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Abstract. We consider the equations of isentropic gas dynamics in Lagrangian coordinates.
We are interested in global interactions of large waves, and their relation to global solvability
and well-posedness for large data. One of the main difficulties in this program is the possible
occurrence of a vacuum, in which the specific volume is infinite. In this paper we show that the
vacuum cannot be generated in finite time. More precisely, if the vacuum is present for some
positive time, then it must be present in the initial data, in a precise sense which is given. We
also discuss the annihilation of vacuums that are present in the initial data.

1. Introduction. We consider the equations of isentropic gas dynamics in Lagrang-

ian coordinates,
(
v

u

)

t

+

( −u
p(v)

)

x

= 0,(1.1)

where u is the fluid velocity, v = 1/ρ is specific volume, p is the pressure. Our ultimate goal

is the extension of the Glimm-Lax theory to include waves of arbitrary strength [5]. We

develop techniques that can be extended to many larger systems, of which the p-system

is a subsystem [16]. The main new feature of our analysis is the exact treatment of

waves and their interactions, in place of asymptotic estimates for interactions which are

generally valid only for weak waves [4, 13].

One of the main difficulties in dealing with large data is the possible occurrence of

the vacuum. At the vacuum, the specific volume v becomes infinite and must be taken to

be a measure. Thus the solution is not stable in BVloc, and indeed Glimm’s asymptotic

interaction estimates fail near the vacuum [7]. Our purpose in this paper is to fully

understand the circumstances of vacuum formation, and to study the effects of wave

interactions on the vacuum.
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A necessary condition for the system to admit the vacuum state is that the integral

of the sound speed converges as the specific volume goes to infinity,
∫ ∞

1

c(ν) dν <∞,(1.2)

where the sound speed is defined by

c2(v) = −p′(v).(1.3)

This is true for the most interesting physical systems, and we assume it throughout this

paper. We also assume for convenience that the pressure is convex, p′′(v) > 0. However,

this assumption is not essential, and our methods extend directly to nonconvex pressures,

see [15] and also [2, 14].

It is well known that a vacuum can form in the solution to the Riemann problem [8].

Physically, the difference between the left and right velocities is so great that the gas

cannot expand sufficiently, and a vacuum is formed. By analogy, a vacuum will form in

a general solution if the data has a jump similar to that in which the Riemann solution

contains a vacuum. Our goal here is to show that this is the only way for a vacuum to

form: in other words, if a vacuum is present at some finite time t > 0, then it must have

come from a large jump in the initial data, and been formed at time t = 0+.

Our strategy is elementary: we first identify which wave interactions can give rise to

the vacuum state. We show that any interaction of a shock and another wave moves us

further from the vacuum: indeed, the sound speed is greater, and thus the specific volume

is smaller, behind a shock (i.e. for later times). Therefore the only interaction that can

generate a vacuum is that of a forward and backward rarefaction. We then analyze the

region in spacetime in which two rarefactions interact, and calculate how long it takes

them to pass through each other. We find that the time it takes to generate the vacuum

is infinite. Indeed, the vacuum can be characterized by vanishing sound speed, so as

the sound speed approaches zero, the time of interaction grows without bound, and the

vacuum is never reached in finite time.

Our construction is based on the global solution to the Riemann problem developed

in [15]. We develop a concise description of the nonlinear waves in terms of a single

function of two variables. Thus we have

ur − ul = g(va, vb),(1.4)

where the subscripts refer to left, right, ahead and behind, respectively, and g is a given

function. We combine forward and backward waves to solve the Riemann problem, in

which the waves can have arbitrary strength. The following was proved in [15].

Theorem 1. Given constant left and right states (vl ul)
t and (vr ur)

t, respectively,

there is a unique solution to the corresponding Riemann problem, provided that the con-

dition

ur − ul < g(vl,∞) + g(vr,∞)(1.5)

holds. Moreover, the intermediate state (v∗ u∗)t (and hence wave strength) is a C2 func-

tion of the data.
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The failure of this one-sided inequality implies the appearance of a vacuum. Here v

becomes a Radon measure, the singular part of which is supported on the vacuum region,

which for the Riemann problem is the positive t-axis. Since the gas rarefies on either side

of the vacuum, the velocity u increases from left to right, with a positive jump across the

t-axis. The following is also proved in [15].

