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Abstract. This paper reviews some results regarding symbolic dynamics, correspondence be-

tween languages of dynamical systems and combinatorics. Sturmian sequences provide a pattern

for investigation of one-dimensional systems, in particular interval exchange transformation.

Rauzy graphs language can express many important combinatorial and some dynamical proper-

ties. In this case combinatorial properties are considered as being generated by a substitutional

system, and dynamical properties are considered as criteria for a superword being generated by

an interval exchange transformation. As a consequence, one can get a morphic word appearing

in an interval exchange transformation such that the frequencies of the letters are algebraic

numbers of an arbitrary degree.
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Concerning multidimensional systems, our main result is the following. Let P (n) be a poly-

nomial, having an irrational coefficient of the highest degree. A word w (w = (wn), n ∈ Z)

consists of a sequence of the first binary numbers of {P (n)}, i.e. wn = [2{P (n)}]. Denote the

number of different subwords of w of length k by T (k). We prove that there exists a polynomial

Q(k), depending only on the power of the polynomial P , such that T (k) = Q(k) for sufficiently

large k.

1. Introduction. The methods of symbolic dynamics are useful in the study of com-
binatorial properties of words, in some problems of number theory and in the theory of
dynamical systems. Let M be a compact metric space, U ⊂ M be its open subspace,
f : M → M be a homeomorphism and x0 ∈ M be an initial point. It determines a
sequence of points

x0, f(x0), . . . , f (n)(x0), . . .

To this sequence of iterations, one can associate an infinite binary word W = {Wn} where

Wn =
{
a, f (n)(x0) ∈ U,
b, f (n)(x0) 6∈ U,

which is called the evolution of the point x0. If f is invertible then n ∈ Z, otherwise n ∈ N.
Symbolic dynamics investigates the interrelation between the properties of the dynamical
system (M,f) and the combinatorial properties of the word W . For words over alphabets
which comprise more symbols, several characteristic sets should be considered: U1, . . . , Un.
The technical notions regarding combinatorics of words can be found in section 5.1.

The direct problem of symbolic dynamics consists in the description of the properties
of the word W , based on the information about the dynamic system. The inverse problem
consists in the description of (M,f, U, x), based on the information about W .

We shall point out some facts, which are folklore.
The minimality of the dynamical system corresponds to the uniform recurrence prop-

erty (see section 5.1).
The uniqueness of invariant measure corresponds to the following property. Let u be a

subword of a uniformly recurrent (u.r.) word W . For any subword u @ W let us suppose
that the upper density of occurrence coincides with the lower density. The invariant
measure is then unique.

In what cases is M a torus and f : M → M its rotation? This means that this
dynamical system has a discrete spectrum. Let W be a superword, obtained by this
dynamics. Let T be the shift operator. Then the mismatch function between W and
Tn(W ) satisfies the following conditions:

1. There exists a sequence {ni} such that ρ(Tni(W ),W )→ 0.
2. There exist co-prime arbitrarily large ni, nj from this sequence.

We shall analyze these problems. We start from general constructions, regarding torus
rotation questions, uniqueness of the invariant measure, minimality of the dynamical
system.

The famous Sturmian sequences and some of their generalizations present a situation
of “combinatorial paradise”. It provides patterns for further investigation. Using the
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language of Rauzy graphs we shall formulate criteria for a superword being generated by
an interval exchange transformation. Note that any billiard word with rational angles can
be obtained via such transformations. (The number of directions of the ball is finite and
the position of the ball on the side together with its direction provides a phase point, and
the phase space is the union of some intervals.) On the other hand, using the language
of Rauzy schemes (obtained from Rauzy graphs by replacing the maximal sequences of
vertices of ingoing and outgoing degree 1 by arcs) we get criteria for the superword to be
morphic.

Concerning shifts of a multidimensional torus, there is a beautiful theory of Rauzy
fractals. For more complicated systems one needs other patterns for investigation rather
than those provided by Sturmian sequences.

The rest of this paper is devoted to dynamic systems connected with unipotent trans-
formations of a torus. These subject was considered in [3]. The issues related to the study
of sequences, obtained by taking a fractional part of the values of a polynomial at integer
points lead to the investigation of such dynamic systems. These problems play an im-
portant role in the theory of numbers, the theory of information transfer and some other
branches [38, 27, 30]. Note that unipotent transformations of T2 have the same relation
to a circle shift as billiards with arbitrary angles to interval exchange transformations.
The sequences appearing in such billiards are analyzed in [16].

The inverse problems of symbolic dynamics related to unipotent transformations of a
torus were studied in [10] (unfortunately it was published only in Russian).

