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1. Introduction. In many physical problems, like in thermoelasticity, viscous fluid
etc., people often meet hyperbolic-parabolic coupled systems. There is a rich literature
devoted to the existence, regularity and long time asymptotics of solutions to initial
(-boundary) value problems for linear and nonlinear hyperbolic-parabolic coupled sys-
tems, mostly relying on the framework of semigroup theory or of abstract evolutional
equations, cf. [11, 15, 21] and references therein. To describe properties of solutions pre-
cisely, it would be very interesting and useful if one could decouple the hyperbolic and
parabolic operators in the coupled systems. In this note, we shall survey our recent works
in developing a general procedure to weakly decouple the hyperbolic-parabolic systems
as well as the applications. The decoupling argument is inspired by Taylor’s work [18], in
which an idea was introduced to decouple the different characteristic fields for studying
the reflection of singularities in hyperbolic problems. In Section 3, by using the decoupling
argument, several interesting applications will be given ranging from the propagation of
singularities either in nonlinear thermoelasticity or in viscous fluids, to find that there is
a cone of dependence for the propagation of singularities in nonlinear coupled systems,
which shows that the hyperbolic operators in coupled systems play a dominant role in
determining the regularity of solutions.

2. A general idea for decoupling hyperbolic-parabolic coupled systems. For
any given @ C R", denote by W*(Q) the set of pseudodifferential operators of order k
with symbols in S*(Q x RE) ([3, 10]). Consider the following linear hyperbolic-parabolic
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coupled system in R; x RZ:

Opu + Z Aj(t,7)0z;u + Z Bj(t,x)0y;v + Ao(t, v)u + Bo(t,x)v = f(t,z)

j=1 j=1
(2.1) n n n
0w — Z a;i(t, x)@ﬁjzkv + Z Cj(t,x)0z;u + Z dj(t,x)0,v
Jk=1 j=1 Jj=1
+ Co(t, x)u+ do(t, z)v = g(t, x)
where all coefficients are supposed to be smooth for simplicity, u = (u1,...,un)? (t,z),

v(t,x) is scalar, {A4;(t,z)}7_ are N x N matrices, {B;(t,x)}}_, are N x 1 vectors,
{Cj(t, )} are 1 x N vectors, {d;(t,x)}]_ are scalar, and (a;x(t, z))nxn is positively
definite, which means there is ag > 0 such that

n

Z aji(t, x)&&k > aolél?

k=1
for any £ = (&1,...,&,) € R™. We are going to seek for a transformation of (u,v) in order
to decouple the system (2.1). Let A, = (1 -7, _, ajkagjzk)%, then from (2.1) we know
that U = (u,v)? satisfies the system
(2.2) U + Hy(t,z,D,)U + Hy (t,2,D,)U + Hy(t,z, D,)U = F(t, x)

where F = (f,g)!, Hao(t,z,D,;) = diag[Onxn,A2] € ¥?(R") and H; € U'(R"),
Hy € U9(R") are given obviously by (2.1). As in [18], let UM = (I 4+ K;)U where
Ki(t,z,D,;) € ¥~1(R") will be determined later, then from (2.2) we have
oUW + HyUW + HUW + [Ky, Ho|U

+ (K1, Hi] = 0, K1 + (I + K1)Ho)U = (I + K;)F.

Temporarily, we assume that I + K; is invertible, which will be realized by slightly
modifying K later. Then, by using (I + K;)™! = I — K;(I + K;)™!, the system (2.3)
can be rewritten as the following one for U™,

(2.4) oUW + HyUW + ([Ky, Ho) + H)UD + HPU® = pO),
where F() = (I + K;)F, and
HY = (K, Hy] + (I + K1) Hy — 8K, — [Ky, Ho) Ky ) (I + K;) ™' € UO(R™).

