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Abstract. A thermodynamically consistent model of shape memory alloys in three dimen-
sions is studied. The thermoelasticity system, based on the strain tensor, its gradient and the
absolute temperature, generalizes the well-known one-dimensional Falk model. Under simplifying
structural assumptions we prove global in time existence and uniqueness of the solution.

1. Introduction. In the paper we consider mathematical properties of the three-
dimensional thermoelasticity system representing the behaviour of the body made of
shape memory alloy (SMA). This system is obtained from thermodynamical relations [8]
and generalizes the one-dimensional Falk model [3].

The equations to be considered are given by the following Problem (P):
(1.1) uy — vQuy + ZQQu =V - Fj(e€0) +b,
(1.2) c(€,0)0; — kAO = 0F jpc(€,0) : € + v(Ae€;) €+ g
in Qr = (0,T) x 2, where
(1.3) c(€,0) = ¢y, — OF p9(€,0),
with boundary conditions
(1.4) u=0, Qu=0,

VO -n=0 onSr=(0,T) x 09,

2000 Mathematics Subject Classification: 35Q72, 35K50, 35K60, 74B20.
The paper is in final form and no version of it will be published elsewhere.

[319]



320 I. PAWLOW AND A. ZOCHOWSKI

and initial conditions
(1.6) u(0,x) = up(x), u(0,x)=uy(x),
(1.7) 6(0,x) = 0yg(x) in Q.

Here Q2 C R™, n = 2 or 3, is a bounded domain with a smooth boundary 92, u denotes
the displacement vector, € = (e;;) with €;;(u) = 3(u;/; + uj/;) is the linearized strain
tensor, €, = €(u;) is the strain rate tensor, and 6 > 0 is the absolute temperature.
The other quantities in (1.1)—(1.2) have the following meaning: F'(e,8) — elastic energy,
c(e, 8) — specific heat coeflicient, b, g — external body forces and heat sources, ¢,, k, v,
k — positive numbers representing respectively thermal specific heat, heat conductivity,
viscosity and interfacial energy coefficient.

The elastic energy F(€,6) has a multiple-well form as a function of the strain ten-
sor € (order parameter), with the shape changing qualitatively with temperature 6. These
changes correspond to the fact that the austenitic phase is the global minimizer above a
critical temperature, both the austenitic phase and the martensitic variants have equal
energy density at the critical temperature, and the martensitic variants are global min-
imizers below the critical temperature. As a representative model of F'(e, ) we use the
Falk-Konopka elastic energy [4] in the form of sixth order polynomial of variables e;;
expressed in terms of crystallographical invariants, generalizing the well-known 1-D ex-
pression [3],

F(e,0) = a1(0 — 0,)e* — aze* + aze®,
where o; > 0 are constant parameters and 6. > 0 is a critical temperature.

Further, A = (A;;;) with
Aijrr = Mijont + p(dirdj1 + 6adjk),
is the fourth order tensor representing linear isotropic Hooke’s law
€(u) — Ae€(u) = Atrace €(u) I+ 2pe(u),
where A, ;1 are Lamé constants and I = (;;) is the unit matrix. We assume A is coercive
and bounded,
(1.8) aslel* < (Ae€) : € < a*|ef?,
where
ay = min[nA + 24, 2u), a* = max[n\ + 24, 2u].
Moreover, Q stands for the second order differential operator of linearized elasticity de-
fined by
u— Qu=V-(A(e)) = pAu+ A+ p)V(V - u).
The term rQu; in the elasticity equation corresponds to the mechanical viscosity
governed by Hooke’s law and the related term v(Ae;) : € in the temperature equation
represents heat production due to viscous dissipation.

The fourth order term 7 QQu corresponds to interaction effects on phase interfaces
which are expressed by the strain gradient contribution §|Qu\2 to the free energy density

fle. Ve.6) = —c,01og0 + F(e(u), 6) + <|Qul*.
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There exist several three-dimensional continuum models describing describing ther-
momechanical evolution of SMA. One of them, the well-known Frémond model [5], is
based on the strain tensor, the volumetric proportions of austenite and martensite, and
the absolute temperature as state variables. The interfacial structure is there accounted
for by the gradient of the strain tensor trace. The well-posedness of such a model has
been studied by several authors (see [1] for references).