We have to point out that the results in [3] were obtained independently of [10]. Let
Q(X) be a real polynomial of degree d ≥ 1 where the coefficient of Xd is irrational. Define
the difference operator ∆un = un+1−un and its iterates ∆2 = ∆◦∆, · · · , ∆d = ∆◦∆d−1.
The authors establish that the sequence (∆dbQ(n)c)n≥0 takes its values in a 2d-element
alphabet and that the number pd(n) of its subwords of length n is

pd(n) =
1

V (0, 1, · · · , d− 1)

∑
0≤k1<···<kd≤n+d−1

V (kd, · · · , k1),

where
V (kd, · · · , k1) =

∏
1≤i<j≤d

(kj − ki),

is the Vandermonde determinant. In particular, p(n) depends only on the degree d of the
polynomial Q provided that the coefficient of Xd is irrational, p2(n) = (n+ 1)(n+ 2)(n+
3)/6.

In this situation one has to count the number of parts of the torus division by images
of a hyperplane. And the proof that points in different regions have different evolutions
can be done just by dimension induction because this system provides more information;
no theory of quasi-invariant sets and factor dynamics is required.

Let P (n) be a polynomial having an irrational coefficient of the highest degree. The
word w (w = (wn), n ∈ Z) consists of a sequence of first binary numbers of {P (n)}, i.e.
wn = [2{P (n)}]. Denote by T (k) the number of different subwords of w of length k.

The main theorem of this section is as follows:
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Theorem 1.1. There exists a polynomial Q(k), depending only on the degree of the
polynomial P , such that T (k) = Q(k) for all sufficiently large k.

2. Sturmian sequences and their generalizations. The problems (both direct and
inverse) related to the rotation of a circle lead to a class of words which are called
Sturmian words. Sturmian words are infinite words over a binary alphabet which contain
exactly n+ 1 different subwords (factors) of length n for any n ≥ 1.

Sturmian words provide an example of correspondence between the language of dy-
namical system and the combinatorial properties of superwords. We shall formulate a
classical result:

Theorem 2.1 (Equivalence theorem [35], [32]). Let W be an infinite recurrent word over
the binary alphabet A = {a, b}. The following conditions are equivalent:

1. The word W is a Sturmian word, i.e., for any n ≥ 1, the number of different
subwords of length n that occur in W is equal to Tn(W ) = n+ 1.

2. The word is not periodic and is balanced, i.e., any two subwords u, v ⊂ W of the
same length satisfy the inequality ||v|a − |u|a| ≤ 1, where |w|a denotes the number
of occurrences of the symbol a in the word w.

3. The word W = (Wn) is a mechanical word with irrational α, which means that
there exist an irrational α, x0 ∈ [0, 1], and an interval U ⊂ S1, |U | = α, such that
the following condition holds:

Wn =
{
a, Tα

n(x0) ∈ U,
b, Tα

n(x0) 6∈ U.

4. The word W can be obtained as a limit of the sequence of finite words {wi}∞i=1,
such that wi+1 can be obtained from wi via a substitution of the following type
akib→ b, aki+1b→ a or bkia→ a, bki+1a→ b.
The sequence of these substitutions is periodic if and only if α is a quadratic irra-
tional.

Sturmian words can be considered as a theoretical “paradise” and a pattern for further
investigations. There are several different ways of generalizing Sturmian words.

First, one can consider balanced words over an arbitrary alphabet. Balanced nonpe-
riodic words over an n-letter alphabet were described in [24] and later in [26]. In [17],
a dynamical system that generates an arbitrary nonperiodic balanced word was con-
structed.

Secondly, a generalization may be formulated in terms of the complexity function. The
complexity function TW (n) counts the number of different subwords of length n in the
word W . Sturmian words satisfy the relation TW (n + 1) − TW (n) = 1 for any n ≥ 1.
Some natural generalizations of Sturmian words are words with minimal growth, i.e.,
words over a finite alphabet that satisfy TW (n+ 1)− TW (n) = 1 for any n ≥ k, where k
is a positive integer. Such words were described in terms of rotations of a circle in [18].
Note also that words whose growth function satisfies limn→∞ T (n)/n = 1 were studied
in [1].
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The words with complexity function TW (n) = 2n+ 1 were studied by P. Arnoux and
G. Rauzy ([4, 41, 39]), the words with growth function TW (n) = 2n + 1 were analysed
by G. Rote [42]. The consideration of the general case of words with a linear complexity
function involves the study of words generated by interval exchange transformations.
The problem of description of such words was posed by Rauzy [39]. The words with
linear growth of the number of subwords were studied by V. Berthé, S. Ferenczi, Luca
Q. Zamboni ([21], [13]). They investigated combinatorial sequences related to interval
exchange transformations. See also works of P. Baláži, Z. Masáková, E. Pelantová ([5],
[6], [7]).

The description of Rauzy’s program of investigation of dynamical systems can be
found in [13].

