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Abstract. In this paper, we give a geometrization and a generalization of a lemma of differential
Galois theory, used by Singer and van der Put in their reference book. This geometrization, in
addition of giving a nice insight on this result, offers us the opportunity to investigate several
points of differential algebra and differential algebraic geometry. We study the class of simple
A-schemes and prove that they all have a coarse space of leaves. Furthermore, instead of consi-
dering schemes endowed with one vector field, we consider the case of arbitrarily large, and not
necessarily commuting, families of vector fields. This leads us to some developments in differential
algebra, in particular to prove the existence of the trajectory in this setting but also to study
simple A-rings.

1. Introduction. In their book [vdPS03] on differential Galois theory, Singer and van
der Put follow two approaches to define and study Picard-Vessiot extensions. For k a
differential field with an algebraically closed constant field of characteristic 0, and A €
M, (k), regarding the linear differential equation

Y' =AY (%)
they call R/k a Picard-Vessiot ring for (x) if

e R is a simple differential ring;
e there exists U € GL,(R) such that U’ = AU,

e R = k[entries of U, 1+ |.

This definition is natural because fields have two analogues in the differential world:
differential fields and simple differential rings. Recall that these latter are defined to
be the differential rings R whose only differential ideals are 0 and R. Then, they prove
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10 C. BARDAVID

(Proposition 1.21 of [vdPS03]) that K/k is a Picard-Vessiot field for (x), in the usual
sense, if and only if there exists a Picard-Vessiot ring R such that K = Frac R. The proof
of this equivalence requires the following lemma.
LEMMA S-vDP. Let k be a differential field, whose field of constants C' is algebraically
closed and of characteristic zero. One considers the k-algebra k[X;;, ﬁ] as a differ-
ential ring with the derivation defined by Xij’ = 0. Then, the maps
1

i T

det Xij
are inverse bijections between the set of ideals I of C[X,;, ﬁ] and the set of differen-
tials ideals J of k[X,;, m]

I—(I) and J—JNC[X

The main goal of this paper is to apply some tools developped in [Barl0] — namely
leaves and trajectory — to give a geometrical insight on and to generalize this lemma.

Just as for commutative algebra with respect to algebraic geometry, many (not to
say all) results and definitions of differential algebra gain generality and geometric clarity
when expressed in a geometric framework. Such an approach to differential algebra, in
the setting of schemes, can be found in [Bui86|, [Gil02], [Dyd], [Voj07], [Ros08]. Note
than in [Gro67], Grothendieck writes “Nous passons sous silence de nombreux développe-
ments, classiques en Géométrie différentielle (connexions, transformations infinitésimales
associées & un champ de vecteurs, jets, etc.), bien que ces notions s’écrivent de fagon
particulierement naturelle dans le cadre des schémas. Nous passons également sous silence
ici les phénomenes spéciaux a la caractéristique p > 0.’

In this paper, we aim at contributing to this program. When we first saw this state-
ment, we were quite convinced that there was a geometric statement behind it and this
was our starting point. Actually, this idea has led us to several developments on sim-
ple differential rings and schemes as well as on the existence and the computation of a
coarse space of leaves of a scheme endowed with a vector field. Finally, our geometric and
generalized version of Lemma S-vdP is the following (see Theorem [6.4):

THEOREM. Let . be a simple A-scheme of characteristic zero and let Z~ be a .#-scheme
without self-dynamics. Let & — C() be a coarse space of leaves of /. Let x be a
C(S)-point of & . Then, the maps

x7 x7 — X,

X
] and
Y —— Trajz(y) NNz

are inverse bijections between the fibre X, and the set x7 of leaves of X under the action
of V.

By a A-scheme, we mean a scheme endowed with a vector field (see Definition [2.4]).
Actually, this theorem says two things. First, if 7 is any leaf (see Definition — but

(U “We will not do here many developments that are classical for differential geometry (con-
nections, infinitesimal transformations associated to a vector field, jets, etc.), although scheme
theory is a very natural setting for these concepts. Also, we will not touch on phenomena specific
to characteristic p > 0.”
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one can think of a leaf as a subvariety of X tangent to the vector field) of 2", then n
intersects the fiber X, in a unique poin Njz- Thus, the structure of the leaves and the
S-structure of the scheme X are strongly interrelated. Second, it says that Traj () =7
and 'Haj;,(p)lx = p for every leaf n of 2" and every point p of the fiber X,. This means
two things:

— The leaf generated by 7, under the action of the vector field of 2 is again 7.
— If p is a point of the fiber X, then the leaf generated by p under the action of the
vector field of 2" intersects X, in p.

It is a generalization of the lemma S-vdP along three directions:

— In Lemma S-vdP, the algebra C[X;, ﬁ] of the algebraic group G'L,, ¢ appears.
We show that one can replace GL,, ¢ by any scheme X.

— Second, we replace the base field k of the lemma S-vdP by any scheme S endowed
with a simple vector field. This means that the vector field "175 “melts completely”
S (see Definition . This generalization is more difficult than the previous one.
In Lemma S-vdP, the base is necessarily of dimension zero while in our version the
base can be arbitrarilly large. For instance, the line A}g endowed with the usual
vector field 9/0x is simple. Also, regarding the scheme C(.#) (which plays the role
of the constant field C'), we do not make any assumption of algebraically closedness.

— Actually, the theorem we will prove is a little more general, since instead of dealing
with schemes equipped with one vector field, we will handle schemes endowed with
any family of vector fields. Herein, we are following the setting of Buium in [Bui86].
The usual generalization in this direction is to replace differential rings by rings
with d commuting derivations —so, here it is much more general.

For the reader to fully understand this result, it is needed to give some precisions:

— First, as one can imagine, a coarse space of leaves C(.¥) of some scheme .¥ endowed
with a vector field is a scheme that parametrizes in a “categorical sense” the leaves
of .7 (see Definition . As we will see, it is a geometric analogue of the constant
ring of a differential ring. Such coarses spaces do not exist in general, but we prove
in Theorem that they always exist for (quasi-)simple schemes. Although the
coarse space of leaves is not completely satisfactory, this tool here is sufficient. For
a better approximation of the space of leaves, one option would be to follow the
guideline of GIT [MF82] but we will not do it here.

— Second, by a .#-scheme without self-dynamics, we wean that 2~ has a model X
over C(&). In the lemma S-vdP, the base . correponds to k, the coarse space of
leaves C(.) corresponds to C, the scheme 2" corresponds to k[GL,] and Xy to
C[|GL,). In some way, saying that 2" /. has no self-dynamics corresponds to the
fact that one endows k[X;, ﬁ} with the derivation X/; = 0.

This theorem reduces in the affine case to Proposition A (the very affine generaliza-
tion of Lemma S-vdP) and Proposition B (another affine statement, which is needed to

()Note however that the dimension of M)z can be positive.
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compare the model Xy of 2 with the fiber X, ), whose proofs are given in Section
Proposition A below reads:

PROPOSITION A. Let K be a simple A-ring and C' its field of constants. Let A be a
C-algebra, endowed with the zero derivation. Denote by i : A — A ¢ K the canonical
morphism. Then, the maps

I (i(I)) and J i)

are inverse bijections between the set of ideals I of A and the set of A-ideals J of
A®c K.

The proof of Proposition A follows partly the proof of Singer and van der Put but
with two more important ideas. First, we proceed by induction on what we call the length
of an element of A®¢c K. The length of z € A®¢ K is the minimal length of an expression
of z as x = ), a; ® A\;. The second idea is to consider, if R is a A-ring and if z € R,
the left ideal EqDiffLing(x) of R[J] consisting in all L such that L e x = 0 (where L o x
stands for the image of x by the operator L). In a differential field K, for any nonzero
element x € K, there exists £ € R such that ¢ -z = 1. For simple A-rings, one has a
similar property, but less convenient to handle: for any nonzero element x € K, there
exists L € R[0] such that L ez = 1.

This paper is organised as follows. Section 1 is this introduction. Section 2 is dedicated
to introducing A-schemes, leaves and trajectory. Whereas in [Barl(], we were working
with schemes endowed with one vector field, we construct here these tools for schemes
endowed with any family of vector fields. In Section 3, we define simple and quasi-simple
A-schemes and prove that if 2" is a quasi-simple A-scheme then all the restriction maps of
the structure sheaf induce isomorphisms on the constant rings (see Proposition [3.7)). The
next section is devoted to the computation of the coarse space of leaves for quasi-simple
schemes. We prove (see Theorem [4.3)):

THEOREM. Let 2 be a quasi-simple A-scheme. Then, & has a coarse space of leaves
ta : X — C(Z). Furthermore, C(Z") is the spectrum of a field.

In order to prove this theorem, we prove a lemma (Lemma on the patching of
universal objects. Section 5 is devoted to the affine statements of our geometrization of
Lemma S-vdP. In Section 6, we prove the main result of this paper. The proof consists in
showing that one can reduce successively to the case where the total space X is affine and
to the case where both X and S are affine. Finally, in an appendix, we give an overview
of commutative A-algebra. The principal difference with the classical references [Kap57]
or [Kol73] is that we deal with rings endowed with any family of derivations (instead of
rings with one derivation or with a finite family of commuting derivations). The main
content of this appendix is the two proofs of the primality of p» when p is a prime ideal
of some Q-A-algebra. This section contains also a subpart dedicated to simple A-rings.
Among other results, we prove that simple A-rings are always irreducible, without any
condition on the characteristic or the reducedness. It relies of the following lemma (see
Lemma [A.14)).
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LEMMA. Let R be a ring. Let I and J be two ideals of R such that INJ =0. Let x € I
and y € J. Then,
v0,0" € ©(R), 6(z)-0'(y) =0.

A geometric corollary of it (see Corollary |A.17) says that if a scheme X can be
decomposed as X = F} U Fy where the F;’s are closed sets, then the same decomposition
holds when replacing each F; by

[F}] := m invariant subset of F; under ¥.
¥ vec. field
We have also included a paragraph on the colon ideals in differential rings.