Theorem 2. Given arbitrary states (vl ul)
t and (vr ur)

t for which (1.5) fails, there

is a unique solution (v(x, t), u(x, t))t to the Riemann problem, where the velocity

u(x, t) ∈ L∞ ∩BV ∩ L1
loc

is a bounded increasing function, while v(x, t) is a Radon measure. Moreover this solution

is Lipschitz continuous in time as a distribution in L1
loc.

By a simple stability argument, we see that a vacuum will develop in a general solution

if the Cauchy data has a jump and whose left and right limits violate (1.5). The time

of existence of this vacuum depends on the number and size of shocks approaching the

vacuum [7]. We reprove in this context the fact that a shock will meet the vacuum in finite

time, at which time the shock disappears and the strength of the vacuum is diminished.

We treat all interactions exactly with the use of (1.4). Thus resolving the incoming

and outgoing states, the general forward-backward interaction is described by

g(vl, v∗) + g(vr, v∗) = g(vm, vl) + g(vm, vr),

where again there is no restriction on the size of the waves. This may not always have

a solution, meaning that the result of the interaction will contain a vacuum. Restricting

ourselves to this case, we consider the interaction of two rarefactions. Since the boundary

of the interaction region is characteristic [3], we calculate the path of an opposite charac-

teristic across a rarefaction wave. Eliminating x, we obtain a differential equation for t,

which we solve to get in the simplest case
√
c t =

√
c0 t0,

so that as the sound speed c→ 0, t→∞ and the time of passage through the interaction

is unbounded. Thus we have the following theorem.

Theorem 3. A vacuum cannot form from wave interactions in finite time. Thus any

vacuum that appears in the solution must be present in the initial data. In particular, if

the initial velocity is continuous, there is no vacuum in the solution.

Liu and Smoller identify two different types of vacuum, namely compression and

rarefaction vacuums [7]. The vacuum which develops at t = 0+ is always a rarefaction

vacuum. Left alone, rarefaction vacuums will persist for all times, expanding at a constant

rate in physical space. However, a shock which approaches the vacuum (i.e. enters the

adjacent rarefaction) will meet the vacuum in finite time. The shock disappears when it

meets the vacuum, while the vacuum is weakened by the shock. By this we mean that the

weight on the delta-function identifying the vacuum decreases, and may become negative.

A negative weight implies that the vacuum is now a compression vacuum, so its width

decreases in physical space, and it will be extinguished in finite time. Our results are

consistent with [7], as is expected [10].
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In the following sections, we recall the solution of the Riemann problem, and describe

the condition for the vacuum to be embedded in the initial data. We next consider wave

interactions, and show that the vacuum cannot form from wave interactions in finite time.

Finally we discuss the effect of shocks meeting the vacuum, and describe the possible

annihilation of the vacuum. In concluding, we describe our approach to extending the

existence theory and map out the next steps in our program.

2. The Riemann problem. We briefly recall the construction of the solution to the

Riemann problem which was constructed in [15]. For simplicity we assume the pressure

is convex, although our methods generalize directly to the nonconvex case.

The quasilinear form of our system is
(
v

u

)

t

+A(v)

(
v

u

)

x

= 0,(2.1)

where A(v) is the flux matrix

A(v) =

(
0 −1

p′(v) 0

)
=

(
0 −1

−c2(v) 0

)
.(2.2)

The characteristic wavespeeds are the eigenvalues ±c(v), and the rarefaction curves are

the integrals of the eigenvectors. In a rarefaction, we have

dx

dt
= ±c(v(x, t)),

while across the wave,

d

dε

(
v

u

)
=

(
1

∓c(v)

)
.(2.3)

Integrating, we get

u− u0 = ∓
∫ v

v0

c(ν) dν,(2.4)

where v parameterizes the curve. The correct branch of this curve is that for which the

sound speed is greater ahead of the wave.