Noting that the eigenvalues of the symbol of Hy(t,z,D,) are zero and (£)2 = 1+
Z;k:l a;1€;&, with the multiplicity of zero being N, as in [18], if we define K (¢, z,§) as

Ki(t,z,6) = ( OIN(;N Kolz )

(2.3)

with K15 of dimension N X 1, and set the matrix

Kl(taxag)HQ(taxag) - HZ(taxag)Kl(taxag) + Hl(t,l’,f)

to be the block form
Ji 0
0 Jo
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with J; of dimension N x N, then we can easily obtain
L OnxnN — > Bi(t, )& 1
Ki(t,z, &) =4(&),? j=1"17 Il e s YR
1( ) < > ( 2?21 Cj(t,.’l?)fj 0 ( )

and
Jl :iZAj(t,ﬂi)fj, JQZiZdj(t,l‘)fj.
j=1 j=1

Obviously, there is M > 0 such that when |{| > M, I 4+ K;(t,z,£) is invertible. Hence,
we can find a smooth symbol
~ Ki(t,z,€), when || > M
Kq(t =
1t 2,¢) {O, when [¢] < 1,

such that I + K, (t,z,€) is invertible for any £ € R™, and

UM = (I+Ki(t,z,D,))U
satisfies
25) UD 4 Hy(t, 2, D)UD + HY (¢, 2, DY) UD + HV (t,2, D)UY = FO,
where HV (¢, 2, D,) = diag Y1) Aj(t,x)0x;, 25— dj(t, )0y, ], and HVY (t, 2, D,) be-
longs to WO(R™). Next, if we define U = (I + Ky(t,z,D,)) UM with K, € U—2(R"),
then by the same procedure as above we can find Ky such that U®) satisfies a system
with the same second and first order terms as in (2.5), its zero-th order term is decoupled,
and I + Ks(t,z,€) is invertible. In this way, we can decouple further terms by setting
UW = (I+K;(t,z,D,))UV~Y with K; € U~7(R") for any j > 3. For any fixed integer
m € N, if we define K(t,z,D,) € U~1(R") by

I+K=(+4Knpi1) I+ K)(I+Ky)

then V = (I + K(t,z, Dm))U satisfies the following decoupled system modulo ¥~

(2.6) 0,V + Ha(t,z, Do)V + HY (¢, 2, Do)V + Hy(t,z, Do)V + Ry (t, z, Dy)V = F,

where R, € =™, and Hy(t,z, D;) = diag[Hé1)7H52)] € UO(R") with Hél) being N x N
and H(()Z) scalar.

REMARK 2.1.

(1) Obviously, the above procedure also works for the case that the second equation
in (2.1) is replaced by a parabolic system.

(2) If (2.1) is a quasilinear coupled system, we can decouple it by using paradifferential
operators (see Section 3.3).

3. Applications

3.1. Finite speeds for the propagation of singularities in coupled systems. As the first
application of our decoupling idea, we shall show that hyperbolic-parabolic coupled sys-
tems still have finite speeds for the propagation of singularities as for the case of pure
hyperbolic equations.
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THEOREM 3.1. Consider the Cauchy problem for the semilinear version of hyperbolic-
parabolic coupled system (2.1):

Oru + Z Aj(t,2)0z,u + Z Bj(t,x)0.;v = f(u,v)

j=1 j=1

3.1 n

(3.1) Opv — Zaﬂf(t a:)awwkv—i-ZC txanu—i—Zd (t,2)0z,v = g(u,v)
7,k=1 j=1

t=0: u=mwup(x), v=uvo(x )
with all notation being the same as in (2.1). For any open w C R™, let Q C [0, +00) x R™
be the determinacy domain of w with respect to the hyperbolic operator

Or+ > Aj(t, )0y,
j=1
If the initial data satisfy
(3.2) ug € H¥(R") N C™®(w), wo € HTHR™)NCO>®(w)
for a fized s > n/2, then there is T > 0 such that
(3.3) (u,v) €C®(QN{0<t<T}).