Our contribution consists in proving global in time existence and uniqueness results for
the fourth order viscoelasticity system (1.1) coupled with the temperature equation (1.2).
We prove that the system is well posed for (u, ) in the space Wg’Z(QT) X sz’l(QT)
with p > n+ 2. In such a case the strain tensor ¢, its gradient Ve and the temperature 6
are continuous functions in time-space cylinder Q.

The approach used in this paper relies on the parabolic decomposition of the elastic
part (1.1) and the subsequent application of the Leray-Schauder fixed point theorem to
the decomposed system coupled with the temperature equation.

In the present paper we shall concentrate on the central part of the existence proof,
namely establishing a priori bounds for the solution by using the recursive improvement
technique and parabolic decomposition. This required proving several auxiliary results,
for which we refer the reader to [9].

Notation. Let Q; = {t} x Q, Q: = (0,t) x Q, S; = (0,t) x 99, and n stand for the
unit outward normal to 0. Moreover, f,; = df/0x;, fy = 0f/0t.
We use the Sobolev spaces notation of [6] and bold letters for the vector- and tensor-
valued mappings.
The summation convention over repeated indices is assumed and the following nota-
tion for vectors a = (a;), b = (b;) and tensors B = (B;;), B = (B;;):
a-b=ab;, B:B=DB;B;y, |B|= (BB

The symbols V, V- denote the gradient and the divergence operators. For the divergence
of a tensor field €(x) = (€;;(x) the convention of the contraction over the last index is
used, i.e.,

Throughout the paper A denotes a generic constant, different in various instances. In
general, A can depend on the data of the problem, domain 2 and time 7.

Acknowledgements. The authors would like to thank Professor Wojciech Zajacz-
kowski for detailed discussions.

2. Assumptions and main results. Below we list our assumptions grouped into
several categories.

(D) Domain Q C R", n = 2,3, with the boundary 92 of the class C?.
(LP) Linear part: the coefficients of the operator Q satisfy conditions

w >0, nA+ 2u > 0.
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They ensure the coercivity of the algebraic operator A in (1.8) and also imply the
strong ellipticity of the operator Q and the parabolicity of the evolution system with the
operator Q, see [9]. The latter two properties require a weaker condition A + 2u > 0.

Next assumptions concern the elastic energy:

(FE-1) Structure: F(e, #) is of class C® on S% x [0, 00), where S? denotes the set of
symmetric tensors of second order in R™. We assume that

F(e,0) = F1(€,0) + Fy(e),
where F}(€,0) is a concave function with respect to 6,
Fi/p9(€,0) <0 for (€,0) € 5% x [0, 00),

such that F(e€,0) is linear in 6 over a certain interval [0, 6;), 61 = const., and grows like
0" for 68 > 64.

(FE-2) Growth conditions: There exists a positive constant A such that for 6 > 6,
and large values of ¢;; the following conditions are satisfied:

[Fyjee(€,0)] < AO7[e] 771, |[Fojec(e)] < Ale|™,
|Fi/eo(e, 0)] < A0 €], |F1j00(€. )] < A9™2[e] 7+,
|F1/e(€,0)] < AO"|e]?, |[Fz/e(€)] < Alel?,
with
0<r<y, 1<gs B ocg<@rn(z-r),
where
Pn=n+2

and g, is the Sobolev exponent for which the imbedding of W3 () into L, () is contin-
uous, that is, ¢, = 2n/(n — 2) for n > 3 and ¢, is any finite number for n = 2. We note

that
dnPn 1
0<q< (——).
<e4=7 57"

The above conditions imply the following growth of F'(e, 0):

|Fi(€,0)| < A+ AO"|e|T, |Fy(e)| < A+ Ale|TH.
For example, in three-dimensional case the above conditions are satisfied for
5 3
g = — = 1 = —.
q 9 q y T 14

Moreover, we assume the structural lower bound for the part Fs(€) of the free energy.

(FE-3) There exist positive constants ¢, A such that
cle|T — A < Fy(e).
The next assumption concerns the structural simplification of the energy equation by

neglecting the nonlinear elastic contribution —6F g9 (€,6) in the specific heat coefficient.
This allows to apply the classical parabolic theory in the existence proof.
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We point out that because of the applied technique we were unable either to allow
F (€, 0) linear in 6 or, assuming #-growth condition, to incorporate the arising nonlinearity
in the specific heat coefficient.