The shocks are given by the Rankine-Hugoniot conditions [6, 9],

σ [v] = −[u] and σ [u] = [p(v)](2.5)

subject to the entropy inequality, which states that the sound speed is greater behind a

shock. The solution to (2.5) is easily seen to be

u− u0 = −σ(v0, v) (v − v0),(2.6)

where

σ(v0, v) = ±
√
p(v0)− p(v)

v − v0
,

and v again parameterizes the curve.
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We now combine these waves and solve the Riemann problem. First, define the func-

tion g : R2 → R by

g(v1, v2) =





∫ v2

v1

c(ν) dν, for v1 ≤ v2,

−
√

(p(v2)− p(v1))(v1 − v2) , for v1 ≥ v2.

(2.7)

The forward and backward wave curves can now be described by

ur − ul = g(va, vb),(2.8)

where the subscripts l and r refer to the left and right states, while a and b refer to the

states ahead of and behind the wave, respectively (so a = l for a backward wave). As

expected, the wave is a shock if the sound speed behind the wave is faster,

c(va) < c(vb), that is va ≥ vb,
while the opposite inequalities hold for rarefactions. Note that this description holds

exactly for all elementary waves of arbitrary strength. Equation (2.8) also holds for

composite waves when the pressure in nonconvex provided g is appropriately defined,

see [15, 2].

We combine these descriptions of forward and backward waves to solve the Riemann

problem with arbitrary left and right states. Given two states (vl ul)
t and (vr ur)

t, we

look for a middle state (v∗ u∗)t, so that a backward wave joins (vl ul)
t to (v∗ u∗)t, and

a forward wave joins (v∗ u∗)t to (vr ur)
t.

According to (2.8), if (vl ul)
t is joined to (v∗ u∗)t by a backward wave, then we have

u∗ − ul = g(vl, v∗),

while if (v∗ u∗)t is joined to (vr ur)
t by a forward wave, then

ur − u∗ = g(vr, v∗).

Eliminating u∗, we get the equation

ur − ul = g(vl, v∗) + g(vr, v∗) ≡ φ(v∗),(2.9)

and we wish to solve for v∗. In [15] it is shown that φ is an increasing function whose

range is unbounded below, so that (2.9) is uniquely solvable provided ur − ul is not too

large.

Theorem 1. Given constant left and right states (vl ul)
t and (vr ur)

t, respectively,

there is a unique solution to the corresponding Riemann problem, provided that the con-

dition

ur − ul < g(vl,∞) + g(vr,∞)(2.10)

holds. Moreover, the intermediate state (v∗ u∗)t (and hence wave strength) is a C2 func-

tion of the data.

2.1. Properties of g. We now enumerate some properties of the function g which will

be useful in the sequel. Across a rarefaction, g is the integrated wavespeed,

g(v1, v2) =

∫ v2

v1

c(ν) dν = h(v2)− h(v1),
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where

h(v) =

∫ v

1

c(ν) dν,(2.11)

provided v1 ≤ v2. We can interpret g in the same way across a shock, if we write for

v1 ≤ v2,

g(v1, v2) =

√
p(v2)− p(v1)

v1 − v2
(v2 − v1) =

∫ v2

v1

σ(v1, v2) dν,(2.12)

where σ is the (absolute) shock speed. Here −σ2 is the slope of the secant on the graph

of p(v), which is also the tangent of the upper convex envelope of p between v1 and v2,

which we denote by p∩. It is convenient to write

g(v1, v2) = h(v2)− h(v1) + θ(v1, v2),(2.13)

where θ(v1, v2) is a measure of the difference between shock and rarefaction curves. In-

deed, we have

θ(v1, v2) = 0 if v1 ≤ v2,(2.14)

and

θ(v1, v2) =

∫ v2

v1

√
−p∩′ −

√
−p′ dν < 0, for v1 > v2.

It is shown in [11] that the function θ is decreasing in the first variable and increasing in

the second,

θ;1(v1, v2) < 0 and θ;2(v1, v2) > 0.(2.15)

It is now clear that g is a C2 function, also monotone decreasing in the first variable

and increasing in the second, and that the relations

v1 > v2, h(v1) > h(v2),

g(v1, v2) < 0, and θ(v1, v2) < 0(2.16)

are equivalent, and identify the presence of a shock.