PRrROOF. By employing the decoupling technique for the problem (3.1), it follows that
V(t,x) = (V1,Va)T = (I + K(t,z,D.))(u,v)" satisfies the Cauchy problem

8tV1 + ZAj(t, :c)azle = fl(Vl, VQ)
j=1
(3.4) "
O Vo — Z aji(t, x)a%kag—I—Zd (t,2)0,, Vo = Fo(V1, Va)

jik=1
t=0: V1= Vl()V V()
with (Vl(o)(x),VQ(O) (x)T = (I + K(0,2, D;))(ug,v0)”. Under assumption (3.2), we have
(3.5) VO e PR NnC®(w), Ve H (R NC™(w).

Applying the classical theory of hyperbolic and parabolic equations to (3.4), we obtain
the following estimate for the norm of (V1, V2) in C ([0, T], H*(R™)) x C([0, T], H*T1(R™)):

VA (I Frs + V2t )1 Fe

t
0) 12 0)12

< oIV 5. + Vs e + / (IFLV) 2, + 1 F2 (V) (11, ) dta)
with a constant Cy > 0, which easily implies the existence and uniqueness of the solution
V =1, V)T € C([0,T], H*(R™)) x C([0,T], H**1(R™)) to (3.4) for certain T' > 0 by
using a classical argument. From the regularity of parabolic equations, we also have
(3.6) Vo € L2(0,T; H*Y2(R™)) N H' (0, T; H*(R™)).
Using (3.6) and applying the theory of hyperbolic equations (cf. [1, 4]) to problem (3.4)

for V1, we obtain

(3.7) Vi € C([0,T), Higg (we) N CH([0, 7], Higl (wr))

loc loc
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where w; = QN {t = const.}. Denoting by C§°(Qr) the set of smooth functions infinitely
order vanishing on 907 \ {t = 0,7}, and letting x € C§°(Qr), from (3.4) we know that
x Vs satisfies

(0= 3 an(t. )02, + D di(t,2)0s, ) (V) = Far(Vi, Va)
(38) = =

(V2)(0,2) = x(0,)V3” (2),

where Fy , (V) = xFo(V) + [L, x]V2 belongs to L*(0,T; H*T*(R™)) by using (3.6), (3.7).
Here, L denotes the parabolic operator appearing on the left-hand side of (3.8). Employing
the classical theory of parabolic equations for (3.8), we deduce that

xVa € L*(0,T; H*T3(R™)) n H'(0, T; H*T'(R™))
which implies

(3.9) Vo € L*(0,T; H PP (we)) N HY(0,T5 Hit (wy))

loc loc

from the arbitrariness of y. Thus, we can continue this process and eventually obtain the
conclusion. m

REMARK 3.1. It is not difficult to see that the above result holds as well for the case
that the nonlinear function f on the right hand side of (3.1) also depends on the first
order derivatives of v in space variables.

3.2. Microlocal analysis in semilinear thermoelastic systems. A typical example
of (3.1) is the system of thermoelasticity ([11, 15]). Let us study the following semilinear
problem of thermoelasticity in three space variables x = (71, xo,73) € R3:

(3.10) { uge — (2u+ AV divu + prot(rot u) + v1 VO = f(u, u, Vu, V0, 0)

0; — B2A0 + 2 div ugy = g(u, ug, Vu, 6),

where all coefficients (u, A, 71,72, ) are smooth functions of (¢,x) with u, A+ p and g
being positive, Vu (V0 resp.) denotes the gradient of u (6 resp.) with respect to the space
variables (z1, z2, x3), and nonlinear functions f and g are smooth in their arguments with
f(0) = g(0) = 0. Here u represents the displacement, and 8 = T, — Tp is the temperature
difference. The first result on the propagation of weak singularities in thermoelasticity
was given in [16, 17]. Here, by employing the decoupling idea of Section 2, we can obtain
rather deeper results on the regularity of solutions to (3.10).

THEOREM 3.2.

