Next, we derive a priori estimates for {uν}∞ν=0 using Galerkin’s method. In view of

the regularity of the uνjij we have the following correspondence:

uν1i1 ←→ testing ∂2
t u+ (−∆)mu = f with ∂tu.

uν2i2 ←→ testing ∂tu+ (−∆)mu = f with u.

uν3i3 ←→ testing ∂tu+ (−∆)mu = f with ∂tu.

One crucial point in this step is that we need an elliptic regularity theory for linear

elliptic differential operators with minimal regularity in the coefficients. Such a theory

was previously developed by the author, see [2]. Another crucial point in this step is

that we have to find suitable scales of function spaces. The important observation is that

we can find some µ ≥ 1 and corresponding scales of function spaces such that for any

(j, ij) one temporal derivative of ujij corresponds to µ spatial derivatives of ujij , cf. [6]

(Jiang-Racke).

3. Next, with the help of the above a priori estimates we show that the sequence

{uν}∞ν=0 is bounded with respect to some high norm and contractive with respect to
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some low norm.

4. Finally, we pass to the limit ν −→ ∞. In particular, we show that the sequence

{uν}∞ν=0 converges to some limit function u and that u is the unique solution to the

abstract initial boundary value problem. The crucial point in this step is that we make

use of interpolation inequalities in non-dual spaces. Consequently, we cannot make direct

use of Banach’s Fixed Point Theorem (Kato’s direct method) but we rather pass to the

limit ‘by hand’, cf. [8] (Majda) and compare with [1] (Dafermos-Hrusa) and [7] (Kato).

5. Application to two coupled systems. We consider the hyperbolic-parabolic

initial boundary value problem for the case of two coupled systems.

Definition. We say that the coupling in the hyperbolic-parabolic initial boundary

value problem is admissible if the regularity assumptions (B5) hold.

We note that if the constitutive functions satisfy the structural conditions (B1)–(B4)

and if the coupling in the hyperbolic-parabolic initial boundary value problem is admissi-

ble then by the above corollary the hyperbolic-parabolic initial boundary value problem

has a unique smooth solution.

5.1. Hyperbolic-hyperbolic systems. We consider the initial boundary value problem

corresponding to the following PDE systems:

∂2
t u+

mu∑

|α|=0

(−1)|α|∂αxFα
(

Dmu
x u,D

MF,0
v

x v,D
MF,1
v

x ∂tv, x, t
)

= f
(

Dmu
x u, ∂tu,D

Mf,0
v

x v,D
Mf,1
v

x ∂tv, x, t
)
.

∂2
t v +

mv∑

|α|=0

(−1)|α|∂αxGα
(

D
MG,0
u

x u,D
MG,1
u

x ∂tu,D
mv
x v, x, t

)

= g
(

D
Mg,0
u

x u,D
Mg,1
u

x ∂tu,D
mv
x v, ∂tv, x, t

)
.

Lemma. The coupling in the above initial boundary value problem is admissible for

the following choice of the parameters M :

MF,0
v ≤ mv −mu, MF,1

v = −∞, Mf,0
v ≤ mv, Mf,1

v ≤ 0,

MG,0
u ≤ mu −mv, MG,1

u = −∞, Mg,0
u ≤ mu, Mg,1

u ≤ 0.

5.2. Hyperbolic-parabolic systems. We consider the initial boundary value problem

corresponding to the following PDE systems:

∂2
t u+

mu∑

|α|=0

(−1)|α|∂αxFα
(

Dmu
x u,D

MF
v

x v, x, t
)

= f
(

Dmu
x u, ∂tu,D

Mf
v

x v, x, t
)
.

∂tv +

mv∑

|α|=0

(−1)|α|∂αxGα
(

D
MG,0
u

x u,D
MG,1
u

x ∂tu,D
mv
x v, x, t

)

= g
(

D
Mg,0
u

x u,D
Mg,1
u

x ∂tu,D
2mv−1
x v, x, t

)
.
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Lemma. The coupling in the above initial boundary value problem is admissible for

the following choices of the parameters M :

MF
v ≤ mv −mu, Mf

v ≤ mv, MG,0
u ≤ mu, MG,1

u ≤ 0,

Mg,0
u ≤ mu +mv, Mg,1

u ≤ mv

or

MF
v ≤ 2mv −mu, Mf

v ≤ 2mv, MG,0
u ≤ mu −mv, MG,1

u = −∞,
Mg,0
u ≤ mu, Mg,1

u ≤ 0.

5.3. Parabolic-parabolic systems. We consider the initial boundary value problem cor-

responding to the following PDE systems:

∂tu+

mu∑

|α|=0

(−1)|α|∂αxFα
(

Dmu
x u,D

MF
v

x v, x, t
)

= f
(

D2mu−1
x u,D

Mf
v

x v, x, t
)
.

∂tv +

mv∑

|α|=0

(−1)|α|∂αxGα
(

D
MG
u

x u,Dmv
x v, x, t

)
= g
(

D
Mg
u

x u,D2mv−1
x v, x, t

)
.

Lemma. The coupling in the above initial boundary value problem is admissible for

the following choices of the parameters M :

MF
v ≤ mv − 1, Mf

v ≤ mu +mv − 1, MG
u ≤ mu, Mg

u ≤ mu +mv

or

MF
v ≤ 2mv − 1, Mf

v ≤ mu + 2mv − 1, MG
u ≤ mu −mv, Mg

u ≤ mu

or

MF
v ≤ 2mv, Mf

v ≤ mu + 2mv, MG
u ≤ mu −mv − 1, Mg

u ≤ mu − 1

or

MF
v ≤ 2mv −mu − 1, Mf

v ≤ 2mv − 1, MG
u ≤ 2mu −mv, Mg

u ≤ 2mu.

6. Limitations of our theory. Finally, we want to point out some of the limitations

of our theory. Therefore, we make the following definitions:

A(∇) :=

(
∆ ∆

−α∆2 −∆2

)
, G(t) := F−1 exp

(
tA(−iξ)

)
F .

In the above definitions A(−iξ) denotes the symbol of the differential operatorA(∇), and

F denotes the Fourier transform. We consider the following linear initial value problem:

∂tu = A(∇)u, u
∣∣∣
t=0

= v(x).

In particular, we have:

u(x, t) = G(t)v(x) ∀ v ∈ F−1C∞0 (Rn,R2).

We note that the above initial value problem has a unique solution in the sense

of our general theory if and only if the solution operator G(t) extends to a bounded

linear operator on L2(Rn,R2). Moreover, we note that in our general theory we look at

evolutionary problems from the point of view of perturbation theory. For the case of the
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above initial value problem this means that we consider the diagonal of A(∇) as the

principal part and the remainder as a perturbation. This approach has the feature, that

we obtain existence and uniqueness of solutions either for all α ∈ R or only for α = 0. Now

it is easy to see that for some α1 6= 0 the solution operator G(t) extends to a bounded

linear operator on L2(Rn,R2) whereas for some other α2 6= 0 the solution operator G(t)

becomes unbounded on L2(Rn,R2). Consequently, for α1 the above initial value problem

has a unique solution but nevertheless the approach of our general theory fails.
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