3. The vacuum. If the velocity difference ur − ul of the Riemann data is too large,

no finite intermediate state v∗ exists, and a vacuum develops. Physically, the gas rarefies

as much as it can to the right of the left state (vl ul)
t, filling the wedge

−c(vl) t ≤ x < 0,

inside which we have

c(v(x, t)) = −x/t,

u(x, t)− ul = g(vl, v(x, t)) =

∫ v(x,t)

vl

c(ν) dν,
(3.1)

so that the extreme state on the inside edge of this wedge is

v(0−, t) =∞ and u(0−, t) = u− ≡ ul + g(vl,∞).
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Similarly, the gas rarefies to the left of (vr ur)
t, giving the extreme state

v(0+, t) =∞ and u(0+, t) = u+ ≡ ur − g(vr,∞),

where we have u− ≤ u+ by the failure of (2.10).

In Lagrangian coordinates, the vacuum has no width, and the coordinate transforma-

tion from Eulerian coordinates degenerates. The resolution of this difficulty consists in

allowing the specific volume v to be a Radon measure, while the other variables remain

bounded (and indeed density, pressure and sound speed vanish). The singular part of this

Radon measure is supported on the t-axis, and thus has the form

νS = w(t) δ(x),(3.2)

where w(t) is a bounded function. Indeed, taking w(0) = 0, and solving the equation

vt − ux = 0

in the distributional sense yields

νS = (u+ − u−) t δ(x).(3.3)

We thus have the following theorem, also proved in [15].

Theorem 2. Given arbitrary states (vl ul)
t and (vr ur)

t for which (2.10) fails, there

is a unique solution (v(x, t), u(x, t))t to the Riemann problem, where the velocity

u(x, t) ∈ L∞ ∩BV ∩ L1
loc

is a bounded increasing function, while v(x, t) is a Radon measure whose singular part

is the Dirac measure (3.3) and whose absolutely continuous part is locally integrable.

Moreover this solution is Lipschitz continuous in time as a distribution in L1
loc.

3.1. Vacuum in the data. We now consider the possible formation of the vacuum for

general data. We assume here that the initial specific volume is finite,

v(x, 0) = v0(x) <∞ so (v0 u0)t ∈ L∞,
where we have redefined v0 on a set of measure zero as necessary. It is convenient to

assume in fact that the data has locally bounded variation.

We have already seen that Riemann data develops a vacuum if condition (2.10) fails.

Since the data can be approximated by piecewise constant functions, we thus obtain a

condition for the (immediate) formation of a vacuum in general Cauchy data, namely the

existence of some x ∈ R such that the left and right limits of the data violate (2.10).

Thus, assuming the data is locally BV , and as usual defining the left and right limits as

(v0(x−), u0(x−)) and (v0(x+), u0(x+)), respectively, we have the following lemma.

Lemma 3.1. For any x ∈ R such that

u0(x+)− u0(x−) ≥ g(v0(x−),∞) + g(v0(x+),∞)(3.4)

holds, a vacuum develops immediately at time t = 0+. In particular, the solution is not

stable in BVloc.

Proof. It is well known that the data can be approximated arbitrarily closely by

piecewise constants, and the solution in a small neighborhood looks like the solution of the

corresponding Riemann problems [1, 3]. We choose piecewise constant approximations to
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the data which include a jump at x which forms a vacuum in the corresponding Riemann

solution.

Indeed, given any ε > 0, we choose our ε-approximation such that there is a jump

at x, and we take the constant values on either side of x to be exactly (v0(x−), u0(x−))t

and (v0(x+), u0(x+))t, respectively. The resulting approximation contains a vacuum with

left and right states given by

u− = u0(x−) + g(v0(x−),∞),

u+ = u0(x+)− g(v0(x+),∞),
(3.5)

which are independent of ε. We shall see in the next section that the vacuum does not

immediately disappear as a result of wave interactions, and thus persists in the limit as

ε→ 0.

We shall say that this vacuum, which is an example of a rarefaction vacuum [7], is

embedded in the initial data. We shall show that this is the only way that a vacuum can

develop from L∞ initial data. That is, a vacuum cannot appear at finite positive times.

We will also discuss the possible annihilation of the vacuum.