(SH) The elastic energy contribution —6F p4(€, ) to the specific heat coefficient
due to the nonlinearity of F} in 6 is neglected, that is, we set

c(e,0) = ¢, = const. > 0.
We are looking for the solution in the Sobolev space

V(p) = {(u,0) € W,*(Qr) x W (Qr)},

with a parameter p related to L,-integrability. The assumptions on the initial data and
the source terms correspond to this space.

(BV-p) The initial conditions satisfy for 1 < p < oo the inclusions
u € W 2P(Q), w € W2 ¥P(Q), 0< 6, € W, 2/P(9),
and the compatibility relations. The source terms satisfy
beL,(Qr), g€ L,(Qr), g>0 ae inQr.
The first main result concerns the existence of solutions to problem (P).

THEOREM 2.1. Under assumptions (D), (LP), (FE-1)—(FE-3), (SH), (BV-p) and the
condition 0 < \/k < v, there exists for p, < p < 0o a solution (u,8) € V(p) to problem (P)
for any T > 0. Moreover, 0 > 0 in Qr, and the following a priori estimates hold:

(2.1) ||u||w§v2(QT) <A, ||9HW§'1(QT) <A
with a constant A depending on the data of the problem, Q and time T.

We note some properties of the solution which follow directly from the classical imbed-
dings.

COROLLARY 2.1. For a solution to problem (P) the following holds: u, Vu, V?u,
w, 0 are Hélder continuous in Qp, V3u, Vu,, V6 € L,(Qr), pn < p < 00, and

[ul, |Vul, |V2u|, lug | <A, 0<O<A inQr,
IV2ullL, @ IV, @ 1VOL, @ < A

In order to prove the uniqueness of the solution, the continuity property of Vu; in Qp
is needed. This holds provided p > p,.

THEOREM 2.2. Let the assumptions of Theorem 2.1 be satisfied for
Pn < p < 00.
Then the solution to the problem (P) is unique for any T > 0.

We collect now a priori bounds which follow from the imbeddings.
COROLLARY 2.2. The solution to problem (P) has in case p, < p < oo the following
properties: V3u, Vuy, V0 are Holder continuous in Qp and satisfy the bounds

V3|, [Vul, [V <A inQr.
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3. Existence proof. In the proof we shall use a parabolic decomposition of elasticity
system (1.1) and the Leray-Schauder fixed point theorem.

The proof consists of several steps which are described below.

Step 1. Parabolic decomposition of (1.1). If we choose numbers «, 5 so that
K
1
the system (1.1) with initial conditions (1.6) and boundary conditions (1.4) decomposes
into the following systems of BVP’s for a vector field w:

wi—Qw =V -F/(e.0)+b inQr,

(3.1) w(0,x) = u;(x) — aQup(x) in Q,

w=0 on St,

a+ B =v, af =

and the displacement u:

u —aQu=w in Qr,
(3.2) u(0,x) =up(x) in €,
u=20 on St.

The condition 0 < /k < v assures that «, 3 > 0.
System (3.1), (3.2) for w, u is coupled to the BVP for 6:
colly — kAO = 0F jpc(€,0) : €, + v(Ae€t) 1 €, +g in Qr,
(3.3) 0(0,x) = Op(x) in Q,
Vo-n=0 on St.
We note that a solution (u,0) € V(p) to system (3.1)—(3.3) satisfies problem (P)
under assumption (SH).

Step 2. To this system we apply the Leray-Schauder fixed point theorem, recalled here
in one of the equivalent formulations for reader’s convenience.

THEOREM 3.1 (see [2]). Let B be a Banach space. Assume that T : [0,1] x B — B

is a map with the following properties:

(i) For any fixed T € [0, 1] the map T(7,-) : B — B is completely continuous.

(ii) For every bounded subset C of B, the family of maps T(-,x) : [0,1] — B, x € C,
is uniformly equicontinuous.

(iii) There is a bounded subset C of B, such that any fized point in B of T(r,),
0 <7 <1, is contained in C.

(iv) T(0,-) has precisely one fized point in B.
Then T'(1,-) has at least one fized point in B.
We define now the map 7, from V(p) into V(p),
T, : (@,0) — (u,0), T €[0,1],
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by means of the following three problems:
Wy —5QW:T[V-F/€(E,§)+b] in Qr,
w(0,x) = 7[u1(x) — aQup(x)] in Q,
w=20 on St,
u—aQu=w in Qr,

u(0,x) = Tup(x) in Q,

u=20 on St,
coby — kAY = T[0F jgc(€,0) : €+ v(Ae€):e, +g] in Qr,
0(0,x) = 76p(x) in Q,
VO -n=0 on St,

where € = e(a).