2. Vector fields, leaves and trajectory for schemes. In this section, we recall the
definitions and main properties of vector fields, leaves and of the trajectory, as introduced
and studied in our previous paper [Barl(]. We refer to this paper for examples and further
comments. We also show that one can generalize these constructions for schemes endowed
with several vector fields. It is to be noted that we don’t make the usual assumption
that the derivations commute. These generalizations are mostly straightforward, excepted
for Theorem which gives the definition of Trajg (). The proof of this theorem is
postponed until the appendix, see Propositions and Let us start this paper with
some notations and conventions on A-rings.

2.1. A-rings. In all this paper, A will be a fixed set. We denote by d the cardinal of
A if finite and co otherwise. The elements of A will be denoted by 9,9’, 9;, etc. When
A is finite, we will denote A := {9y,...,04}. We will work with rings endowed with a
family of derivations indexed by A or, equivalently, with schemes endowed with a family
of vector fields (see Definition [2.2). More precisely, we follow the definition of [Bui86]:

DEFINITION 2.1. A A-ring is a rin R with a map
A — Der(R)
o 0(0)
When d # oo and when for all 9,8" € A one has [¢(9), $(9')] = 0, we say that (R, ) is
a partial A-ring. When d = 1, it is called an ordinary A-ring.

A morphism ¢ : (R, ¢) — (R',¢’) between two A-rings is a ring morphism ¢ : R — R’
such that the diagram

commutes for all 9 € A.
The category of A-rings will be denoted by RngA.
Similarly, if k£ is a A-ring, one has the category AlgkA of k-A-algebras.

) All rings are commutative and with unit.
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If (R, ¢) is a A-ring and if there is no danger of confusion, we will write 9 instead of
#(0). Given a A-ring R, we will denote its ring of constants by C'(R) (though we could
also have chosen the notation R?). Now, a few words on differential operators:

e O(R): given a A-ring R, it will denote the free monoid generated by A. (Thus, it
does only depend on A). Every § € ©(R) can be uniquely written

0 = 0102 0Ohp,

with the 9;’s in A. The order of 0, denoted by e(), is the integer n.
e O%(R): given a partial A-ring R, it will denote the free commutative monoid gen-
erated by A. Every 6§ € ©%(R) can be uniquely written

d
0 — &ei(a)
1

In this case, the order of 6 is the integer e(6) = >, e;(6).
e O(R): given a ring R, it will denote the free monoid generated by Der(R). Every
6 € ©(R) can be uniquely written

0 =061020p,
with the 0;’s in Der(R). The order of 6 is e(6) := n.

Given R a ring (resp. a A-ring, a partial A-ring), O(R) (resp. ©(R), ©%(R)) acts in a
natural way on R. A A-ideal I of a A-ring R is an ideal such for all § € ©(R), 6(I) C I.
Equivalently, I is A-ideal iff 9(I) C I for all 9 € A. For any set I C R, there exists a
unique smallest A-ideal containing I, that will be denoted by (I).

The appendix [A]is devoted to commutative A-algebra. For further references on dif-
ferential algebra in the partial and in the ordinary case, see [Kap57], [vdPS03| or [Kol73].

2.2. Vector fields and A-schemes. Vector fields are the exact analogues for schemes
to derivations for rings. We refer to [Barl0] for comments and examples. We define:

DEFINITION 2.2. Let X be a scheme. A vector field on X is a derivation of the structure
sheaf Ox.

In the case of a smooth manifold M, it is well known that there is a one-to-one
correspondence between vector fields defined as global sections of the tangent bundle
TM — M and derivations of the smooth structure sheaf Op;. For schemes, one also has
such a correspondence. In [Gro67] §(16.5), given a S-scheme X, Grothendieck defines the
tangent bundle of X/S. It is an S-scheme, denoted by Tx,g, with an S-morphism to X:

Tx/s
iﬂ
X
He proves that the S-sections of m correspond to the Og-derivations of Ox. So, in the

case where X is viewed as a Z-scheme, one gets a correspondence between the sections
of m: TX — X and the group of vector fields of X. The Ox-module of S-sections of 7
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is the dual of Qﬁ(/s- We will denote it by Jx/s (or by Jx when S = SpecZ). Hence,
Ix (X) is the group of vector fields on X.

FacT 2.3. Ix(X) is an Ox(X)-module and a Lie algebra.

Proof. Given 8" := (3%)y and 8" := (8%)u two vector fields on X, one defines [8“, 8"
to be the derivation of Ox whose action on Ox (U) is given by the derivation [8{}, 5‘5].
The structure of Ox (X )-module is clear. m

Given a scheme X and vector field ¥ on X, one can associate to each point z € X
a Zariski tangent vector, that we will denote by ¥ (z) (see [Barl(] for the construction).
The map
yx (X) —— TwX
V7 (x)
is Ox (X)-linear.
We say that two vector fields ¥ and % commute if [V, #] = 0.
DEFINITION 2.4. A A-scheme is a scheme X endowed with a family vV = (%)BGA of
vector fields on X.
Given two A-schemes 2" = (X,V) and # = (Y, W) a morphism [ : 2" — # is a
morphism of schemes f = (¢,0) : X — Y such that for all 9 € A the diagram

OY 40) SD*OX

iyﬂ_‘a itp*%
OY 40 > SO*OX

commutes.
The category of A-schemes is denoted by Sch?.

A-schemes will be denoted by letters 2", %, etc. and the underlying schemes by
X, Y, etc. The corresponding families of vector fields will be denoted by \7, V_V, etc.
Instead of writing “for ”f%, with 0 € A”, we will simply write, if there is no danger
of misunderstanding, “for v e A, If (P) is a property for schemes (affine, reduced,
irreducible, of characteristic 0, etc.) and if 2 is a A-scheme, we will say that 2" has (P)
if X has. Given a A-scheme 2, the structure sheaf of X is naturally a sheaf of A-rings.
We will still denote it by Ox.

If f is a morphism of A-schemes and z € X, then f sends the tangent vectors \7(36)
to W(f()):

PROPOSITION 2.5. Let 2 = (X, V) and @ = (Y, W) be two A-schemes and f : X — ¥
be a morphism. Let © € X. Then, for all 0 € A,

Tof o Vo(x) = iz 0 Hp(f ()
where i, : k(f(x)) — k(x) is the inclusion of residual fields induced by f.
Proof. See Proposition 2.3 of [Barl()]. m

There is a functor (RngA)Op — Sch® that maps a A-ring (R, ¢) to the scheme Spec R
endowed with the vector fields associated to the derivations ¢(d). We denote it by Spec?.
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This functor Spec® is a right adjoint to the functor O(—) : Sch® — (Rng®)°P of global
sections.

All fibered products exist in Sch®. Given A-schemes 2", % above .7, the underlying
scheme of 2" x.» # is X xg Y. Equivalently, cartesian squares (and more generally, all
limits) commute with the forgetfull functor Sch® — Sch. This is because this functor
has a left adjoint (the affine version of this statement is proved in [Gil02], for instance).

2.3. Leaves and trajectory. First, let us define the leaves.

DEFINITION 2.6. Let 2" = (X, \7) be a A-scheme. Let n € X. We say that n is a leaf of
Z (or a leaf for V) if #(n) = 0 for all ¥ € A. The set of leaves of 2~ will be denoted
by XV.

If R is a A-ring, then the leaves of Spec® R are exactly the prime A-ideals of R (see
[Bar10]). So, the sets XV are generalizations of the more common differential spectrum
“diff Spec” (see [Kov(2]). Intuitively, the leaves of 2" correspond to (the generic points
of) the irreducible closed subvarieties of X tangent to the vector fields ;. For instance,
one has

PROPOSITION 2.7. Let X be a scheme of characteristic zero and let C' be an irreducible
component of X. Then, the generic point nc of C is a leaf for every vector field.

Proof. It follows from (ii) of Proposition n

The following theorem defines the trajectory and gives some properties of it. The
notation 7 ~ x stands for specialization, namely x € {n}. The order referred to in Item
(i) is this specialization order.

THEOREM 2.8. Let 2" = (X, V) be a Q-A-scheme and let z € X.
(i) Theset{ne X |n~>x andn€ XV} has a least element. We call it the trajectory
of z (under the action of V) and denote it by Trajg(z).

(ii) The map Trajy : X — XV is continuous and open for the induced topology on xV.
(iii) If (Y, W) is another Q-A-scheme and f: X — % is a morphism, then

f(Trajg () = Trajg, (f(x)).
Proof. (i): as in the case d = 1 (see Theorem 2.5 of [Bar10]), it suffices to check the result

for affine schemes. So, one has to check that if R is a Q-A-algebra and if p € Spec R,
then the A-ideal

py ={f € R|VOcO(R), 0(f)cp}
is prime. We give two proofs of this result, in Proposition and For (ii) and (iii),
see Proposition 2.6 and 2.7 of [Barl0]. m

Let us mention here an easy result on the specialization order. We will use it implicitly
in what follows, and especially in Section 6.

FacT 2.9. Let X andY be two topological spaces, let f : X — Y be a continuous function.
Then,

vn,r € X, n~x = f(n)~ f(x).
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Proof. Let z,m € X and assume 1) ~> z. Let us prove that f(z) € {f(n)}. Let F' be closed

set of Y such that f(n) € F. Then, n € f~(F). Since x € {n}, one has x € f~}(F) and
so f(z) € F. u

3. Simple and quasi-simple A-schemes. In this section, we introduce simple and
quasi-simple A-schemes. Simple A-schemes will replace the base field k of Lemma S-vdP
in the geometrized statement. Actually, in a way, simple A-schemes stand for, in the
differential setting, the points Spec K (with K a field) of the classical setting. The quasi-
simple A-schemes are a slight generalization of simple A-schemes. We will prove for them
the existence of a coarse space of leaves. It can be shown that the coarse space of leaves,
when it exists, sometimes fails to be as expected — quasi-simple A-schemes can provide
such examples.