4. Wave interactions. We now examine Glimm interactions. These are pairwise

interactions of elementary waves which we resolve by solving the Riemann problem con-

sisting of the extreme left and right states. We are essentially calculating the asymptotic

states which appear after the waves have passed through each other completely. This

is exactly what happens inside a ‘diamond’ [4, 13], and the resulting error estimate is

the basis of all pointwise bounds for conservation laws. Here we investigate which wave

interactions can give rise to a vacuum state.

We consider two incident waves, respectively separating constant states (vl ul)
t,

(vm um)t and (vr ur)
t. The interaction problem is to resolve the Riemann problem with

states (vl ul)
t and (vr ur)

t, and to estimate the outgoing waves in terms of the incom-

ing wave strengths. In the present context, since the velocities are given by (2.8), this

amounts to solving an identity for the outgoing middle state v∗.
There are two cases to consider, namely the interaction of two forward (or backward)

waves, and the interaction of a forward and backward wave. We first consider forward-

forward interactions. By (2.8), across the wave joining (vl ul)
t and (vm um)t, we have

um − ul = g(vm, vl),

while across the wave joining (vm um)t and (vr ur)
t,

ur − um = g(vr, vm).

We resolve the Riemann problem according to (2.9), and eliminating u obtain the identity

g(vl, v∗) + g(vr, v∗) = g(vm, vl) + g(vr, vm).(4.1)

It is well known that in order for there to be any interaction at all, one of the incident

waves must be a shock. Since the sound speed is greater behind a shock, we see that

after the shock has passed we are further from the vacuum state. Thus if a vacuum is

not present in the incident waves, it is certainly not present in the outgoing waves that
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occur in the solutions at later times. We conclude that a vacuum does not develop as a

result of the interaction of two waves of the same family.

More precisely, from (2.13) and (2.16), we have

g(vm, vl) + g(vr, vm) ≤ h(vl)− h(vr) ≤ max{g(vr, vl), g(vl, vr)},
so that, in (4.1)

v∗ ≤ max{vl, vr},
and no vacuum develops. Here we have used the fact that g increases in the second

variable.

We similarly get an identity for the analysis of the interaction of a forward and

backward wave. Indeed, according to (2.8), we have

um − ul = g(vm, vl)

ur − um = g(vm, vr),

and combining these with (2.9), we get

g(vl, v∗) + g(vr, v∗) = g(vm, vl) + g(vm, vr).(4.2)

Again we note that if one of the incident waves is a shock, then the sound speed

behind the shock is greater, so that the new state v∗ will be further from the vacuum

than one of vl and vr. We thus conclude that a vacuum is not the result of a shock and

any other wave. Indeed, suppose the left wave is a shock, so that vm > vl. Then again

g(vm, vl) + g(vm, vr) < g(vm, vr)

≤ h(vr)− h(vm) < h(vr)− h(vl)(4.3)

≤ max{g(vr, vl), g(vl, vr)},
so that v∗ < max{vl, vr} and there is no vacuum.

It remains therefore to check the case of two rarefactions interacting. In this case we

have vl, vr > vm, and (4.2) gives

g(vm, vl) + g(vm, vr) = h(vl)− h(vm) + h(vr)− h(vm)

≤ h(v∗)− h(vl) + h(v∗)− h(vr),

so that, since h is increasing,

v∗ > max{vl, vr},
and by (2.14), v∗ must solve the equality

h(v∗) = h(vl) + h(vr)− h(vm).(4.4)

Since the integral (1.2) converges, we have h(∞) < ∞, and it is easy to choose the

states so that the solvability condition (2.9) fails. Thus our condition for the creation of

a vacuum from the interaction of two rarefactions is

h(vl) + h(vr)− h(vm) ≥ h(∞).(4.5)

We have seen that the asymptotic state of the interaction of two strong rarefaction

waves contains a vacuum as long (4.5) holds. This suggests that we can indeed get vac-

uums from wave interactions in solutions with general L∞ data. However, we now show



246 R. YOUNG

that the interaction takes place over an unbounded time interval, and so the vacuum does

not form in finite time.