3. Interval exchange transformations. Sturmian sequences can be obtained via ro-
tations of the unit circle. Interval exchange transformations generalize circle rotations.
G. Rauzy posed the question on the description of such words obtained by interval ex-
change transformations [39].

S. Ferenci and L.Zamboni [22] obtained the criteria for words generated by interval
exchange transformations with the following condition: the trajectory of every break point
does not get on any break point. In this case obviously the complexity function of the
word is equal to T (n) = (k − 1)n+ 1. In fact, this is the answer to the Rauzy question.

In [28, 9] the words generated by a general piecewise-continuous transformation of
the interval were studied. This approach is quite different. The answer to this question
is given in terms of the evolution of the labeled Rauzy graphs of the word W . The Rauzy
graph of order k (the k-graph) of the word W is the directed graph whose vertices biu-
niquely correspond to the factors of length k of the word W and the vertex A is connected
to the vertex B by a directed arc if and only if W has a factor of length k + 1 such that
its first k letters compose the subword that corresponds to A and the last k symbols
compose the subword that corresponds to B. By the follower of the directed k-graph
G we understand the directed graph Fol(G) constructed as follows: the vertices of the
graph Fol(G) are in one-to-one correspondence with the arcs of the graph G and there
exists an arc from the vertex A to the vertex B if and only if the head of the arc A in
the graph G is at the notch end of B. The (k + 1)-graph is a subgraph of the follower
of the k-graph; it results from the latter by removing some arcs. Vertices which are tails
of (or heads of) at least two arcs correspond to special factors; vertices which are heads
and tails of more than one arc correspond to bispecial factors. The sequence of the Rauzy
k-graphs constitutes the evolution of the Rauzy graphs of the word W . The Rauzy graph
is said to be labeled if its arcs are assigned the letters l and r and some of its vertices
(perhaps, none of them) are assigned the symbol “-”. The follower of the labeled Rauzy
graph is the directed graph which is the follower of the latter (considered as a Rauzy
graph with the labeling neglected) and whose arcs are labeled according to the following
rule:

1. Arcs that enter a branching vertex should be labeled by the same symbols as the
arcs that enter any left successor of this vertex;
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2. Arcs that go out of a branching vertex should be labeled by the same symbols as
the arcs that go out of any right successor of this vertex;

3. If a vertex is labeled by the symbol “–”, then all its right successors should also be
labeled by the symbol “–”.

The evolution is said to be correct if, for all k ≥ 1, the following conditions hold when
passing from the k-graph Gk to the (k + 1)-graph Gk+1 :

1. Each vertex is incident to at most two incoming and outgoing arcs;
2. If the graph contains no vertices corresponding to bispecial factors, then Gn+1

coincides with the follower D(Gn);
3. If the vertex that corresponds to a bispecial factor is not labeled by the symbol

“–”, then the arcs that correspond to forbidden words are chosen among the pairs
lr and rl;

4. If the vertex is labeled by the symbol “–”, then the arcs to be deleted should be
chosen among the pairs ll or rr.

The evolution is said to be asymptotically correct if this condition is valid for all k
from a certain k = K on. The oriented evolution of the graphs means that there are no
vertices labeled by the symbol “–”.

Theorem 3.1 ([9, 28]). A uniformly recurrent word W :

1. is generated by an interval exchange transformation if and only if the word is pro-
vided with the asymptotically correct evolution of the labeled Rauzy graphs;

2. is generated by an orientation-preserving interval exchange transformation if and
only if the word is provided with the asymptotically correct oriented evolution of the
labeled Rauzy graphs.

The proof of this theorem consists of two stages. First one proves that these conditions
are sufficient for the word to be generated by a piecewise-continuous interval transforma-
tion. And the second step is to prove that the sets of uniformly recurrent words generated
by the piecewise-continuous interval transformations and by the interval exchange trans-
formation are equivalent. In order to do it, some invariant measure is introduced which
provides a metric: the measure of a line segment is its length.

4. Substitutional sequences. An important class of sequences are the so-called sub-
stitutional sequences. These sequences are invariant under substitution. We refer to the
paper [34]. The Fibonacci word is such an example. Let us consider the substitution
φ : 0 → 001, 1 → 01. From the symbol 0 one can get the Fibonacci word as the su-
perword φ∞(0). It is Sturmian. The Tribonacci word τ∞(0) = 01020100102010 can be
generated by the substitution τ(0) = 01, τ(1) = 02, τ(2) = 0.

In fact, in [40] G. Rauzy showed that the Tribonacci minimal subshift (the shift orbit
closure of t) is a natural coding of a rotation on the 2-dimensional torus T2; i.e., is
measure-theoretically conjugate to an exchange of three fractal domains on a compact
set in R2. Each domain is translated by the same vector modulo a lattice.
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This is one of the most impressive results. It provides a description of two dimensional
spaces. The symbols correspond to the division of T2 into fractals, called Rauzy fractals.
The theory of Rauzy fractals was generalized to the so-called Pisot substitutions.