3.1. Simple A-schemes. A A-ring R is said to be simple (see Appendix [A.4) if the
only A-ideals of R are 0 and R. Fact tells us that a Q-A-ring is simple iff the only
prime A-ideal of R is 0. This leads us to the following definition:

DEFINITION 3.1. A A-scheme 2 is said to be simple if it is irreducible, and if its only
leaf is its generic point.

If k is any field of characteristic 0 and if k[x] is endowed with the derivation 2’ = 1,
then k[z] is simple. So, A}, with the vector field 8/0z is simple.

PROPOSITION 3.2.

(i) Let R be a A-ring. Then, R simple = SpecAR simple. The converse is true when
R does not have zero divisors.
(i) A A-scheme 2 is simple iff it is irreducible and all its open affine A-subschemes
are simple.
(iii) A A-scheme 2 is simple iff it is irreducible and it has an affine atlas (Spec™R;);
where the its open affine A-subschemes are simple.
(iv) Let Z be a simple Q-A-algebra. Then, 2 is integral.

Proof. For (i) and (iv), use Fact and Proposition iii). For (ii) and (iii), use the
fact that a point is a leaf iff it is a leaf in some open affine neighborhood. =

3.2. The constant sheaf of a simple A-scheme. We would like to prove an analogue
for simple A-schemes of Proposition ii), which says that C(R) is a field when R is
a simple A-field. We want to associate to any simple A-scheme a scheme which would
be the analogue of the ring of constants. In a way, such a scheme would parametrize the
leaves of &~ — we will come back to this idea in section [4l In this subsection, we prove
that given a simple A-scheme 2, the sheaf of constants of 2" is constant, with a field as
stalks. It will be an important ingredient in the construction of a coarse space of leaves
C(Z") for (quasi-)simple A-schemes.

Given a topological space X endowed with a sheaf of A-rings .%, we will denote by .#*
and call the the constant sheaf associated to .F the sheaf defined by .F2(U) := C(F(U))
for all open set U. In the case where .% is the structure sheaf of a A-scheme 27, we will
call O% the constant sheaf of 2 . So, the main result of this subsection is:
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PROPOSITION 3.3. Let 2 be a simple A-scheme.

(i) For any nonempty open sets U C V, the constant trace of the restriction map
oy OR (V) — O%(U) is an isomorphism.
(ii) Furthermore, for all nonempty open sets U, the ring O%(U) is a field.

We will use the following lemma, whose proof is left to the reader.

LEMMA 3.4. Let X be an irreducible topological space and let (V;)ier be a basis of
nonempty open sets for X. Let F be a sheaf of abelian groups on X satisfying
V(i,j) €I?, V;CV; = py,v; t F(V;) = F(Vi) is an isomorphism.
Then, for all nonempty open sets U and V such that U C V, the map
pv—u : F(V)— F(U) is an isomorphism.

Proof of Proposition[3.3 First, let us prove the result in the affine case. Let R be a simple
A-algebra and 2 := Spec®R. A basis of nonempty open sets is given by the D(f), for
f € R\Nil(R). Let f and g such that D(f) C D(g). Then, in the commutative diagram

0% (X)

0% (D(9)) ——5,—= 0% (D(f))

which in fact can be written more explicitly

C(R,) ———— C(Ry)

the maps p; and po are isomorphisms, by Proposition iv). Hence, ps is also an
isomorphism, and the result follows from Lemma [3.4]

Now, if 2" is any A-scheme, let us consider the basis of nonempty affine open sets.
Let U and V be two such sets, with U C V. By the previous case, in the commutative
diagram

OA
OA Uunv)

the maps p2 and p3 are isomorphisms, and so is p;. The same lemma gives us the con-
clusion. m

3.3. Quasi-simple A-rings and quasi-simple A-schemes. In this subsection, we de-
fine quasi-simple A-rings and A-schemes. Quasi-simple A-schemes have the same formal
properties as simple A-schemes, regarding the existence of a coarse space of leaves (see
Theorem . Let us start by an example.
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In this example, d = 1. Let k be a field, endowed with the zero derivation. We consider
the k-A-algebra R defined by
poe { 1)

=z

We call Spec®R the affine line endowed with the radial field. This A-scheme has two
leaves: the generic point 1 and the point 0. The A-ring R satisfies:

FacT 3.5. Assume k to be of characteristic zero. Then, C(Frac R) = C(R).

Proof. First, it is easy to check that C'(R) = k. Then, let f, g € k[x], with g # 0. Denote
h:= f/g, and assume h’ = (f/g)’ = 0. This implies f'g — ¢’f = 0. In other words,

i_f
g 9

Hence,

ff—des(f) -

g g —deg(f)-g
This identity is valid only if ¢’ — deg(f)g # 0. But, in the case when ¢’ = deg(f)g, the
identity f'g — ¢'f = 0 can be written (f’ — deg(f)f)g = 0. Denoting n = deg(f), one
then has g = Az™ and f = pa™ and so h € k.

When the transformation of the denominator if possible, then, by iteration, one can

reduce the numerator of h to a constant: there exist A € and p € k[x] such that h = \/p.

It is easy to check then that p € k. m
This leads us to the following:

DEFINITION 3.6. A A-ring R is said to be quasi-simple if R is a domain and if the map
C(i) : C(R) — C(Frac R) is an isomorphism.

A A-scheme % is said to be quasi-simple if it is irreducible and if it has an atlas
(Spec®R;)icr where the A-rings R; are all quasi-simple.

Of course, by Proposition iv), simple A-rings (resp. schemes) are quasi-simple
A-rings (resp. schemes). Now, our aim is to prove that quasi-simple A-schemes have the
same property as simple ones: their sheaf of constants is constant.

PROPOSITION 3.7. Let 2 be a quasi-simple A-scheme.

(i) For any nonempty open sets U C V, the constant trace of the restriction map
Py OR (V) — O%(U) is an isomorphism.
(ii) Furthermore, for all nonempty open sets U, the ring O%(U) is a field.

We will use the two following lemmas. The first lemma is a purely geometric result
on integral schemes.

LEMMA 3.8. Let X be an integral scheme. Let U and V be two nonempty open sets of X
with U C V. Then,

a) The rings Ox(U) and Ox (V') do not have zero divisors.
b) The morphism Ox (V) — Ox(U) is injective.
¢) If moreover V is affine then Frac Ox (V) — FracOx (U) is an isomorphism.
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Proof. The point a) is classical, see [Har77, 11.3]. Let us prove b). We first discuss the case
when V is affine. Hence, let A be domain and U a nonempty open set of X := Spec A.
Let f € A such that @ # D(f) C U. The diagram

Ox (X)
PN

Ox (U) ——5—= Ox (D (f)

is commutative and can be written more explicitly

2N\

OX( *>Af

But, po is injective and thus so is p;. Let us discuss now the general case. Let X be
integral scheme and U C V' two nonempty open sets. We want to show that

¢:0x (V) — Ox(U)
is injective. Let © € Ox (V) such that ¢(x) = 0. For every affine open set W of V, the
restriction py : Ox (W) — Ox (U N W) is injective, by the previous case. So, zy = 0,
and so is z.
Let us prove ¢) now. It is sufficient to prove that if R is a domain and if U is a nonempty

open set, then Frac A — Frac Ox (U), which is well-defined by b), is an isomorphism. Let
f € R such that & # D(f) C U. The diagram

P1

FracR Frac Ox (U)
N e

Frac A

commutes. Since po is bijective, ps is surjective. But ps is also injective and hence p3 is
bijective. So, p; is bijective. m

LEMMA 3.9. Let R be a quasi-simple A-ring and X = SpecAR. Let U be a nonempty
open set of X. Then, the A-ring Ox (U) is quasi-simple.

Proof. The diagram

R ¢ Ox (U)
l Frac ¢ \L
Frac R Frac Ox (U)

commutes and so does its trace on constants
C(p)

C(R)

J{C(h)
C(Frac R) ¢

C(Ox (U))

C@)i

r2c?) 0 (Frac Ox ()
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By assumption, C/(i1) is an isomorphism. By ¢) of Lemma [3.8 Frac is an isomorphism
and so is C(Frac ). Hence, C(is) is surjective, but is also injective, as is is. So, C(is) is
an isomorphism, and Ox (U) is quasi-simple. m

Proof of Proposition . Let us fix the notations. 2" is a quasi-simple A-scheme, (U;);er
is an open covering of X by affine schemes, such that Ox (U;) is quasi-simple, for all i.
Let (V,,)aca be the basis of all nonempty open affine sets included in a least one U;. Let

Vo and Vg two elements of this basis, such that V,, C V3. By Lemma the A-rings
Ox(Vy) and Ox (V) are quasi-simple. Hence, in the diagram

C(p)

C(Ox (V) C(Ox (Vo))

lC(h) C(iz)l

C(Frac Ox (Vj)) C(Frac Ox (Va))

C(i1) and C((iz) are isomorphisms. Then, since Vj is affine and X integral, by Lemmal[3.8]
C(Frac ) is also an isomorphism. So, C(p) is an isomorphism. Now, one can conclude

by Lemma u

As a first application, let us prove the following:

C(Frac @)

COROLLARY 3.10.

(i) Z is quasi-simple iff for every nonempty open affine set U of X, the A-ring Ox (U)
s quasi-simple.
(i1) Any nonempty open subscheme of a quasi-simple A-scheme is quasi-simple.