4.1. Interaction of rarefactions. We are studying the interaction of forward and back-

ward rarefaction waves. Recall that the forward characteristics are the curves
dx

dt
= c(v(x, t)),

and v can be used as the parameter across the wave, with u given by (2.4). Thus we

can describe any forward rarefaction wave with state (v u)t prescribed along some non-

characteristic curve, as follows.

Given a Cauchy curve parameterized by γ, that is functions X, T , v and u of γ

satisfying

dX

dγ
6= c(v(γ))

dT

dγ
and

du

dγ
= −c(v(γ))

dv

dγ
,

and given also some ‘target’ curve inside the simple wave, (x, t), also parameterized by γ

and non-characteristic, we have

v(x, t) = v(X,T ) = v(γ) and u(x, t) = u(X,T ) = u(γ),

provided that

x(γ)−X(γ) = c(v(γ)) (t(γ)− T (γ)).(4.6)

Now consider the interaction of forward and backward rarefactions, as in Fig. 1. The

resultant state once the waves have passed through each other is given by (4.4), and we

wish to calculate the region of interaction in the characteristic (x, t)-plane. Suppose for

the moment that the interaction has a finite solution, v∗ < ∞. Then we can break the

plane into three types of regions, namely the regions in which v is constant, the simple

rarefaction waves, and the interaction region [3]. The boundaries between these different

regions are characteristic curves of the appropriate family, and we will now describe these

curves.

(X(  ),T(  ))γ γ

(x(  ),t(  ))γ γ
v

v

v

v

l

r

*

m

Figure 1. Interaction of rarefactions

It is clear that the curves bounding the constant states are forward and backward

characteristics which are straight lines. We now describe the boundary of the interaction

regions, which are also characteristics [3]. Suppose we are to calculate the boundary

through which the forward rarefaction leaves the interaction region, which is a backward

characteristic. Choose a curve which crosses the rarefaction and is non-characteristic, say
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(X(γ), T (γ)). Along this curve, the state is (v(γ) u(γ))t. Actually, all we need is the

dependence c(γ) = c(v(γ)). Now we describe the boundary with the interaction region

by (x(γ), t(γ)), also parameterized by γ, and such that (4.6) holds.

Since the boundary of the interaction region is a backward characteristic, we have

dx

dγ
= −c(γ)

dt

dγ
.(4.7)

From (4.6), we have

x(γ)− c(γ) t(γ) = H(γ) ≡ X(γ)− c(γ)T (γ),

where we regard H(γ) as a known function of γ, which can be taken to be decreasing,

H ′(γ) ≤ 0, because the curve (X,T ) is non-characteristic and the outgoing wave is a

rarefaction. Differentiating and using (4.7), we get

−c(γ)
dt

dγ
− d

dγ

(
c(γ) t(γ)

)
= H ′(γ),

a first order linear differential equation for the function t(γ). Solving for t(γ), we get

√
c(γ) t(γ)−

√
c(γ0) t(γ0) =

∫ γ

γ0

−H ′
2
√
c
dγ.(4.8)

We have the following theorem.

Theorem 3. A vacuum cannot form from wave interactions in finite time. Thus

any vacuum that appears in the solution of (1.1) must be present in the initial data. In

particular, if the initial velocity is continuous, there is no vacuum in the solution.

Proof. We have seen that the only possible way for a vacuum to form is from the

interaction of two rarefactions. We calculate the boundary of the interaction region as

above, for interactions which yield a finite middle state v∗. Since the rarefaction curves

piece together continuously, by varying the entering states, we can change v∗. If we

parameterize the outgoing wave with γ increasing across the wave from ahead to behind,

from (4.8) we have
√
c(v∗) t(v∗)−

√
c(vr) t(vr) ≥ 0,(4.9)

where t(v) is the time at which state v emerges from the interaction region. Now the

vacuum is characterized by c(v) = 0, and taking the limit as c(v∗) → 0, we must have

t(v∗)→∞.

No vacuum can develop in finite time: thus any vacuum must be present in the data,

and so appear at an x at which condition (3.4) holds. In particular, if the initial velocity u0

is continuous, we have u0(x−) = u0(x+) for each x, and (3.4) does not hold anywhere.