Clearly, a fixed point of T} in V(p) is equivalent to a solution (u,#) in V(p) of the
system (3.1)—(3.3), and thus is a solution to problem (P) in V' (p).

In further steps of the proof we shall verify the assumptions of Theorem 3.1.

Step 3. It may be shown, see [9], that T is well defined, i.e. T-(V(p)) C V(p), and

is equicontinuous with respect to 7. In addition, a null solution is the unique fixed point
for 7 = 0.

Step 4. It remains to verify assumption (iii) in the Leray-Schauder theorem, that is,
to find an a priori bound for a fixed point of T.. Without loss of generality we may set
7 = 1. Let then (u,0) € V(p), pn < p < 00, be a fixed point of T7.

First we recall the result of [9]:
LEMMA 3.1. If (u,0) is a fized point of Ty in V(p), pn < p < o0, then § >0 in Qr.

The proof that (u,#) is a priori bounded in V(p) requires a sequence of estimates
which will be iteratively improved. The first are, as usual, the energy estimates.

LeEMMA 3.2. A fized point of T} satisfies for any t € I the following bound

= 1
(3.4) / (cvﬁ + %|ut|2 + %|Qu|2 + vc\e|q+1) dx + 3 azv(y — 1)/ le:|* dxdt’ < A
Q

t
with some positive constants ¢, v > 1, and A depending on the initial data, the sources
b, g and time horizon T.

PROOF. Integrating temperature equation in (3.3) over ; and using boundary con-
ditions gives

d ,
cv/t %dedt

:/ OF; jge(€,0) : € d:cdt’JrV/ (Aet):etdxdt'Jr/ gdzdt’.
t t Qt

(3.5)
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Multiplying the elasticity equation (1.1) by yu;, v = const. > 1 and integrating over Q)
gives
'7

Sl T |ut|2dxdt —’}/V/ (Quy) - u; dz dt’ + 25 (QQu) - u; dz dt’
Q. dt Q 4 Ja.

(3.6)
—7/ (V- Fie(e,0)) - updadt’ = 'y/ b - u; dx dt’.

t t
The second integral on the left-hand side of (3.6), after integration by parts and using
the boundary condition for u, is

(3.7) —’}/V/ (Qu) - uy dz dt’ = ’}/V/ (Ae;) : € drdt’.

t t

The third integral, after applying the integration by parts and the boundary condition
for Qu, becomes

d
(3.8) %/t(QQu) wdedt = 12 /(Qu) (Quy) d dt’ = 78“ ~|Qu[?dzdt'.

t

4

Finally, by integrating by parts and using the boundary condition for u, the fourth integral
gives

f'y/ (V- Fe(€,0)) - u dedt’ = fy/ Fre(€,0) : € dxdt’
(3.9) ! d !
:7/ EFQ(e)dxdt/Jr’y/ Fi/e(€,0) : egdxdt’.

t

Using (3.7)—(3.9) in (3.6) and combining with (3.5) gives the identity
d
/ 7 (cv9 + = \ut|2 + %‘{ |Qu|* + 'ng(e)) drdt’ + v(y — 1)/ (Ae) : egdrdt
t

:/ (GFl/ge(e,H)—fyFl/e(e,H)) :etdxdt’—i—/ (g +~b-u;)dxdt.

t t

Hence, using assumption (FE-3) and the bound (1.8) we obtain

/ (cvf) + %|ut|2 + % |Qu|? +’yc|e|‘j+1) dr + a,v(y — 1)/ e |* dx dt!
Qe

K
<A+ / (cveo + %|u1\2 + % 1Quo|? + 'ng(eo)) da
Q
(3.10)
+/ (g+%|b|2)dxdt/+/ %|ut\2dxdt’
t t
+/ (9F1/9€(6’0) - 7F1/e(6a0)) Depdx dt/a
Qt

where €) = €(uy).