Proof. The point (ii) is an easy consequence of (i). Let us prove the latter. The direction
< is clear. Conversely, let us denote by (V;); a covering of X by open affines sets such
that the A-rings Ox (V;) are quasi-simple. Let U be a nonempty affine open set of X.
Let U;, be one of the element of the covering. Since X is irreducible, U N U;, # <. As
previously, the diagram

C
C(0x (U)) @) C(Ox (UNUL,))
\LC(il) C(iz)l
C(Frac Ox (U)) —-9__ 0(Frac Ox (U N Uy,))

commutes. Now, by Lemma Ox (U NU,,) is quasi-simple, and so C(i2) is an iso-
morphism. Since U is affine, by Lemma [3.8|c), C(Frac) is an isomorphism. Last, by
Proposition the constant trace C(p) of the restriction is an isomorphism. Hence,
C'(i1) is an isomorphism, i.e. Ox(U) is quasi-simple. m

4. The coarse space of leaves: case of quasi-simple A-schemes

4.1. The coarse space of leaves. Let 2 be a A-scheme of characteristic zero. We
would like to define a “space” T that classifies the leaves of 2", a space whose points
would intuitively correspond to the trajectories of 2 . Such a space would be endowed
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with a map ¢ : X — T that should satisify

Viz,y) € X*  Trajg(z) = Trajg(y) =  ¢(@) = oy). (1)
Now, let T be a Q-scheme, endowed with the zero vector fields. Let us consider ¢ : 2~ —
(T,0) a morphism of A-schemes and let us verify that holds for . Let x,y € X. By
Theorem one has

Trajg(p(2)) = ¢(z) = ¢(Trajg(2)).
Hence, indeed, if Trajg; () = Trajs(y) then ¢(x) = o(y). This leads us to the definition:

DEFINITION 4.1. Let 2 be a A-scheme of characteristic zero. A coarse space of leaves
for & will be a Q-scheme T with a map ¢ : 2" — (T, 6) universal for this property.

This means that every morphism 2" — (71", 6) factors uniquely through . A priori,
such a coarse space of leaves does not exist in general. Remark that when all the vector
fields of X are zero, then X (with the identity map) is a coarse space of leaves. Remark
also that, when it exists, the coarse space of leaves is unique, up to a unique isomorphism.
Let us raise a question:

QUESTION 4.2. Let R be a A-ring. Let us consider the morphism of A-schemes tg :
Spec®R — (Spec C(R),0) induced by the inclusion C(R) C R. Is tr a coarse space of
leaves for Spec®R ?

If R is a constant ring, if R is simple or quasi-simple, then the answer is yes. However,
I have some doubt on the positive answer in the general case.

4.2. Construction of the coarse space of leaves for quasi-simple A-schemes.
Let 2 be a quasi-simple scheme. Let us consider O%(X) the constant ring of the A-ring
of global sections of 2. Let U be a nonempty affine open set of X. We have seen that
Ox(U) is quasi-simple. By Proposition the restriction map O%(X) — OR(U) is
an isomorphism, and by quasi-simplicity, the map C(Ox(U)) — C(Frac Ox (U)) is also
an isomorphism. Hence, O%(X) is a field, seen as a A-ring by endowing it with zero
derivations. Now, let us construct a morphism

t: 2 — Spec®(O%(X)).
As a continuous function, it is mapping every element of X to the unique element of
Spec(O%(X)). Then, the action on sheaves Ospec(02 (x)) — t«Ox is simply given by the
inclusion map O%(X) C Ox(X), which is a morphism of A-rings. We denote
C(Z) == Spec® (0% (X)) and to: 2 — C(X)

the constructed morphism.
THEOREM 4.3. Let 2 be a quasi-simple A-scheme. Then, tg : & — C(Z) is a coarse
space of leaves for Z .

To prove this theorem, we need to prove a lemma on (unique) factorization and
localization. For this result, we set in the category of (A-)ringed space. In a way, this
lemma allows one to patch together universal objects. We do not do these patchings

directly in the proof of Theorem [4.3] because it would be too complicated. Hence, we
first prove this lemma. We consider three (A-)ringed spaces X, Y and Z, with morphisms
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f: X =Y and p: X — Z. We want to investigate the existence and the uniqueness of
factorizations g

X*f>Y

A

Z

in terms of (unique) factorizations of “subsystems” of X — Y. We denote

X4f>Y

p¢ / commutes
g

Z

EX,Y):=Xg:Z—=Y

and e(X,Y) :=# E(X,Y).
LEMMA 4.4. Let X, Y and Z be three (A-)ringed spaces, with X irreducible, and let
f: X =Y andp: X — Z be morphisms.
(i) Let (U;)icr be a basis of nonempty open sets of X such that for alli € I, e(U;,Y) =
1. Then, e(X,Y) = 1.
(i1) Assume #Z = 1. Let (V;);jcs be a basis of nonempty sets of Y such that for all
j € J such that f~2(V;) # @, e(f~1(V;),V;) = 1. Then, e(X,Y) = 1.
Proof. To begin with, let us list some easy properties of E(—, —).

(pl) If U C V are nonempty open subsets of X, then E(U,Y) D E(V,Y).
(p2) If (Wy)eer is a family of nonempty subsets of X, then

N EWe,Y) = E( U Wg,Y).
teL ter
For (i), to begin with, let us deduce from (Vi € I, ¢(U;,Y’) = 1) that all the E(U;,Y)
are equal. Let 7,7 € I. Let us write the factorizations

d
o g md )
Z Z

Since X is irreducible, U; N U; is nonempty and contains U, for some £. One checks then
than g1 and go belong to E(Uy,Y). Hence, g1 = g2 and E(U;,Y) = E(U;,Y). Then, one
can conclude by (p2).

Let us prove (ii) now. In this proof, let us call j € J admissible is f~'(V;) # @. For
all j admissible, let us denote by g; the unique element of E(f~1(V}),V;):

F)

”i/

VA

Let us denote by z the unique element of Z. First, remark that all the g(z) are equal,
for all nonempty open sets U of X and all g € E(U,Y). Indeed, if U and U’ are two
such sets, and if g € E(U,Y) and ¢’ € E(U',Y), then U N U’ is nonempty and contains
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some z. Then, g(z) and ¢'(z) must be equal to f(z). Now, if j is admissible, the inclusion
V; C Y gives rise to an injection

B(f71(V;),Vy) — B(f71(V}),Y).
This map is actually a bijection. Indeed, if g € E(f~*(V;),Y), g9(z) = g;(2) € V;, and so
g can be factorized through V; C Y. Hence,

for all j admissible e(f1(V;),Y) = (2)
Finally, let us prove that E(f~%(V;),Y) = E( L, ) Y) whenever i,j are admissible.
By (p2), it will conclude this proof. Since, f=1(V;) N f=1(V, ) is nonempty, one can find

¢ admissible such that V; € V; N V;. By (pl), one has E(f~ ( ),Y) C E(f~1(Vy),Y).
But, by , the cardinal of these both sets is 1. Hence, E(f~1(V;),Y) = E(f~1(V,),Y)
and so B(f~1(Vi),Y) = E(f~1(1}), ). =

Proof of Theorem[].3 Let 2 be a quasi-simple A-scheme. Let Y be a scheme and let
f: 2 — (Y,0) be a morphism. We will also denote (Y, 0) by Y. With to : 2~ — C(Z),

we are in the situation

a1 oy

tg{’\L

o)

described above. We want to prove that e(X,Y) = 1.

First, let us assume Y affine, Y := Spec A. Let % be a nonempty open affine set of
%, endowed with the induced vector fields. Let us write % := Spec™ B. By Proposition
one can write C(2") = Spec C(B). We are now in the situation

Spec® B Spec A

g

Spec C(B)

Let us prove that e(SpeCAB,Spec A) = 1. Tt reduces to prove that given a morphism
¢ : A — B of A-rings (with A endowed with the zero derivations), ¢ factors uniquely
through the inclusion C(B) C B, which is obvious. Hence, e(Spec® B, Spec A) =1 and,
by Lemma [£.4]i), we know that whenever Y is affine, one has ¢(X,Y) =

Now, the general case is easy. We will apply Lemma [4.4{ii) with the basis (Vi); of
nonempty open affine sets of Y. Given such a set V;, if f~1(V;) # @, by Lemma (ii),
it is quasi-simple, and C(2°) = C(f~1(V;)). Thus, one can apply the previous case:
e(f~Y(V;),V;) = 1. One then concludes with Lemma [4.4ii). m

5. The affine statements. In this section, we state and prove the generalization of
Lemma S-vdP, as a statement of commutative differential algebra. Actually, our geo-
metrization of Lemma S-vdP will be based on two affine statements, Proposition A and
Proposition B. Let us recall:

LEMMA S-vDP. Let k be a differential field, with field of constants C. The k-algebra
k[X;, ﬁ] is considered as a differential ring with the derivation defined by X;;' = 0.
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Then, the maps

I—(I) and JHJQC{XU,deth}
j

are inverse bijections between the set of ideals I of C[X;;, ﬁ] and the set of differential
- 1

ideals J of k[X,;, m]

5.1. The first statement. If R is a A-ring, and if I is a subset of R, we will denote by
(I) the A-ideal of R generated by I

ProrosIiTiON A. Let K be a simple A-ring and C its field of constants. Let A be a
C-algebra, endowed with the zero derivations. Denote by i : A — A ®¢c K the canonical
morphism. Then, the maps

I— (i(I)) and J i)
are inverse bijections between the set of ideals I of A and the set of A-ideals J of AQc K.
Before proving this proposition, let us make several remarks:
(r1) The family (9)pea of derivations of A ®¢ K is defined by
Vae A,VA€ K, 3a®\:=a- 0\

for all 9 € A. Similarly, given any 6 € ©(K), if one denotes by 0 the same operator
viewed in ©(A ®@¢ K), then one has f(a ® \) = a-O()) for alla € A and \ € K.

(r2) Given an ideal I of A, then the ideal generated by () in A ®c K and the A-ideal
generated by i(I) are equal. Indeed, any x € (i(I)) can be written

r = Zaj ® )\j7
j=1
where a; € I and A; € K. Then, one computes for all 6 O(A® K),
x) =) a;@0(\)
j=1

which belongs to (i(I)).
(r3) The following two inclusions are easy. First, given an ideal I of A, then I C i~1(i(I)).
Second, given any ideal (not necessarily a A-ideal) J of A®¢ K, then ( (i=1J ) CJ.
(r4) Given a A-ring R, we define R[8] to be the free R-module generated by ©(R). It is
also a non-commutative R-algebra, the product being defined by 9-2 = d(x)+z -0,
for all & € A. There is a left action of R[@] on R defined by

Z a9-9>ox:: Z ag - 0(x).