If the rarefaction is a centered wave, then we can take H(γ) to be a constant, so

there is no right hand side in (4.8). In this case, the lower boundary of the interaction

zone is easily seen to be a hyperbola. Moreover, this is the extreme case, and for general

rarefactions the right hand side of (4.8) is strictly positive, so the characteristic moves

into the rarefaction more slowly.
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5. Shocks and the vacuum. We now discuss the effects of shock waves on the

vacuum. This question has been considered by Liu and Smoller [7] in the Eulerian for-

mulation, which is equivalent to the p-system [10]. As above, we start by analyzing the

interaction of a shock wave with a rarefaction. For brevity we consider a forward shock

interacting with a backward rarefaction centered at the origin. Thus suppose that (vl ul)
t

is joined to (vm um)t by a shock, and (vm um)t to (vr ur)
t by a rarefaction.

The emergent state (v∗ u∗)t leaving the interaction is given by (4.2). By our choice

of incident waves, we have

vl < vm < vr,

so by (2.13), (4.2) reduces to

h(v∗) = h(vl) + h(vr)− h(vm) +
1

2

(
θ(vm, vl)− θ(vr, v∗)

)
− 1

2
θ(vl, v∗).(5.1)

We now claim also

vl < v∗ < vr,

so that the outgoing waves are a backward rarefaction and forward shock, as would be

expected, and the last term in (5.1) vanishes. Indeed, (4.3) gives v∗ < vr, and assuming

v∗ ≤ vl, we get the contradiction

0 ≥ h(v∗)− h(vl) + h(vm)− h(vr)

=
1

2

(
θ(vm, vl)− θ(vr, vl) + θ(vr, vl)− θ(vr, v∗)− θ(vl, v∗)

)

> 0,

where we have used (2.15).

Since the backward waves are rarefactions, we can piece them together and the state

v∗ changes smoothly with vr. We can thus trace the path of the shock wave as it passes

through the rarefaction, as we did for characteristics in the previous section. We assume

a backward rarefaction centered at the origin (so H ≡ 0), and it is convenient to use

the sound speed c(v) as the parameter. Then if the path of the shock wave inside the

rarefaction is (x, t), we have

x(c) + c t(c) = 0,(5.2)

where c decreases from cm = c(vm) to cr = c(vr). On the other hand, the shock path is

given by

dx

dc
= σ(c)

dt

dc
,(5.3)

where σ(c) is the absolute shock speed,

σ(c) = σ(v, v#).

Here v = v(c) is the ahead state inside the centered rarefaction, and v# is the behind

state, given by

g(vl, v#) + g(v, v#) = g(vm, vl) + g(vm, v).

Note that as c varies from cm to cr, v# varies smoothly from vl to v∗.
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As above, we regard σ(c) as a known function of c, differentiate (5.2), and use (5.3)

to get the differential equation

(σ + c)
dt

dc
+ t(c) = 0.

Solving, we get

log t(c)− log t(cm) =

∫ cm

c

dc

σ + c
.(5.4)

We have thus calculated the states behind the shock, v#, and the path of the shock,

(5.4), (5.2). This together with our earlier description of a simple wave yields an exact

description of the global solution provided no other interactions take place. In particular,

if the shock is initially a finite distance away from the vacuum, the vacuum persists for

a finite time.

We now examine what happens as the shock approaches the vacuum. First, note that

our strict inequality

vr > v∗,

implies that as long as vr remains finite, the shock persists. Thus we consider the limit

vr → ∞ (or equivalently cr → 0). From (5.4), the shock will meet the vacuum in finite

time provided the integral converges,
∫ cm

0

dc

σ + c
<∞.

The boundedness of this integral follows from the observation that

σ(v, v#) =
g(v, v#)

v# − v
,

which is (2.12). Then, still using c as the parameter, we have
∫

dc

σ + c
=

∫
(v# − v) dc

g(v, v#) + c (v# − v)
.

Now our assumptions on c, namely

c′(v) < 0 and

∫ ∞

1

c(v) dv <∞,

imply that c · v → 0, and an integration by parts yields also
∫ c

0

v(c) dc = c · v
∣∣∣
c

0
−
∫ v

∞
c dv <∞.

Finiteness of the integral now follows since the denominator tends to

lim
vr→∞

g(vr, v∗) = −k < 0.