(1) For a fized point (z0,&) € T*(R3) \ {0}, suppose that (ug,0p) € H*(R®) N
H! (20,&), wi € H Y R3) N H! M (2o, &) for any fited 3 < s < 17 < 25— 3. Let
y(t) = {(t,z(t);7(t),£(t)) € T*(R*) \ {0} : 0 < t < To} be a null bicharacteristic of
92 — (2u+ M)A or 87 — uA with x(0) = xo and £(0) = &. Then the problem (3.10) has
a unique solution:

pay {0 CIOTLH N H (0),60) 0 O 0,71 5 0 H (), 6(0)
' 96C([OaT]aHSmHﬁ@l(x(t)vf(t)))a
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where the notation ug € H,(xo,&) means that there are a cutoff function ¢ € C§°(R?)
with o(x0) = 1, and a cone K in R3\ {0} about the direction &y such that (1+|€]?)"/? x
Xx (§)Puo(§) € L2(R?) ([1, 10)).

(2) Let {t = q1(z)} and {t = g2(x)} be the forward characteristic cones issuing
from the origin for the operators 0?2 — (2u + A\)A and 0? — pA respectively, and denote
by Cy the set {t > gi(2)} \ {t = g2(x )} If (uo,bp) € H*(R?) N C>(R*\ {0}) and
up € HS7H(R3) N C®(R3\ {0}) for s > 2, then the local solution (u,6) obtained above
satisfies

loc loc

6 C((0,T), He "7 (C4))

loc

25—5/2—e¢ 1 25—7/2—¢
(3.12) {UE O([O’TLH (C+)) nc ([O,T],H (C+))

for any € > 0.
SKETCH OF THE PROOF. (1) As usual (see, e.g., [11, 15]), by taking the decomposition
u=uf +u’®
with uP being the potential part, rot u? = 0, and u® the solenoidal part, divu® = 0, the
system (3.10) is transformed into the following one for the unknown (u?,u?,0):
ufy, — @2AuP + 41 VO = fP(uP ul, VuP u® ui, Vus, V6, 0)
(3.13) uj, — a?Au® = fS(uP uf, VP, u®, ug, Vu®, V6, 0)
— B2AG + o divul = g(uP,ul, VuP v, ui, Vu®, 0)

with smooth functions f? and f*, where a = /2 + X and a = /i satisfying o > a, and
A= Z] 1 w . By setting
(3.14) {uﬁ_ = (0 +iaM)uP, uP = (8 —iaN)uP

uy = (0 +iaA)u®, v’ = (0p —ialA)u’

with A = (1 — A)'/2, and using an argument similar to Section 2, we conclude that there
is K(t,z,D,) € $~1(R?) such that
V=V, Vo)" == (I + K(t,z,D,))(ul,u? ,us,u,0)",
with V7 denoting the first twelve components of V| satisfies the problem
OVi + Ay(t, 2, D)V = BSY - Fy(BSY - Vi, By - V)
(3.15) 0,V — B2AV, = B . (B - v)

V1(07 ) € HS?I(RS) n H:;ll(x()? 50)7 V2(07 ) € HS(RB) N H:nl(xoﬂ 50)7
where Ay (¢, z, D,) = diag[—iaAl, iaAl, —iaAl,iaAI] with T = I343 being the 3 X 3 unit
matrix, B{* (t,2, D) € WO(R3), By(t,z,D,) € U (R3), and Fj(-) are smooth in their
arguments. By using the classical theory of hyperbolic problems and parabolic problems,
we obtain a unique solution to (3.15):

Vi € C([0,T], H~1(R?))
{ Vo € L2(0,T; HSTH(R3)) N HY(0,T; H*~Y(R3)).
Using (3.16) and the theory of hyperbolic equations ([1, 4]), we deduce that
Vi € C(0,7), H* 1 (R®) 0 Hyp™ ) (1), £(1))).