By Young’s inequality the last integral on the right-hand side of (3.10) is estimated
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by

/ (0F; jge(€,0) — vFye(€,0)) : € dadt!
(3.11) ¢

) 1
g—/ le:Pdedt + — [ |0F)/pc(€,0) — vF1/e(e,0)> da dt,
2 26 Jo,

where, with the appropriate choice of §, §-integral is absorbed by left-hand side of (3.10).
Applying assumptions (FE-1), (FE-2) to the second integral on the right-hand side
of (3.11) gives

/ 0F) jge(€,0) — VF1je(€,0) P dudt’ < A+ A [ 6°|e*? du dt’
Qt Q1

A A
(3.12) <A+ —/ 0271 dx dt’ + —/ |€|?%P2 dx dt!
nJg, P2 Jg,

A A
<A+ — | Odxdt' + —/ €[22/ (A=21) qg: it
b1 Jq, P2 Jq,

where we have used Young’s inequality with p; = 1/(2r), po = 1/(1 — 2r).
By the condition on ¢ the last integral in (3.12) is estimated by

(3.13) / €| 2/ =27 oz dt! §/ €| da dt’.
Consequently, combining (3.10) and (3.11)—(3.13) gives

. 1
/ (cvf) + %|Ut|2 + % |Qu|? +’yc|e|q+1) dx + ia*l/('y — 1)/ |e¢|* dx dt!
Q4 t

(3.14)
< A+A/ (04 [ue® + |e|*T) dzat’.
Qu

Since, by Lemma 3.1, 6 > 0, applying Gronwall’s inequality in (3.14) yields the asser-
tion. =

The energy estimates allow us to obtain more refined bounds for the fixed point. By
the strong ellipticity property of the operator Q and the result of Necas [7] it follows
from (3.4) that

ullz. w2y <A
Consequently,

lelo.. wi) < A,
and by the imbedding,

lellzo (i, (@) < A-
Moreover, (3.4) gives

2,1
ue Wy (Qr) and ||u||w§:;(QT) <A.

Hence,

ee Wi (@Qr) and ez, <A
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so, by the imbedding,
2pn, _ GnDPn
n—-2 n

Our strategy now is to improve the estimates for €. To this purpose we use the
representation of solutions to parabolic systems with the right-hand side in the divergence
form (see Lemma 7.2 in [9]). Applied to solutions of BVP (3.1) it gives

W — W+Z€)x

where w(0) = u; — aQug, and w', i = 0,1,... ,n are the solutions of the problems
—6Qw' =h' inQr,
w'(0,x)=0 inQ, 0<i<n,
wi=0 onSp for0<i<n-—1,
ow™
on
with h® = b + 8Qw(0), h' = (F).,,(€,0))k=1,... n
According to the lemma mentioned above they satisfy the estimate

(3.16)  [lw = w(0)llyy11r2(,) < A(IPlL, @) + BQW(0)l|L, @) + [ F/ele. 0L, @0)
with the constant A depending on p, T', 2.

(3.15) ecLy(Qr) and €|y, (@,) <A for p=

=0 onSy fori=n,

We start by utilizing (3.16) for p = 4. To this purpose we estimate || F)c(€,0)||L,(q,)
in terms of the norm (/0| 1, (q,) which will be bounded later on in Lemma 3.4.
LEMMA 3.3. The following inequality holds:
1/2
(3.17) 1Fye(e.0) i < A+ A9l G, -
ProOF. We have
(3'18) ||F/e(6>9)||i4(Qt) < A("Fl/e(6>9)||i4(Qt) + ||F2/€(€)||i4(Qt))'

Applying the growth condition (FE-2) and estimate (3.15) gives

[F1/e(€,0) HL Q) = A+A/ 0" €| d dt!
Q

A A
(3.19) <A+— [ 0*Prdadt + —/ |€[*9P2 dz dt’
P P2 Jg,

A A
§A+—/ 02da:dt’+—/ |e[*9/ =27 gy dt!
p1 . b2 .

for p1 =1/(2r), p2 = 1/(1 — 2r) < co. Since, by the assumption on g,
4 _ anpn ,
1-2r = n
the last integral in (3.19) is, due to (3.15), bounded by a constant A. Similarly, recalling
the assumption on ¢, we get

(3.21) |‘F2/€(e)||i4(Q ) < A+A/ e[*T da dt’ < A+A/
' Q:

(3.20)

€| 2P/ da dt’ < A.

t
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Combining (3.18), (3.19) and (3.21) gives estimate (3.17). m
By virtue of (3.17) and by assumption (BV-p) it follows from (3.16) that

< A+ AJjg)Y2

HWHWi’l/z(Qt) L2(Qe)"

With this, using the regularity property of parabolic systems (see Lemma 7.3 [9]) we get
1/2
IVullwzi (g, < A+ A0l

L2(Q1)
SO
1/2
(3.22) lellwar (g < A+ AO1 5o,

With this estimate we are ready to prove the temperature bounds.

