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Abstract. In this survey we first recall results on the asymptotic behavior of solutions in
classical thermoelasticity. Then we report on recent results in linear magneto-thermo-elasticity
and magneto-elasticity, respectively.

1. Introduction. The time-dependent system of elasticity is known to be of hy-

perbolic type, while that of heat conduction is parabolic. As third system we con-

sider Maxwell’s equations where displacement currents are neglected, thus resulting in a

parabolic system for the magnetic field.

We are interested in the asymptotic behavior of solutions as time tends to infinity for

different coupling of the systems as there are: thermo-elasticity, magneto-elasticity and

magneto-thermo-elasticity. Due to the coupling of different types of differential equations

with in part strongly different kind of behavior for example in bounded domains, the

interesting question arises: what is the predominating part, and how is this expressed in

terms of decay rates of the solutions?

We start with recalling well-known results in thermo-elasticity, then we report on

recent results obtained in magneto-thermo-elasticity and in magneto-elasticity, respec-

tively.

2. Typical features of thermo-elasticity. Let

u = u(t, x) ∈ Rn, n = 1, 2, 3, θ(t, x) ∈ R,
t ≥ 0, x ∈ Ω ⊂ Rn, describe the displacement vector and the temperature difference,

respectively, in a homogeneous, isotropic, linear medium. Then

utt − µ∆u− (λ+ µ)∇ div u+ γ∇θ = 0 [F (∇2u, . . .)],

θt − κ∆θ + γ div ut = 0 [f(∇ut,∇2θ2, . . .)]
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plus initial and boundary conditions, e.g.

u = 0, θ = 0 on ∂Ω

([. . .] indicates a possible nonlinear structure).

Typical results . Let

E(t) :=
1

2

∫

Ω

(
|ut|2 + µ|∇u|2 + (λ+ µ) |div u|2 + |θ|2

)
(t, x) dx

denote the energy at time t. Then we have:

n = 1:

• Ω = (0, 1): E(t) ≤ d1e
−d2tE(0), with positive constants d1, d2.

Dissipation through heat conduction leads to overall exponential decay.

• Ω = R:
∥∥ut(t), θ(t)

∥∥
L∞
≤ C · (1 + t)−1/2, C > 0 constant.

Behavior like heat conduction.

n = 2, 3:

• Reflecting rays imply slow decay: Whenever there exist reflecting rays that is a

two-periodic orbit of the billiard in the domain, there is no uniform decay of the energy.

• Ω = B(0, 1) (unit ball), radial symmetry of the data: Energy decays exponentially.

• E(t)→ 0⇔







∆u+ λu = 0

u|∂Ω = 0

div u = 0



⇒ u = 0


 =: (∗)

(∗) holds if ∆v + λv = 0, v|∂Ω = 0 (scalar) has only simple eigenvalues.

• Ω = R3: U = UP + US ∈ ∇H1 ⊕ D0, where D0 denotes divergence-free vector

fields.

UStt − µ∆US = 0: no dissipation.

(US , θ): like heat equation.

We remark that nonlinear systems in R1 are globally well-posed for small data, in R3

under radial symmetry in bounded domains (for small data), for Ω = R3 if certain

nonlinearities are excluded.

The results recalled in this section have been obtained over the last 30 years, among the

contributors are Dafermos, Henry, Jiang, Kawashima, Kim, Koch, Lebeau, Lopes, Muñoz

Rivera, Perissinitto, Shen, Shibata, Slemrod, Zheng, Zuazua and the author. A compre-

hensive survey with detailed references can be found in [4].

3. Magneto-thermo-elasticity. We consider the system of magneto-thermo-elas-

ticity for the displacement vector u, the temperature difference θ and the magnetic field h:

utt − Eu− α[∇× h]×⇀H + γ∇θ = 0,

ht −∆h− β∇× [ut ×
⇀
H ] = 0,

θt − κ∆θ + γ div ut = 0,

Eu =
[
(Cijklu

k
,l),j

]
i=1,2,3

,
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in the homogeneous isotropic case under consideration we have

Eu = µ∆u+ (λ+ µ)∇ div u,

and
⇀
H = (0, 0, H)′. Additionally we have the initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x), h(0, x) = h0(x), θ(0, x) = θ0(x).

First we shall consider the Cauchy problem, then the bounded domain case for which

we shall assume the following setup.

Ω ⊂ R3 with smooth boundary Γ = ∂Ω and Γ = Γ0 ∪ Γ1 with Γ0 ∩ Γ1 6= ∅. Assume

that there is x0 ∈ Ω such that

Γ0 = {x ∈ Γ : (x− x0) · ν(x) ≤ 0},
Γ1 = {x ∈ Γ : (x− x0) · ν(x) ≥ a > 0}.

'

&

$

%
&%
'$

Ω = Ω1 \ Ω0Ω0

Ω1 Γ0

Γ1

rx0

Boundary conditions for h and θ:

ν × (∇× h) = 0, ν · h = 0, θ = 0 on Γ

and a memory type boundary condition for u:

u = 0 on Γ0, u+ r ∗ ∂νu = 0 on Γ1.

∂νu := (Cijklu
k
,lν

j)i=1,2,3 − αHh3ν + αHν3h,

(r ∗ f)(t) :=

∫ t

0

r(t− s)f(s) ds,

∂νu = −τut − τg ∗ ut, τ > 0.

First we shall assume that g essentially decays exponentially, i.e. for t ≥ 0

0 < g(t) ≤ c0e
−g0t,

−c1g(t) ≤ g′(t) ≤ −c2g(t),

−c3g′(t) ≤ g′′(t) ≤ −c4g′(t)





with positive constants cj . Example:

g̃(t) = c0e
−g0t.