(3.16)
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If s <r <s+1, we conclude that
(3.17) Vi€ C([0, 7], H*~H(R?) N Hy o ((1), (1)),
which implies
ue C([0,T), H* 0 Hyy(x(1).£(t)) N CH([0, T), H* = 0 H o ((1), (1))
Using (3.17) and the theory of parabolic problems gives
Vo € L2(0,T; HoH HH (a(t),€(8)) 0 HY (0, T H =0 HY (), (1))
which implies
0 € C([07 TL H? N Hrrnl(x(t)v f(t)))
When r > s+ 1, we can continue this process, and conclude (3.11) eventually.

(2) For any (to,x(tp)) € Cy, and £(tg) € R3\ 0, let 7(¢y) € R be such that Py =
(to, x(to), T(to),&(to)) is a characteristic point for the hyperbolic operators L; = 9?7 —
(2p + A)A or Ly = 92 — pA. Denote by v(t) = {(t,z(t),7(t),£(t)} € T*(R*) \ 0 a null
bicharacteristic of L or L passing through Py. Obviously, the projection in (¢, x)-space
of v(t) intersects with {t = 0} at = # 0, where (u,6) is smooth by using Theorem 3.1.
Thus, by applying Theorem 3.2(1) we obtain

we O(0,7), Hyy ™7 (a(),6)) N CH((0,7), Hyy " ((0), £(1)))

6 € C(0.7), Hy 7?7 (2(1). £(1)))
for any € > 0, which is equivalent to the assertion (3.12) by using the arbitrariness of
((to), &(to)), because the above result holds obviously for the case that v = {(¢t, z(t), 7(¢),

&(t))} is a bicharacteristic of Ly or Lo while (to, z(to), 7(t0),&(t0)) is not a characteristic
point. m

3.3. Propagation of singularities in viscous fluids. In this subsection, we shall briefly
explain how the decoupling idea of Section 2 can be applied to study the compressible
Navier-Stokes equations with heat conduction by using paradifferential equations. It will
be seen that this argument also works for general nonlinear hyperbolic-parabolic coupled
equations. Denote by p, u = (u1,...,u,)T, 0, p = p(p,0) and e = e(p,d) the fluid
density, velocity, temperature, pressure and internal energy satisfying ey(p,6), k& > 0 is
the thermal conduction coefficient, and A, u are the Lame constants satisfying A+ > 0
and g > 0. The motion of the compressible viscous fluids is governed by the following
Navier-Stokes equations:

Op + div(pu) =0, t>0, x eR"”
(3.18) Or(pu;) + div(puw;) + 0;p = pAu; + (A + ©)0; (div w), i=1,...,n
O (pe) + div(pue) + pdivu — kAO = £(9;u; + 9ju;)* + A(divu)?.
We are going to study equations (3.18) with the initial data

(3.19) (p,u,0)|,_y = (po(@), uo(2), bo())-

First, we recall a classical result from [12, 13] as follows: For any given s > & + 2, if
(po, up,0o) € H?*(R™), then there is a unique local solution to (3.18), (3.19) with the
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properties:

p € C((0,7), H*(R")) N C([0,T), H*~H(R))
(3.20) u, 0 € C’([O,T),HS(]R")) N Cl([O,T),HS*Z(R”))

Vu, V6 € L*(0,T; H*(R™)).
In order to decouple the system (3.18), we should use the paradifferential operators
developed by Bony (cf. [2, 5]). Given a R > 1, and 0 < 61 < e2 < 1, let x(0,n) =
¢(0,n)s(n) with

L 10] < eln|

[0, In|<R B
S(m‘{l, 0l > 2R, ¢(9’”>‘{o, 6] > ealn].