LEMMA 3.4. If (3.22) holds then there exists a constant A depending on the data of
the problem such that the solution of BVP (3.3) satisfies for any t € I the estimate

(3.23) / 92d9:+/ VO dxdt’ < A.
Qt t

PROOF. We multiply the temperature equation (3.3) by 6 and integrate over Q; using
the boundary conditions to get

C—“ iGQdazdt +k/ |V9|2dxdt’:/ 0% F) jge(€,0) : € da dt’
Qt dt Qt

t

(3.24)

+v | 0(Ae):edrdt + | Ogdzdt.
Q1 Q1

Using Young’s inequality the first integral on the right-hand side of (3.24) is estimated
by

1 3

0% F) jpe(€,0) : €, dudt’ < —/ |e:|* do dt’ + —/ |92F1/9€(e,9)|4/3 dx dt’,
Q 4 Jq. 4Jq,

where, by (3.22), the €;-integral is bounded by

(3.25) A+A [ 6*dxdt,
Q¢

and for the second integral, using the growth condition, we have

/|02F1/9€(e,0)|4/3dxdt’§A+ grrT/31|49/3 g at’
Q: Qt

A _ A
(3.26) §A+—/ 94(’+1>P1/3dxdt’+—/ |e[*aP2/3 dg at’
b1 t P2 t

gA+A Gdedt’+£/ e[/ (A=27) oz it/
p1 Jq, b2 t

for p1 =3/(2r +2), po =3/(1 —2r).
By recalling (3.20) and estimate (3.15), the right-hand side of (3.26) is bounded by
the expression (3.25).
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Now, using (3.22), we estimate the second integral on the right-hand side of (3.24) as
follows

0(Ae€;) : e drdt < A | |eftdrdt + A [ 6?dxdt’ < A+ A [ 62dxdt.
Qt Q1 Q1 Qt

Clearly, the last term in (3.24) is also majorized by (3.25). Returning to (3.24) and
incorporating the above gives

C—/ 92d:c+k/ V0|2 du dt’ < C—/ 93da:+A+A/ 02 dz dt’.
2 Q, + 2 Q t
Now the application of Gronwall’s inequality yields the assertion. m
Utilizing temperature estimates (3.23) in (3.22) gives the bound
||€||Wi’1(Qt) <A
Hence, by the imbedding, € is Holder continuous in 7, and
(3.27) el <A in Qr.

Moreover, by the imbedding of the space Loo(I;L2(S2)) N Lo(1; W3 () in L,(Q;) for
p > 2 it follows from (3.23) that

(3.28) 101 s, i) < A

Thanks to (3.27) and (3.28), in 3-D case we can further improve the estimates. Now we
have

(3.29) [ Eye(€, 0L, @) <A,
which results from the estimates

A i A
/ |F1/e(€,0)|P dadt’ < A+ —/ rPnPL dy dt’ + — |€|?PnP2 dx dt
. b1 . P2 Jg,

<A+ A/ 0%n/" dx dt’ + A/ |e[2aP/ 2= do dt’ < A
p1 t D2 +

for p1 = 2/(nr), p2 = 2/(2 — nr), and

/ |Faje(€)[" drdt’ <A+ A [ |e]™ dvdt’ <A
Q1 0.

So, returning to (3.16) gives

||W||W;TL1/2(Q1) < A7
and subsequently,
(3-30) HEHWI%;}(QT) <A
By the imbedding, we conclude from (3.30) that
(3.31) VeecL,(Q:) and |[Velp, @,) <A forp, <p<oo.