222 R. RACKE

Second, we shall consider polynomially decaying kernels satisfying for t ≥ 0

0 < g(t) ≤ b0(1 + t)−p,

−b1g(t)(p+1)/p ≤ g′(t) ≤ −b2g(t)(p+1)/p,

−b3|g′(t)|(p+2)/(p+1) ≤ g′′(t) ≤ −b4|g′(t)|(p+2)/(p+1)





with positive constants bj . Example:

ḡ(t) = b0(1 + t)−p.

3.1. The Cauchy problem

utt − µ∆u− (µ+ λ)∇ div u+ αH∇h3 − αH ∂h

∂x3
+ γ∇θ = 0,

ht −∆h− βH ∂ut
∂x3

+ βH(0, 0, div ut)
′ = 0,

θt − κ∆θ + γ div ut = 0.

Using Fourier transform

v := û, w := ĥ, ψ := θ̂.

we get

vtt + µ|η|2v + (µ+ λ)(ηv)η − iαHηw3 + iαHη3w − iγψη = 0,

wt + |η|2w + iβHη3vt − βH(0, 0, vtη)′ = 0,

ψt + κ|η|2ψ − iγvtη = 0.

Next,

d

dt
E1(t) = −α

β
|η|2|w|2 − κ|η|2|ψ|2

where

E1(t) :=
1

2

{
|vt|2 + µ|η|2|v|2 + (µ+ λ)(ηv)2 +

α

β
|w|2 + |ψ|2

}
(t).

Let

A ≡ A(η) := |η|2
( 1

η2
1

+
1

η2
3

)
.

Theorem 1. If the initial data satisfy

∫

Rn

[
(1 + |η|2)A2

|η|2
]m+1

E1(0, η) dη <∞,

m ∈ N0, then the energy term

E(t) :=
1

2

∫

Rn

{
|ut|2 + µ|∇u|2 + (µ+ λ) |div u|2 +

α

β
|h|2 + |θ|2

}
(t, x) dx

associated to a solution (u, h, θ) to the Cauchy problem decays polynomially :

E(t) = O(t−m) as t→∞.
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3.2. The bounded domain case. Assuming div h0 = 0, we have

div h(t, ·) = 0 for all t ≥ 0.

Let

F (t) :=
1

2

∫

Ω

(
|ut|2 + Cijklu

k
,lu

i
,j +

α

β
|h|2 + |θ|2

)
(t, x) dx

− τ

2

∫

Γ1

(g′ � u)(t, z) dz +
τ

2
g(t)

∫

Γ1

|u|2(t, z) dz,

where

(f � ϕ)(t) :=

∫ t

0

f(t− s)|ϕ(t)− ϕ(s)|2 ds.

Theorem 2. Let g be an exponentially decaying resolvent kernel. Then the energy F

decays exponentially, i.e.

∃d0, d1 > 0 ∀t ≥ 0 F (t) ≤ d0e
−d1tF (0).

Theorem 3. Let g be a polynomially decaying resolvent kernel. Then the energy F

decays polynomially, i.e.

∃d2 > 0 ∀t ≥ 0 F (t) ≤ d2

(1 + t)p
F (0).

The results in this section have been obtained in collaboration with J. E. Muñoz

Rivera [5]. For previous or related work see [1, 2, 3, 7, 8, 9] and further references in [5].

4. Magneto-elasticity. Let Ω ⊂ R2 be bounded. The system of magneto-elasticity

for the displacement u = (u1, u2, 0) = u(t, x1, x2) and the magnetic field h = (h1, h2, 0)

to be considered is the following (here
⇀
H = (H, 0, 0)′):

utt − µ∆u− (λ+ µ)∇ div u− α(∇× h)×⇀H = 0,

ht −∆h− β∇× (ut ×
⇀
H ) = 0,

u(t = 0) = u0, ut(t = 0) = u1, h(t = 0) = h1,

u = 0, ν · h = 0, ν × (∇× h) = 0 on ∂Ω.

Here, ν denotes again the exterior normal and we have div h = 0. Admissible domains

are those that are homeomorphic to the unit ball and for which one of the following three

conditions I–III is satisfied:

I. Ω is the union of finitely many rectangles with axes parallel to the x1- and x2-axes,

respectively, see Figure 1.

II. Ω satisfies ν1ν2 = 0 in the first quadrant (where x1 ≥ 0 and x2 ≥ 0) and in the

third quadrant (where x1 ≤ 0 and x2 ≤ 0). In the second and fourth quadrants Ω satisfies

xν ≥ δ0 > 0, for some δ0, see Figure 2.

III. Ω satisfies ν1ν2 = 0 in the second and fourth quadrants. In the first and third

quadrants Ω satisfies xν ≥ δ0 > 0, for some δ0, see Figure 3.
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Figure 2. Type II
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Figure 3. Type III

Let

E(t) ≡ E(t;u, h) :=
1

2

∫

Ω

|ut|2 + µ|∇u|2 + (µ+ λ) |div u|2 +
α

β
|h|2 dx,

Ej(t) := E(t; ∂jtu, ∂
j
t h), j ≥ 0.

Then a polynomial decay of the energy is described by

Theorem 4. There exists d > 0 such that for all t ≥ 0 we have E(t) ≤ d
7∑
j=0

Ej(0)· 1t .

(Use ω := ∇× h = ∂1h
2 − ∂2h

1, ω|∂Ω = 0.)

The results in this section have been obtained in collaboration with J. E. Muñoz

Rivera [6]. For previous or related work see [1, 7] and further references in [6].
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