The paraproduct operator T, is defined by

Tu(e) = 7 [ (& = nomale ~ n)it) dn)

for any a,u € S’(R™). With (p,u,0) being given in (3.20), the equations (3.18) can be
paralinearized as follows:

n
Op+ Ty divu+ (T - V)p+ Tavup + Y To, oty =7,

(3.21) =1
Ou —T,-rLu+ (T, - V)u + Tp1p Vp+Tp1p, VO+ T U =1y

00 — Tk/(peg)Ag + (Tu . V)9 + T.0u+ TyU = 1y,

where Lu = pAu + (A + p)V(divu) is an elliptic system, U = (p,u,0)?, a,b € C([0,T),
H*~2(R")) smoothly depend on (U, VU,V?U), T, -V = Z?zl Ty, 0,

n
T0u = Tppre,—2xdivu) /(o) 4V 8 =2 D Tu(ousctdn,)/(pe) 05t
j.k=1

and
r, € C([0,T), H* "X (R")), 1y, € C([0,T), H* "/?72(R")).

In a way similar to that in Section 2, we can find

0 —AM A
K=1 1,0
Ay Al 0

T, 1L 0 (1) T ) T,-1, V
Ay = — L , Ay =(T,V',0), A7 = PP ,
2 ( 0 jk/(peg)A > 1 ( ’ ) 1 0

with

such that V = (V4,V2)! = (I + K)U, with V; being scalar and V5 being the last (n + 1)
components of V| satisfies the weakly coupled system

8tV1 + (U : v)‘/l + AoV + A_lU =T

T, 1L
6%—( " ’ >v2+Blvg+Bov+BlU:rz,
0 ThjgpepA

(3.22)
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where
{rl e C([0,T), H23*"/2*1(R”)), ro € C([0,T), H?*~"/272(R"))
By € C([O T) Op( s—n/2— 1))

with Op(X1)(R™) being the set of paradifferential operators of order one in z-variables
(cf. [2, 5]), and

Ao, By : C([0,T), HY(R")) — C([0,T), H(R™))
A_1,B_1:C([0,T),HY(R")) — C([0,T), HT™(R™))
are bounded for any ¢ € R.

REMARK 3.2. To see what Va, the part of U = (p,u,0)” having smoothing effect, is,
let us consider the equations of isothermal fluids, i.e. we do not need the equation for the
balance of energy in (3.18). Then, by direct computation, we deduce that

pAVs + (A + p)V(div Va) = VF — prot(rotu) + “...7,

where the dots represent some terms smoother than the first two terms on the right-hand
side, and

F=(\+2u)divu — p(p)
is the effective viscous fluz, which was throughly studied by D. Hoff et al. ([8, 9]).

Similarly to Theorem 3.2(2), by using the theory of hyperbolic equations and a clas-
sical bootstrap argument for the equations (3.22), we can establish the following result:

THEOREM 3.3. For any fived 5 +2 < s <r < 2s— 5, suppose that
(posuo,bo) € H¥(R"™) N Hy,y (0, 80)

with a fized (zo,&) € T*(R™)\ 0. Let w € C([0,T), H*(R™)) N C*([0,T), H*"*(R™)) be
the velocity component of the unique local solution of (3.18), and v(t) = (t,z(t); 7(t),£(t))
(0 <t <T) be a null bicharacteristic of 0y + u -V with x(0) = z¢ and £(0) = &. Then
the unique solution (p,u,8) of (3.18) satisfies

(pv uve) € C([Ov T)’ H* N H;zl(x(t)vg(t)))

REMARK 3.3.

(1) The detail of the proof for Theorem 3.2 can be found in [6, 19], and the detail of
Theorem 3.3 can be found in [7]. Moreover, in [7], we have also obtained a result on the
propagation of microlocal Holder regularity for the Navier-Stokes equations (3.18).

(2) Recently, in [9], D. Hoff obtained an interesting result on the propagation of
discontinuities in compressible Navier-Stokes equations of isothermal fluids in two space
dimensions.

(3) Some other interesting applications of the decoupling idea can be developed as well.
In [20], we have partially applied this idea to study the LP—L? decay rate of solutions
to Cauchy problems for linear thermoelastic systems with time-dependent coefficients.
In [14], we use this decoupling idea to study the global existence of smooth solutions to
the Navier-Stokes equations.
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