Our further procedure consists in applying to BVP (3.3) the classical parabolic theory
([6], Thm. IV.9.1). We have
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LEMMA 3.5. The following bound holds for the right-hand side of the temperature
equation (3.3):

(3.32) [0F1 /0e(€,0) = €+ v(Aer) : € + QHL 2o A

ProoF. We have

1 1
/ |0F1/9e(6a 9) : 6t|pn/2 dz dt’ < 5 / |et|pn dx dt’ + 5 / |0F1/9e(ea 9)|Pn dz dtlv
Qt Qt

t
where the first term on the right-hand side is, by (3.30), bounded by A. For the second
one we have

/ 0Fyjge(e,0)P dadt! < A+ A [ 0P |e[ow du dt
Q1 Q¢

A A
<A+ — / O"Pr Py dy dt’ + — |€|9PmP2 do: dit!
P1JQ, P2 Jq,

A A
<A+— [ 0%/mdrdt + —/ |e[2aPn/ =) g dt! < A
P1Jq, b2 Jq,
for p1 = 2/(nr), p2 = 2/(2 — nr), where we have used the bounds (3.28) and (3.27).
Similarly, utilizing (3.30), we have

1 1
’(AEt) : €t|Pn/2 dx dt/ < 5 / |A€t|pn dx dt/ + 5 / |€t|pn dx dt/ < A.
Qs Q1

t

This shows the assertion. m
The bound (3.32) together with the parabolic theory imply that

(3.33) 0 €W, Q) and (Bl g, <A,

so, by the imbedding,
VO €L, (Q), 0€Ly(Qr),

and

p
(3.34) IVOlvL,, @) <A, [0llr,@) <A for 7” <p < oo.

Now we are ready to improve iteratively a priori bounds. To this purpose we return
to the decomposed system and estimate the right-hand side of the w-equation (3.1).

LEMMA 3.6. The following bound holds for the right-hand side of (3.1):

(3.35) IV Fre(e.0)y, () <A

Proor. Applying the bound

IV - Erele. 0y, @ <1V - Frrele Oy, ) + IV - Farele)

pn (Qt) pn (Qt) HLpn(Qt)’

we get

/ V- F (e @) dedtd <A [ |Fye, o, (e.0)d 0[P da dtf
t Q1

Pr dy dt’ =1 + Is.

+ A/ |F'1/c,;0(€,0)0;0
Qt
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By recalling the growth conditions, the term I; is estimated by
I < A/ (1+ 07Pn|e|=DPn) |V elPr da dt!

<A+A 92’“Pn\e|2<q*1>f”ndxdt’+/ |Ve|?Pn dadt’ < A,
Qt t

where in the last inequality we have used the bounds (3.27), (3.34) and (3.31).
Finally, recalling (FE-1), (FE-2), we get

I, < A/ (1+ |€|%)|Vo|P" da dit’
Qen{0<01}

A ol —1rn || Pn |G| dz dt’ < A,
Qin{020:}

where we have used the continuity of 6 and the estimates (3.27), (3.34). Combining the
above estimates yields the assertion. =

Estimate (3.35) allows us to apply the Solonnikov theory of parabolic systems [10] to
BVP (3.1) and to conclude that

A W%nl(Qt) and ”W”W;z)nl(Qt) <A.
Subsequently, the application of this theory to BVP (3.2) gives
WEWEQ) and uly g < A
and by the imbedding,
(3.36) € € Ly(Q:) and &L, (@) <A for p, <p < oo

With this estimate we return to the temperature equation and estimate its right-hand
side in L,(Q¢)-norm. We obtain, for any p, < p < oo,

1 1
/\9F1/9€(e,9):et|pdxdt’§—/ |9F1/9€(e,9)|2pdxdt’+—/ e da dt!
Q 2 Jq. 2 Jq,

<A+A 6277 |€| 2P da dt’ + A l€/|*P dx dt’ < A,
Qt Qt
where we have used pointwise estimates (3.27) on € and the L,-estimates (3.34), (3.36)
on 0 and €;. Hence, by recalling assumption (BV-p), the classical parabolic theory assures
that

(3.37) RS Wg’l(Qt) and ||9HW5'1(Qt) <A for p, <p< oo
Again, by the imbedding, it follows that 6 is continuous in ); and
(3.38) 0 <A in Qy,

as well as

(3.39) Vo e L,(Q:) and |[|[VO|L, ) <A forp, <p<oo.
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In the last step, using the same arguments as in Lemma 3.6 and taking advantage
of (3.38), (3.39) we estimate

(3.40) HV~F/€(6,9 ) <A forp, <p< oo

e, .

Therefore, if we return to the system (3.1)—(3.3) and apply the Solonnikov theory, we
obtain

(3.41) HW”WZ*I(Qt) <A and (ulyazg,) <A for p, <p < oo.

This completes the derivation of a priori bounds for a fixed point of the transformation 77,
meaning that the assumption (iii) of the Leray-Schauder Theorem 3.1 is satisfied.