0cO(R) 0€O(R)
A subset I of R is a A-ideal iff it is stable under the action of R[d]. Given x € R,
the map
R[] ——R
evy :

L———Lex
is R-linear and R[8]-equivariant. We define
EqgDiffLing(x) := Ker(ev,) = {L € R[8] | L e x = 0}.
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It is the left ideal of R[] of linear differential equations satisfied by x. Dually, the
A-ideal generated by x equals J(evy).
(r5) If L =), ap-0 € K[9], we will denote by L € (A®¢ K)[0] the differential operator

Z::Za9~§.
6

Then, for a € A and A € K, one has Le (a® ) = a® (Lo \).
(r6) Any x € A®c K can be written

xr = i:ai ®)\7,7
i=1

with n € Nxo, (a;); € A™ and (\;); € K. We call length of =, and we denote it
by £(z) the least n > 0 such that z can be written as a sum with n terms. One has
l(x) =0iff x = 0 and ¢(x) = 1 iff x is a nonzero pure tensor.

Proof of Proposition A. Because of (r3), we just have two inclusions to prove. First, given
I an ideal of A, let us prove that i~ (i(I)) C I. As C is a field, let (e;);es be a C-basis
of K, with e;, = 1. If we denote €; :=1® e; € A®¢ K, one knows (Proposition 4.1 of
[Lan02], page 623) that (¢;),cs is a A-basis of A ®c K. Let a € i~1(i(I)): there exist
ai,...,a, € I and A1,..., A, € K such that

a®1:zn:ai®/\i.

i=1

Decomposing the A;’s in the C-base (e;); one thus finds ai,...,a, € I and an injective
map j: {1,...,m} — J such that
n m
a®l= Zai@)ej(i) i.e., a-EjO —Zﬁi 'Ej(i) =0.
i=1 i=1

Since (€;); is a A-basis, a must be equal to one of the @; and so a € I.
Now, given J a A-ideal of A ®¢ K, let us prove that J C (i(i~1.J)). More precisely,
let us prove by induction on ¢(z) that
red = xcli(i™)). (3)

If ¢(x) = 0, this means that z = 0, and is clear. If ¢(z) = 1, then one can write
x=a®\, with a € A and A € K nonzero. Since A # 0 and K is simple, (\) = K. Hence,
there exists L € R[] such that Le A =1. Then, Lex =a®1 € J, since J is a A-ideal.
Thus, a € i~(J), and z € (i(i~'J)). Now, assume true whenever ((z) < n and let
z € J with £(z) =n + 1. Let (a;); € A" and ()\;); € K™ such that

n+1

i=1

First, remark that one can suppose that
V(i,j) e {1l,...,n+1}? EqDiffLin (\;) = EqDiffLin (}). (4)
Indeed, let us suppose that it is not the case, and let i1 and i3 be such that

EqDiffLin g (A;,) © EqDiffLing (A;,).
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Then, let L € K[8] such that L e \;; = )/\1\1 # 0 and L e \;, = 0. Actually, applying
another differential operator, one can assume that L e \;; = \;, and L e )\;;, = 0. Now,
Lex € Jand /(L ex) < n, since L kills one of the \;’s. Thus, L ez € (i(i~'.J)). But,
2 — L e x has also a length < n and so z — L e = and z belong to (i(i~'.J)), which we
wanted.

So, let us suppose holds. Since A\; # 0, let L € R[] such that L e A\; = 1. By ,
one easily gets that all the L e \;’s are constant. Let us denote ¢; := L o \;. Then,

n+1 n+1 nt1

on:ZaiQ@(Lo/\i):Zai@ci: (Zaici)(}bl.
i=1 i=1 i=1

Hence, /(L ez) <1 andso Lex € (i(i~1J)). But, z — A; - L e z has also length < n and
so belongs to (i(i71J)). Thus, z € (i(i"1J)). m

5.2. The second statement

PRrROPOSITION B. Let K be a simple A-ring, with field of constants C'. Let A be a C-
algebra, endowed with the zero derivations. Let ¢ : K — C be a morphism of C-algebras.
Let us denote

. A—=AQc K d . ARc K —— A
i: an : .
a——a®1 J a®@\—ap(A)
Then for all A-ideals J of A®c K and for all ideals I of A, one has
() =j(J) and  jTH(I)y = (i(D)).
Before proving this proposition, let us make two remarks:

(r7) Since j is surjective, j(J) is already an ideal for all ideal J of A ®¢ K. Thus, for
all ideal I of A, j(j 1) = 1.
(r8) Given any ideal J (not necessarily a A-ideal) of A ®¢ K, one has i~*(J) C j(J).

Proof. Let us prove the first assertion. Let J be a A-ideal of A®¢ K. By (r8), it suffices
to check that j(J) C i~ *(J). Let y := j(z) be some element of j(.J), for some z € J. By
Proposition A, one has z € (i(i~1(.J)). This means that one can write

n
i=1

with the a;’s satisfying a; ® 1 € J. Thus,

y=>_ ai-p(h).
i=1

Since a; ® 1 € J, a; € i~(J) and so y € i~1(J).

Now, let us turn to the second assertion. Let us recall that, in a A-ring R, given an ideal
a of R, ay denotes the largest A-ideal contained in a. First, check that (i(1)) C j7'(I).
Then, by (r2), (i(I)) is a A-ideal, and so one has (i(I)) C j7*()4. So, we are asking if
(i(I)) is the largest A-ideal contained in j~*(I). Hence, let J be a A-ideal such that

(i(1) c Jc i HI).
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Applying i~! to these inclusions, one gets
cHGE)) c i) i GTH)).
By Proposition A, i~*((i(I))) = I and by (r8), i~ 1(j71(I)) C j(i(I)). By (x7),
j(j71(I)) = I. So, one has
Ici'(J)cI andso i YJ)=1.
Applying (i(—)) to these identity, one gets

(i(1)) = (i(i' () = J
again by Proposition A. Hence, (i(I)) =j"1(I)4. =
COROLLARY 5.1. Let K be a simple Q-A-algebra, with field of constants C. We assume
there exists a morphism ¢ : K — C. Let A be a C-algebra, endowed with the zero
derivations. We consider A ®c K with the canonical morphismi: A — A®c K. Then,
for all p € Spec A, the ideal (i(p)) is a prime A-ideal.

Proof. Use Proposition B and Proposition iv). m

Can one drop the hypothesis that K is defined over Q, and that Spec K has a C-point?
It may be possible, by using similar techniques as in the proof of Proposition A. More
explicitly, we ask:

QUESTION 5.2. Let K be a simple A-ring, with C' as field of constants. Let A be a
C-algebra and let i : A — A®c K be the canonical morphism. Does one have

p € SpecA = (i(p)) € Spec(A ®@¢ K)?

6. Trajectories of A-schemes without self-dynamics over a simple base. We
are now able to prove our geometrization of Lemma S-vdP. To begin with, let us fix some
notations that will be used throughout this section.

e .7 is a simple A-scheme. The family of vector fields attached to .% is denoted by
V.

oty : S — (C(Y) is a coarse space of leaves for .7.

o & — & is a A-scheme above ., without self-dynamics (see below for the def-
inition). One denotes by Xy a model of 2". The vector fields attached to .7 are
denoted by V.

o z:(C(Y) — 7 is a C(Y)-point of ., compatible with the C'(.)-structure of .7,
that is, C(Y)—l>,5’i>6'(§”) is the identity.

e X, will denote the fiber of 2" above X. The (closed) immersion of X, into X will
be denoted by ix , : X; — X.

e If T is an open set of S, we denote by 27 the preimage of T' by 2~ — .. Equiva-

lently, the square

|

T 7

is cartesian.
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e If Uy is an open set of Xy, % will denote the open subscheme of 2~ defined by the
cartesian square

Y —= Uy

)

22— Xy
e When affine, we will denote . = Spec®K, C(.#) = Spec C, where K is a simple
A-ring with field of constants C, X, = Spec 4, 2" = Spec® (A®¢ K), with A any
C-algebra.

In this section, we will use more or less implicitly these three facts:

(f1) In the category of schemes, open immersions are stable under pull-back.
(f2) In any category, consider objects and arrows

X

/

S—=5 —5

and assume you want to compute a fibered product X = X x s S. Then, it is
sufficient to compute first a fibered product X’ := X xg S’ and second X' =
X' xg S. In other words, X xg S = (X xg 8" xg S.
(f3) Let
Y

|

W —=Z
be a diagram of schemes and let (U;);c;r an open covering of Y. Then, (U; xz
W)ier is an open covering of W. This follows from [Gro60] Proposition (4.3.1) and
Proposition (3.5.2). A nice way to understand this fact is to say that the Zariski
coverings define a Grothendieck pretopology.

6.1. A-schemes without self-dynamics. In [Bui86], Buium defines a K split A-
variety to be a A-variety that one can descend to C(K). With the help of coarse space
of leaves, we are able to give a similar definition for non-affine schemes.

DEFINITION 6.1. Let .7 be a A-scheme that has a coarse space of leaves t & : . — C(&).
Let 2 be a ./-A-scheme. We say that 2" has no self-dynamics if there exists a C'(%)-
scheme X and a morphism 2" — (X,, 0) making the square

X — (Xo, 6)

b

7 — C(Y)
cartesian.
6.2. Intersection of a leaf with the fiber

PROPOSITION 6.2. Assume . to be of characteristic zero. Let n € xV g leaf of X .
Then, n intersects X, in a unique point. That is, there exists a unique 1, € X, such
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that
Vy € Xa, N~ ixe(Y) & Ne ~ Y-

LEMMA 6.3. Let n € 2V bea leaf of Z . Then, for every nonempty open set T of 7,
ner.

Proof. First, let us prove that one can assume that 2 is affine. Let 1 be a leaf of 2.
By (f3), there exists an open affine set Uy of Xy such that n € %. If we prove that for
all nonempty sets T of S, n € %r, then since %r is an open subset of 27, we will have
proved the lemma. So, in the following, we assume 2 affine.