Indeed, using (2.13) in (5.1), we have

2g(vr, v∗) = 2(h(vl)− h(vm)) + θ(vm, vl) + θ(vr, v∗)

≤ 2(h(vl)− h(vm)) + θ(vm, vl) < 0.
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As in the previous section, we get the same results for a shock entering a rarefaction

which is not centered. In this case, our differential equation has a right hand side H ′(γ),

but the integral remains finite.

We have shown that the shock disappears in finite time as it meets the vacuum. In

continuing the solution beyond the time the shock meets the vacuum, we must resolve

the Riemann problem with left state (v∗ u∗)t and right state that on the opposite side

of the vacuum, (v+ u+)t, taking into account the delta function that is present. Stability

considerations imply that the vacuum cannot be immediately annihilated by a single

shock interaction, i.e. the specific volume does not immediately become finite. Rather,

the shock weakens the vacuum, corresponding to a decrease in the coefficient w(t) in (3.2).

The effect of this in Eulerian coordinates is to slow down the expansion of the vacuum,

possibly changing it from a rarefaction vacuum to a compression vacuum which will

eventually extinguish itself [7].

An exception occurs when the condition for a vacuum holds identically, so the left

and right limits of (3.5) are equal,

u− = u+, so that w(t) = 0,

and the vacuum has zero strength (or zero width in physical coordinates). This is a special

degenerate case of a vacuum extinguishing itself, and the vacuum will disappear when it

is met by a shock of finite strength.

6. Conclusions. We have shown that solutions to the p-system with continuous data

do not form a vacuum in finite time. Nevertheless, if we allow discontinuities in the data,

a vacuum may form. The condition to check whether or not the vacuum will form is

explicit, and is particularly simple in the gas of γ-law gases. Thus it is readily checked

and computable.

The main difficulty in proving a constructive existence proof for solutions of systems

of conservation laws is obtaining estimates which allow one to pass to the limit. These

are typically BV estimates, which are inappropriate near the vacuum. Indeed, we have

seen that the Riemann problem is not stable in BVloc. Liu and Smoller have shown that

Glimm’s basic interaction estimate, which is the building block of BV estimates, fails

near the vacuum [7]. Indeed, this is clear here because finite rarefaction waves can fail

to pass through each other completely, so the interaction cannot be approximated by a

linear interaction.

Our approach to the problem of finding global estimates is traditional in terms of

studying wave interactions. However, we take the point of view that one should look at

exact results of interactions, rather than at asymptotic descriptions as has thus far been

the case [4, 9, 13]. This point of view has been made possible by the development of

front tracking approximations [1]. Indeed, the additive structure of rarefactions and the

fact that other waves have zero width fit well with the front tracking approximations.

By carefully approximating rarefactions and their interactions, one can obtain exact de-

scriptions of the evolution of the states, so that only the trajectories in the plane are

approximations.

We outline briefly an approach to obtaining global estimates, pursued further in [11].
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First, identify the positions where a vacuum will appear in the data (which do not evolve

as we are in Lagrangian coordinates). Next, take some compact set K which does not

meet any of these vacuums. We now search for a BV bound on this compact set. To do

so, identify all the waves in the solution initially. Now, since the result of any interaction

inside K is finite, we formally identify all pairs of waves which will interact inside K,

and put the corresponding exact expression for the interaction into a potential. Since K

is compact, this potential will be finite and independent of the size of the approximation

parameter, and thus we can pass to the limit. We remark here that in a front tracking

approximation, because we have a 2×2 system, the number of waves is conserved and there

are no resonances due to nonvanishing Lie brackets [12]. Also, because K is compact and

away from the vacuum states, a domain of dependency should exist which also avoids the

vacuum. One problem here, however, is if there are many shocks which enter a vacuum,

causing it to eventually be extinguished, strong shocks may appear [7], which would then

be reflected back into K. Thus a better understanding of how a ‘compression vacuum’ is

extinguished is needed. Note however, that when a vacuum is formed from L∞ data, it is

a rarefaction vacuum, and so a minimum amount of shock strength is needed to convert

it into a compression vacuum, and the vacuum will persist for some finite time.
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