In the last part of the proof we demonstrate assumption (i) by showing that for fixed
7 € [0,1], T; maps bounded subsets into precompact subsets in V(p).

Step 5. Complete continuity of 7’ is equivalent to the following property. Let (@", ™)
be a bounded sequence in V(p), such that

(@",0") — (0,0) weaklyin V(p) for n — oo.
Then for the values of T
(u,0™) =T.(a",6")

we have

u” — u strongly in Wé’z(QT),

0" — 0 strongly in WE’I(QT)
as n — 00, where

(u,0) = Ty (1, 0).

The proof of the above property, based on parabolic systems theory, is given in [9].

In this way we have established that all the assumptions of the Leray-Schauder theo-
rem are satisfied. The proof of existence is thus finished. =

4. Uniqueness proof. Here the reasoning is based on the direct comparison of two
solutions by means of energy estimates and the application of Gronwall’s inequality. Let
(ul,01), (u?,0?) € V(p) be two solutions corresponding to the same data. To simplify
notation we set for ¢ = 1,2

v=u’—ul, n=0>-0" € =e(u’), € = €(ul),
Fi. = Fe(€',0"), Flp. = Fyye(€',0").
The difference (v,7n) € V(p) satisfies the BVP:
K

(4.1) Vi — vQvy + ZQQV =V - (F}. - FJ,),
e — kAn = (OQF/QQe D€l — 91F/19€ c€) + (V(A€]) € —v(A€) : €)

=R+ Ry inQr,
(4.3) v(0,2) =0, v¢(0,2) =0, n(0,2) =0 in Q,

v=Qv=0, Vp-n=0 on St.

(4.2)
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In the first step we obtain energy estimates for v in terms of Lo-norm of 7. To this
end we multiply (4.1) by v; and integrate over Q; to get

1

—/ i|vt|2dxdt'—u/ (Qvt)-vtdxdt'—i—ﬁ/ (QQv) - vy dx dt’
2 Jq, dt : 4 Jq,

_/ (V- (Ff = Fl) - videdt' =0.

t
Hence, integration by parts (as in the proof of Lemma 3.2) and the use of initial condi-
tions (4.3) yield

(45) /Qt <%|w2 + gIQvg) dx—l—u/t(Ae(vt)) : e(vy) da dt’
[ B etvp e

Moreover, thanks to (4.3), we have
1 d

(4.6) % [ Je(w)do = E/Q < e(v)|2dxdt’:/ €(v) : e(ve) dz dt'.

Combining (4.5), (4.6), and using estimate
‘F/Ze - F/le| < A(|€(V)| + |77|)7

which follows from the regularity assumption on F (e, #) and the uniform bounds on €’, §°
in @7, by Young’s inequality we arrive at

1
/(§\Vt|2+|e(v)|2+g|Qv\2)dx+a*u/ le(ve) 2 da i’
Qy

t

< (6 + 62)/ le(ve)?dxdt’ + A0 + 52_1)/ (|e(v)[> + |n|?) dz dt'.

t Qt
With an appropriate choice of §; the €(v;)-term is absorbed by the left-hand side. Sub-
sequently, the application of Gronwall’s inequality implies that
Vil Lo (0,7:12(2)) + €V Lo (0,712 (02))
Qv 0.rma@) + €V Lo @r) < AllnllLz @)
Hence, by recalling the ellipticity property of the operator Q, it follows that

(4.7)

(4.8) ||VHL°C(0,T;W§(Q)) < A||77||L2(QT)-
The energy estimates for 7 follow from multiplying equation (4.2) by 7 and integrating
over Qy:

(4.9) & ingd:cdt’—i—k/ \Vn|2dxdt'=/ (Ry + Ro)ndxdt'.

2 o, dt

Because of the uniform bounds on €, 67, € and C3-regularity of F} (€, ) we have
[Rul, [Ra| < A(Inl + |e(v)| + [e(ve)]).
Hence, thanks to (4.7), the right-hand side of (4.9) is estimated by

/ (Ri+ Ro)ndxdt’ <A | n*dxdt.
t Qt
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Since 7(0,x) = 0 in , the application of Gronwall’s inequality in (4.9) implies that n = 0
in Q. Simultaneously, by inequality (4.8), v = 0 in Q7. This completes the proof of
uniqueness. =
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