Then, let us prove this lemma when .% is affine. Let K be a simple A-ring, C its field
of constants, A a C-algebra. We can assume furthermore that 7' is a distinguished open
set D(f) for some f € K. Let p be a prime A-ideal of A ®¢ K. Since in the diagram

Xr—e> 2 — Xo

Lo

T—e> v —= C(S)

all the squares are cartesian, the arrow Z7 — 2 can actually been described as the
spectrum of

if:A®CK—>A®CKf,

and one wants to prove that there exists q € Spec(A®¢ K) such that p = i;~'(q). Now,
ifr € A®¢c K and f™x € p, then = € p. Indeed, if = ¢ p, then 1 ® f™ € p and as f™ # 0,
let L € K[8)] such that L e (f*) = 1. Since p is a A-ideal, Lo (1® f™) = 1 € p, which is
absurd. Let us set q := i7(p) and check that q is prime. Let 2/ f™ and y/f™ be elements
of A®c Ky such that xy/f"*™ € q. This means there exists p € N such that fPzy € p.
By what precedes, zy € p and so q is prime. Similarly, one proves that (i)~ (q) = p.
Now, let us turn to the general case. Let T be a nonempty open set of .. By (f3),
one knows that the 27 ’s for V nonempty open sets of .S form an open covering of 2 .
Let Vj be a nonempty affine set such that n € Zy,. Clearly, it is still a leaf. By the affine
case, and since T'NVy # @ (for S is irreducible), n belongs to Z(7ny,) and son € Z7. m

Proof of Proposition . This proof is organized as follows: a) Proof of the unicity. b) One
can assume the base S affine. c1) An intermediate result on the injectivity of 2V — Xj.
¢2) An intermediate result on “split” open sets that contains 7. d) One can assume the
total space X affine. e) Proof of the proposition when X and S are affine.

a) Unicity is easy. Assume one has two elements 7|, ; and 7, o satisfying the conclu-
sions of the proposition. Since 7,1 ~ 7jz,1, one has n ~ ix ;(7);,1) and thus ), 9 ~ Nz.1-
Similarly, 1,1 ~ M)z,2 and 80 Nz 1 = Njz,1-

b) Second, one can assume . affine. Indeed, if U is an affine open set of S containing
the image of x, then one has

Xo > 2o 2
S

C(S) —> U—o> 7
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in which every square is cartesian. By Lemma [6.3] one knows that n € 2. This means
that there exist ny € £y such that iz(ny) = 7. Assume the proposition is true when S is
affine. Then, let 7, € X, such that 5, ~ y < nu ~ i1(y) for all y € X,. Now, since iy
is an open immersion, Ny ~ i1(y) < i2(ny) ~ i2(i1(y)), that is 9, ~ y & 1 ~ ix.(y)
for all y € X,. Thus, the general case follows from the case when S is affine.

cl) We assume S affine. Let us denote by p : & — X the structure map. Let us prove
that Pgv 2V — X is injective. Let n; and 79 be two leaves such that p(n;) = p(n2).
Let Uy be an open affine of X that contains p(n;). Then, 7, and 7, belong to .’ x ¢(.s) Uy,
which is affine. Thus, one can assume X affine. What we want to prove is that given two
prime A-ideals p; and ps of A ®¢ K, then i~1(p;) = i~!(p2) implies p; = po. This is
clear by Proposition A.

c2) We assume S affine. Let Uy be open set of Xo. We denote % := .7 x¢ () Up. By
(f1) and (£2), the diagram

U=

Lo (5)

Up—e> X

is a cartesian square. Recall that n is a leaf of 2. We prove that n € % iff p(n) € Up.
The direction = is clear by commutativity of . Now, assume p(n) € Uy. We know
that the map % — Uy is surjective, as it is a base change of . — C(¥) and as
surjectivity is stable under base change. So, let © € % such that p(z) = p(n). Since
U — (U, 6) is a morphism of A-schemes, we know that z and Trajg;(z) have the same
imag Furthermore, by stability of open sets under generization, Traj(2) € % . So,
p(Traj(2)) = p(n). One concludes with cl) that n € % .

d) Now, let us prove that one can assume X affine. We take S affine and assume
that the result holds when Xj is affine. By (f3), the schemes % := .% x¢ () Up form an
open covering of X for Uy nonempty affine open sets of Xj. So, let Uy be such a set with
n € % . We are in the following situation:

A
NN

O(F) —— & ——C(F)

;4

where all the squares are cartesian. Remark that since the composition of the two arrows
on the base line equals Idg (), one can assume that X, = Xg and U, = Uy, with
ixzop = Idx, and iy, o py = Idy,. Now, since we assume the affine case (base and
total space both affine) done, there exists 7y, € U, satisfying the conclusion of the
proposition. Let U be the set of all affine open subsets Uy of Xy such that n € % . Let us

) Note that this is the only place where we use that .# has characteristic zero.
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prove
VU(), Vo € Ua jU(mU,ac) = jV(mV,x)'

It is easy, indeed, since Uy NV # &, one can find Wy € U such that Wy C Uy N Vy. By
unicity of 9w, one can check that both 7y, and )y, equal nw,.. Hence, let us denote
by 7|, this unique image of all the j(ny ) and let us prove that it is the point we are
looking for.

To begin with, let us prove that

P(n) ~ p(iX,w(mx))' (6)
It is easy. Let Uy € U. Then, one has n ~ iy.(nu,.) in %, but also in 2. But,
iv,e(Mu,z) = ix,2(12), and so, applying p, one gets the required relation.

Let y € X, such that  ~ ix ,(y). We want to prove that 7, ~» y. First, one has
p(n) ~ y. Let Uy be an affine open set such that y € Uy. Hence, p(n) € Uy and so, by ¢2),
Uy € U. So, the relation n ~» ix ,(y) can be read in % as n ~» iy, (y) and by definition
of Ny, one has )y, ~» y. Applying ju to this relation, one obtains 7|, ~» y. Conversely,
if 9, ~ y in X, let us consider an open affine set Uy containing y. Then, one has

P(ixz(Me)) = e ~ pY),

and so, by @, one has p(n) ~ p(y). So, p(n) € Uy, and by ¢2), n € % and so Uy € U.
One easily checks then that 1~ ix ,(y).

e) To end this proof, let us show that the result holds when both the base and the
total space are affine. The situation in this case is the following:

A<t Agc K<t 4

C K C

Let p be a prime A-ideal of A ®¢ K. The intersection point we are looking for is j(p). It
is a prime ideal by Proposition B. The property we want to check is

¥q€Specd,  j(p)Ca & pCi(a)
This is straightforward. m

6.3. Trajectory of A-schemes without self-dynamics over a simple base. We
can now state and prove our result:

THEOREM 6.4. Let . be a simple A-scheme and 2 be a ./ -scheme without self-dy-
namics. Let & — C() be a coarse space of leaves of Z. Let x be a C(%)-point of Z .
Then, the maps

) and
Y +——> Trajy(y) N —s Nz

are inverse bijections between the fibre X, and the set xVv of leaves of X under the action
of V.
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Proof. First, let us fix y € X,, and let us prove that (Traj(y))|. = y. More precisely,
by Traj(y), we mean Trajg(ix,2(y)). Let us check that y satisfies the property of the
intersection 7, of a leaf with X,: we want to show that

Vz e X, y ~ z = Trajg(y) ~ ix,.(2).

The direction = follows from Traj(y) ~» y. Conversely, if Trajg(y) ~ ix..(2), by
composing with p, and since one can assume poix , = Id, one obtains p(Trajg(y)) ~ 2.
But, p(Trajy (ix,2(y))) = p((ix,«(y)) = y and so y ~ .

Now, let us prove that Traj(n,) = 1 for all leaves 1. First, n ~ ix ,(7),). Thus,
by definition of the trajectory, n ~» Trajy(ix .(7.)). Conversely, as in the proof of
Proposition one can assume . and X affine. Then, one wants to check that for
all differential prime ideals p of A ®c K, one has p C j~*(j(p))4. By Proposition B,
J71(I)4 = (i(1)) for all ideals I, and so j71(5(p))4 = (i(j(p))). By the same proposition,
J(J)=1i"1(J), and so j71(j(p))x = (i(i"*(p))). By Proposition A, this latter equals p. m

A. Appendix: Some commutative A-algebra. In this appendix, we present and
prove some results of commutative A-algebra. Many of these results are known for usual
“differential rings”, that is, for ordinary A-rings. Also, some of these results are known in
the case of partial A-rings. For instance, Kolchin only considers such A-rings in [Kol73].
Finally, some of these results have also been proved for Hasse-Schmidt derivations by F.
Benoist in [Ben]. The results are often straightforward generalizations of the partial case
or the ordinary case.

The main goal of this appendix is to provide a proof of Theorem in the affine case:
for every prime ideal p, the A-ideal py is also prime — at least for Q-A-algebras. This
is proved by Keigher in [Kei82]. We explain this proof, based on properties of differential
operators in subsection [A-2] His proof works only for partial A-rings. We give a new proof
(see Proposition of this result in subsection valid for all A-rings.

Another goal is to provide a study of simple A-rings.

A.1. Colon ideals and radical ideals in A-rings. Recall that, in a ring R, given an
ideal I and a set S, one denotes (I : S) := {z € R | xS C I}. This is an ideal, called
a colon ideal. We will also denote (I : S°) := {x € R | In > 0, xS™ C I}, where S
denotes the set of all possible products s; - --s,, with the s;’s in S. It is also an ideal.
In the case where S = {s}, we denote it by (I : s) and (I : s*°). The following lemma
gathers some easy properties of colon ideals.

LEMMA A.1. Let R be a ring. Let S be a subset of R. Let I,.J be an ideals of R.
(i) Tc(I:S)c(I:8).
(i) (I:S)-SC1Iassetsand (I:J)-JCI as ideals.
(#i) If R is a A-ring and I o A-ideal, then (I : S°°) is a A-ideal.
(iv) If T is a radical ideal:
a) (I:8)=(I:85%).
b) (I:5) is a radical ideal.

(v) If R is a A-ring and I a radical A-ideal, then (I :S) is a radical A-ideal.
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Proof. (i), (i) and (iv) are staightforward, and (iii) follows from Lemma [A.6] (v) follows
from (iii) and (iv). m

ProOPOSITION A.2. Let R be a A-ring and I, J ideals of R.

(i) There exists a minimal radical A-ideal containing I. We denote it by {I}. For all
n>0 and all ¢1,...,¢n € {V/—, (=)}, one has ¢ 0---p1(I) C {I}.

(is) If I C J then {I} C {J}.

(iii) For all x,y € R, for all 01,05 € O(R), xzyel = 01(x)02(y) € {I}.

(iv) {IH{J} c{1J}.

(v) {IH T} ={1J}.
Proof. The proof of Lemma 1.6 in [Kap57] is still valid for A-rings. For (i), remark that
A-ideals and radical ideals are stable under intersection. For (iii), proceed by induction.
The induction step follows from (2'y)? = (2'y)(xy)’ — (zy)(2'y’).

Now, let us prove (iv). Let € I. Then, by (v) of Lemma[A.1] the ideal ({zJ} : z) is
aradical A-ideal. Furthermore, one checks that J C ({zJ} : ). Hence, {J} C ({zJ} : x).
So, by (ii) of Lemmal[A.1] z{J} C {zJ}. Now, since z.J C IJ, one has z{J} C {IJ}. This
means that I C ({IJ}: {J}). But, ({IJ} : {J}) is a radical A-ideal. So, {I} C ({IJ} :
{J}). By (ii) of Lemma[A-1] one gets {I}{J} C {IJ}.

The proof of (v) is straightforward. m

A.2. The monoid of differential operators of a A-ring in the partial case. As
explained in Subsection (2.1)), given a partial A-ring, one has ©%(R), the free commu-
tative monoid generated by the 9;’s. It is isomorphic to N¢. Every element 6 of ©%(R)

can be written uniquely
d

o =[[o®.

i=1
They act in a natural way on R. The integer e(f) := ), e;(6) is called the order of 6. It
satisfies e(0102) = e(01)e(62). For any 6,60" € ©%®(R), if 0 divides 0 (i.e. if e;(0") < e;(0)

for all i), Kolchin defines
d
0\ H e;(0)
(9'> i (ei(9)’)'
i=1

ProprosITION A.3 ([Kol73l p. 60]). Let R be a partial A-ring. Then, for every f,g € R
and every § € ©%(R), one has

o= X () 000t

1
(01,02)
s.t. 6102=0

Proof. First, let us remark that if one sets (00/) := 0 whenever 6’ does not divide 6, then
these generalized binomial numbers satisfy a Pascal-like identity:

i, 0 0 0
Vig € {1,...,d}, V6,0’ € ©"(R), <a‘09'> = (9/) + <a< 9,>.

Now, we proceed by induction on e(f). When e(#) = 1, this formula reduces to the Leibniz
rule. Let us assume it is true if e(6) < n, and let 6 be a differential operator of order n.
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Let 0 be any of 0;’s. One has

o9 = X () 000 0ala)+ () -10)- 00200

01
0102=0
0 ~ ~ 0 ~ ~
= Z > 01(f) - 62(9) + Z 5 01(f) - 02(9)
5162=00 <91/ 8> §162=00 <92/ 8>
9|61 9|02
0 ~ ~ 0 ~ ~
= > {5 ,,) 00 0209) + 5 ) 01(f) - ba(9)
6162=00 (91/8> 1 i 514;86 <01) 1 i
910, 8102
0 0 o
= X ((5)+ (7)) 8w
0102=00
8|6, and 86
0 ~ ~ 0 ~ ~
-z (550) B to) + oy (7) 8- to)
a|§11 ;nd 016 a\’e}l aznd o160,

But, when 91 52 and 5152 = 00, then 51 1 0. Thus one has, in this case,

6\ [0 0
(51/5> a (51/3) - (51)
and a similar formula when 91 51 and 51 52 = 060. Thus,
0 0 ~ ~ 90\ ~ ~
w0 = 5 ((75) (7)) 00 -aw= ¥ (3) 00 &)
616,=00 6,0,=00

by Pascal’s identity. m
Fact A.4. The monoid ©%(R) has well-orders.

Proof. As already said, ©?(R) is isomorphic to N¢. So, the lexicographical order can be
transported to ©(R). It is a compatible (for the monoid structure) well-order.

Here is another compatible well-order for ©%(R). By considering the map ([Kei82] or
[Rit50])

. @ab(R)

N x N4
¢ :

0 ——e(0), (ei(0))i
one endows ©%(R) with an order, defined by 0 < 0’ iff ¢(0) <jex #(6’). The verifications

are left to the reader. Note than Robbiano gives in [Rob85| a classification of all total
orders on N¢ compatible with the monoid structure. m

ProroSITION A.5. Let R be partial Q-A-algebra and let p be a prime ideal of R. Then,
Py 1S prime.

Proof. This proof is after W. Keigher (see Proposition 1.5 of [Kei82]), but generalized to
any compatible well-order on ©%°(R). Let p be a prime ideal of R and let x,y € R\ p.
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Let < be a compatible well-order on ©%(R) so that we can define
0, :=min{0 € O(R) | 6(x) ¢ p}
for * = x,y. Now, by Proposition

.00 = (" )ewnm ¥ (%),
N

In the indexed sum, one cannot have 6 > 6, and 6’ > §,, since > is compatible with
product. So, for instance 6 < 6., but since 6 # ,,, one has 6 < 6,.. So, 6(z) € p — and the
same is true for the big sum. Now, since p is prime and since (0309) is invertible in R, one

has (egfy)ex(x)%(y) ¢ p, and so (6,0,)(zy) ¢ p. Hence, zy ¢ px and thus py is prime. m

A.3. Primality of A-ideals in partial A-rings. In this section, we generalize to A-
rings some classical results on primality of A-ideals. As a byproduct, we are able to prove
Proposition without any assumption of commutativity or finiteness. See [Kap57] for
a nice exposition of some of these results in the case of ordinary A-rings. Lemmas [A.6]
[A77 and Proposition [A78] are immediate when one knows the similar results for ordinary
A-rings. Only Proposition [A-9] requires a little bit of work.

LEMMA A.6. Let I be a A-ideal. Let 0 € O(R). Then,
Ve,y € R, zyel = 2¢O+ g(y) er
Proof. By induction on e(6). See also [Kol73|, p. 62] in a special case. m
LEMMA A.7. Let R be a Q-algebra. Let x € R such that ™ = 0. Then, for all 0 € Der(R),
and oll ¢ € {1,...,n}, one has
(9z)? 1. 2"t = 0.

In particular, (0z)?*"~1 = 0.

Proof. Straightforward by induction on £. The hypothesis that R is a Q-algebra is used
there. See [Kap57], Lemma 1.7, page 12. m

PrOPOSITION A.8. Let R be a Q-A-algebra and I a A-ideal of R. Then,

(i) The nilradical Nil(R) of R is a A-ideal.
(i) More precisely, if x € R and 2™ = 0, then for all § € O(R), one has 9(3:)26(9)("_1)“‘1
=0
(i) The radical /T is a A-ideal.

Proof. One gets (iii) by applying (i) for R/I. Now, (i) is a consequence of (ii), and (ii) is
a consequence of Lemma "

PRrROPOSITION A.9. Let R be a Q-A-algebra. Let I be a A-ideal of R and let p be a prime
ideal of R such that I C p.

(i) Every maximal proper A-ideal of R containing I is prime.
(i1) Fvery minimal prime ideal of R is a A-ideal.
(i4i) Every mazimal A-ideal J such that I C J C p is prime.
(iv) The A-ideal py is prime.
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Let us recall that for any ideal I, I is defined by
I, ={x € R|V0cO(R), H(x)cI}.

Before proving this proposition, let us give counterexamples to Propositions and
when R is not defined over Q. First, take a field k of characteristic p > 0, and consider the
ordinary A-ring k[x] with 2’ = 1. Denote I := (zP). Then, I is a A-ideal, and is maximal
among proper A-ideals, but is not prime. Furthermore, v/I = (z) is not a A-ideal (but is
prime). This gives counterexamples to Proposition and (i), (iii) of Proposition
Second, since I is a A-ideal, one can consider the A-ring R := k[z]/I. In R, the ideal ()
is prime and minimal — but is not a A-ideal. Furthermore, one has (z)x = (0), which is
not prime. This gives counterexamples to (ii) and (iv) of Proposition

Proof. First, (iv) is a consequence of (iii), with I = 0. Indeed, one can easily check that
p is the largest prime A-ideal contained in p. Now, let us prove (i) and (iii). They both
will be a particular case of the following result.

Let S be a multiplicative subset of R and let K be a A-ideal of R such that SNK = &.
Let us consider Lo a A-ideal mazimal amongst those that verify K C L and LN S = @.
Such an Lg exists by Zorn’s lemma. Then, Lg is prime.

First, v/Lo = Lg. Indeed, by Proposition (iii), /Ly is a A-ideal and one checks that
VLo NS =@ and K C v/Ly. By maximality, /Lo = Lg. Now, let us prove that for all
s € S, the ideal (Lg : s*°) (see equals Lg. This ideal (Lg : s*°), by Lemma
contains Lo and is a A-ideal. Furthermore, SN (Lg : $°) = &. Indeed if t € SN (Lo : s*°),
that means there exists m > 0 such that ts™ € Lg, which is absurd. So, by maximality,
LQ = (Lo : SOO).

Now, let z,y € R with zy € Ly and y ¢ Lg. As for (Lo : s*), the ideal (Lg : y™)
contains Ly and is a A-ideal. Let us prove that it does not intersect S. Suppose the
contrary and let s € S such that there exists n > 1 such that sy™ € Lg. Since Ly = /Lo,
one also has sy € Lg. This means y € (Lo : s*). As this latter equals Ly it is absurd. So,
by maximality, Lo = (Lo : y°°). Since, x € (Lo : y°°) one has x € Ly. Hence, Ly is prime.

Let us come back to the proposition. One obtains (i) by applying this result with
S = {1} and K = {0}. One obtains (iii) by applying this result with S = R\ p and
K=1.

Finally, let us prove (ii). Let p be a minimal prime ideal (the existence of such ideal is
guaranteed by Zorn’s lemma). Then, by (iv), p4 is also prime. So, by minimaliy, px = p,
and p is a A-ideal. =

A.4. Simple A-rings. The aim of this subsection is to provide a reference for properties
of simple A-rings in the general case. Some of the results presented are known and proved
for ordinary A-rings — we generalize it to A-rings. We also prove some new facts (see
point (i) of Proposition[A.11)), and an interesting lemma (see Lemma[A.14)). The point (iv)
is proved in [vdPS03]| for simple ordinary A-rings whose field of constants is algebraically
closed of characteristic zero. We prove it for arbitrary simple A-rings, and replace in the
proof the use of Chevalley’s theorem on constructible sets by the application of Noether’s
normalization lemma. First, recall:
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DEFINITION A.10. A A-ring R is said to be simple if the only A-ideals of R are (0)
and R.
PROPOSITION A.11. Let R be a simple A-ring. Then,
(i) a) R is irreducible.
b) R is connected.
(ii) The constant ring C(R) of R is a field.
(ii) If R is a Q-algebra or if R is reduced, then R has no zero divisors.
(iv) Let S be multiplicative subset of R not containing zero. If we denote by ig : R —
STLR the localization map, then:
a) the morphism of rings C(ig) : C(R) — C(S™'R) is an isomorphism;
b) the A-ring ST'R is simple.

(v) Suppose moreover that R is a k-A-algebra, finitely generated and without zero divi-
sors, for a A-field k with infinitely many constants. Then, the extension C(R)/C(k)
1s algebraic.

(vi) Let L be a constant field extension of C(R). Then, R ®c(ry L is simple, and
C(R®cry L) = L.

The point (iii) is false in general. Indeed, the ordinary A-ring k[z]/zP, for any field k
of characteristic p > 0, with the derivation 2’ = 1 is simple.
To prove (v), we need two lemmas:

LEMMA A.12. Let k be a A-field and R a k-A-algebra. Let f € C(R) such that [ is
algebraic over k. Then, f is algebraic over C(k).

Proof. Consider the minimal polynomial P € k[X] of f, differentiate P(f) = 0 and
conclude. m

LEMMA A.13. Let k be a field and k — k an algebraic closure of k. Let R be a finitely
generated k-algebra, without zero divisors. Let f € R. Let

S5() = {o(f) | ¢ € Homaig, (R.F)} .
Then:

o if f is algebraic over k, S5 (f) is finite;
o otherwise, 3 (f) is cofinite.

Proof. In [vdPS03], a slighly different form of this lemma is given, deduced from Cheval-
ley’s theorem on constructible sets. We give here a refinement and a different proof. If
f is algebraic and if P € k[X] is such that P(f) = 0, then for all ¢ € Homayg, (R, k),
P(p(f)) =0, and so Sz(f) is included of the set of roots of P in k.

Now, let us set K := k[f]. K is an integral domain and R is a finitely generated
K-algebra, so that we can apply Noether’s normalization lemma. There exists ¢ € K
and x1,...,x, € R, such that the x; are algebraically independent over K. and R, is
integral over K.[z1,...,x,]. Now, assume f to be transcendental over k, and view ¢ as
a polynomial P. Let a € k with P(a) # 0. Then, the evaluation morphism ¢ : K — k
such that o(f) = a can be extended to ¢ : K., — k. It can further be extended to
K.[z1,...,7,] — k, for instance by setting o(z;) = 0. Now, since R./K.[z1,...,x,] is
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integral, by Proposition 3.1 of chap. VII of [Lan02], there exists an extension of ¢ to R..
Hence, a € Sz(f) and so, k \ Sz(f) is finite. m

To prove item a) of (ii), we need the following lemma, which is also interesting by
itself.

LEMMA A.14. Let R be a ring. Let I and J be two ideals of R such that INJ = 0. Let
x el andy € J. Then,

V0,6 € ©(R), 6(z)-6'(y) =0.

Proof. We prove it by induction on e(6) 4 e(0’). If e(0) + e(6’) = 0, this reduces to prove
that zy = 0. But a2y € I N J. Now, assume that the result holds for all 8,6" € © such
that e(0) + (') = N. Let 0y, 6, € O such that e(6y) +e(f1) = N + 1. More precisely, we
set e(6p) =i and e(6;) = N+ 1 —i.

In what follows, given a differential operator 6 := 192 - - - d,, we will denote

[0]% := OkOkr1--- b
if k < ¢ and [0]¢ = 1d if k > £. Thus, the order of [#]} is
e ([9]@ =max(0,¢{ — k+1).

Furthermore, we will write 6 := OpOp—1 - 01.
By assumption, one has for every j € {2,...,i+ 1}

[60]5(x) - ([60 1172 61)(y) = 0 (7)
as one easily checks that the sum of the orders of the differential operators involved is
equal to N in all cases. Applying the (j — 1)-th derivation in the writing of 6y, that is,
applying the derivation [90];:1 to , one gets

[0 15-1(2) - ([6011 7 61)(y) + [60]5(2) - ([60]] " 1) (y) = 0. (8)
Denoting

aj = [Bo)i_1(z) - (1601177 61)(y)

one can write as o + a1 = 0. So,

i+1
D> (=1 (s + ) = aa + (=) iy = 0.
j=2
But,
az =0p(z) - 61(y) and a2 =z (09 01)(y)
Hence,
Oo(x) - 01 (y) + (1) -z (6 61)(y) =0, (9)
01(y) - Oo(x) + (=D)L (01 ) () =0, (10)
the equation being obtained by interchanging x < y and 6y < 6;. Thus, one gets
(=1D)Ny - (01 60)(x) —z - (0 61)(y) = 0 (11)

But, this implies that 2 - (6y 61)(y) € I N J and thus is zero. Thus, by @, one has
Oo(x) - 61(y) =0, as desired. =
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Proof of Proposition [A.11l For (ii), (iv) and (vi), see respectively Theorem 2, Theorem
6 and Theorem 7 of [Pos60].

The proof of item b) of (i) is easy. It is a direct consequence of item a), but let us give
a direct proof. Let ¢ € R be a nonzero idempotent. Let / be any derivation of R. Since
e? = e, one has 2ee’ = ¢’ and so 2ee’ = ee’ and so ee’ = 0 and so ¢’ = 0. Thus, (e) is a
A-ideal. Hence, e is invertible and so e = 1.

Let us prove now item a) of (i). Let I and J be two nonzero ideals. We want to prove
that INJ # 0. Assume INJ = 0. Let § € O(R). We denote by 6(J) := {0(y),y € J}. By
Lemma one easily sees that 6(J) - I = 0 and thus 6(J) C Ann(I), the annihilator
of I. But, since J is nonzero and R simple, the ideal generated by all the 8(J) equals R.
Hence, Ann(I) = R and I = 0, which is absurd.

Let us now prove (iii) and assume R reduced. Let x,y € R such that xy = 0, and
assume z # 0. By Lemma the ideal (0 : y*°) is a A-ideal. But = € (0 : y*°) and
so (0 : y*°) = R and so there exists n > 1 such that y" = 0 and so y = 0. If Ris a
Q-algebra, then Nil(R) is a A-ideal and so R is reduced.

Let us now prove (v). Let f € C(R), f ¢ C(k). Let k — k be an algebraic closure
of k. Let ¢ € Homag, (R, k). Then, for every c in C(k), f — c is also a constant and so
by (ii) is invertible. Hence, ¢(f) # ¢. Thus, by Lemma f is algebraic over k. But,
since f is constant, one knows by Lemma that f is algebraic over C(k). m

One also has the following characterization of simple A-rings:

Fact A.15. Let R be a Q-A-algebra whose only prime A-ideal of R is (0). Then, R is

simple.

Proof. Let I be a A-ideal. Then, by Proposition (i), I is included in a prime A-ideal.
Hence, I = (0). =

This fact is false when R is not defined over Q. Indeed, consider R := k[x] where k is
a field of characteristic p > 0, with 2’ = 1. The only prime A-ideal of R is (0) but (z?)
is a A-ideal of R.

To end up, let us record the following consequence of Lemma We need to
introduce two notations. If R is a ring and if [ is an ideal of R, we denote by

1= > 6
0€b(R)

the ideal generated by the images of I under all the possible differential operators of R.
It is the smallest ideal of R containing I and stable under all derivations of R. We also
set

Nil,(R) :=={z € R| 2" =0},
for n € Zzo.

COROLLARY A.16. Let R be a ring and let I,J be ideals such that I N J = 0. Then,
[I] N [J] C Nilx(R).
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Proof. Tt is very easy. Assume that z € [I] N [J] and write
z=Y 0i(a;) =Y 0;(b))
iel jeJ
with 0;,0; € ©(R) and a; € I, b; € J. Then,
2?= > 0i(a)-0;(b))
(i,§)€IxJT
which is equal to 0 by Lemma .

Here is a counterexample to [I[]N[J] = 0 when INJ = 0. Take R = k[z,y]/(2?, zy, y?)
with k a field of characteristic 2 and consider the derivation 0 defined by dz = y and
0y =0. Set I := (x) and J := (y). Then, INJ =0 but (I) = (x,y). Hence, [I]N]J] =0
cannot hold.

The geometric interpretation of Corollary is the following. The proof is left to
the reader.

COROLLARY A.17. Let X be a scheme and let Fy, Fy be two subsets of X such that
Fy U Fy, = X. Define, for any closed set F,

[F]:={x € F| ¥/ € Ix(X), Traj (z) € F}.
Then, [F1|U[Fy] = X.

Acknowledgments. The author wishes to thank Frangois Ollivier for helpful, interest-
ing and friendly discussions.
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