This type of dynamical systems provides rich structures with a nice picture in the
multidimensional case. We have a correspondence between the languages of arithmetic,
dynamical systems and combinatorics.

In other multidimensional systems one can get some information. The complexity of
sequences related to multidimensional systems was studied in [2].

4.1. Language of substitutions and Rauzy graphs. Consider condition (4) in The-
orem 2.1. A Sturmian sequence can be obtained as a limit of very special substitutions.
If it is invariant under some substitution, then the rotation number is a quadratic ir-
rationality. A similar fact is known for any rotation of the circle. However, there exist
substitutions such that the eigenvalues of the corresponding matrices are algebraic num-
bers of an arbitrary degree.

The language of Rauzy graphs provides a bridge between combinatorial and topolog-
ical properties in problems regarding interval exchange transformations. The technique
of Rauzy graphs is an important tool in combinatorics of words.

The Rauzy graph Gk of a Sturmian sequence has one incoming and one outgoing
branching vertex. When they coincide, (a bispecial word appears) Gk+1 can be obtained
via choosing one of two possibilities, according to Theorem 3.1. This choice corresponds
to the decomposition of α in chain fraction. If this choice is made in a periodic way, α is
a quadratic irrational.

This fact can be generalized. LetW be a u.r. word. Suppose that the behavior of Rauzy
graphs is periodic in the same sense, then W is equivalent to a superword invariant under
some substitution. In order to formulate a theorem one should define what “periodicity
of events” in Rauzy graphs means.

A Rauzy scheme of W is a sequence of graphs {Γi} such that every vertex of Γi is
either an outgoing or an incoming branching vertex of some order, and corresponds to
a subword of W . Γi+1 can be obtained from Γi via exchanging some paths of length 2
passed through some vertex via arrows and deleting vertices which are not endpoints of
new arrows. A Rauzy scheme is periodic if there exists k > 0 such that for all sufficiently
large i there is an isomorphism between Γi and Γi+k which fits with the transmission
from Γi to Γi+1.

Theorem 4.1 ([29]). A uniformly recurrent superword is equivalent to the image of some
morphism of substitutional invariant sequences if and only if it has a periodic Rauzy
scheme.

Proving that if W has a periodic Rauzy scheme, then it is substitutional is not so
difficult. The main obstacle is the opposite implication. A substitution can be “bad” in
the sense that the image of a letter ai can have a “parasite” inclusion of the image of aj .
So this naive construction fails. We do not know an explicit construction.

Let us call weight of vertex of Rauzy scheme the length of the corresponding word. In
order to prove the theorem, one needs to establish that if W is a uniformly recurrent word
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stable under substitution, then the ratios of the weights of all Rauzy vertices are bounded.
Then one can use J. Cassaigne’s result [15] stating that if W is uniformly recurrent and
lim inf TW (n)/n < ∞, then lim supTW (n+ 1)− TW (n) < ∞. This follows from the fact
that the number of vertices in Rauzy scheme is bounded and one gets the existence of
a periodic Rauzy scheme from that. (The condition lim inf TW (n)/n < ∞ for morphic
uniformly recurrent words follows from results of Yu. Pritukin [36].)

The proof of the ratio boundedness is based on the following fact. If W is a morphic
uniformly recurrent word then there exists a constant C(W ) such that for any subword W
u occurs in v for any v @ W, |v| > C(W ) · |u|. In order to use it, one needs to construct a
sequence of Rauzy schemes in such a way that paths incompatible by inclusion correspond
to words with the same property.

This theorem implies the Vershik-Lifshits theorem [44, 45] of periodicity of Bratteli
diagrams of Markov compacta corresponding to substitutional systems.

A Bratteli diagram (V,E) is a countable collection V of finite vertex sets, V = {Vn}∞n=1

and a countable collection E of finite edge sets E = {En}∞n=1, along with functions
s : En → Vn−1 and r : En → Vn such that (i) V0 = {ν0}, (ii) s : En → Vn−1 and
r : En → Vn are onto for all n. We view (V,E) as a directed graph where an edge e ∈ En
connects the source vertex s(e) ∈ Vn to the range vertex r(e) ∈ Vn+l. Periodicity of
Bratteli diagram means that for some k there exists a pair of mappings from Vn to Vn+k

and from En to En+k preserving functions s and r. With the Bratteli diagram one can
associate topological dynamics. Details can be found in [25].

The proof of the Vershik-Lifshits theorem uses a straightforward construction. Con-
sider the image of ϕ(n)(a) = (ϕ(n−2))(ϕ(2)(a)) for some letter a. It consists of blocks
corresponding to the application of ϕ(n−2) to the letters of ϕ(2)(a) and also can be de-
composed into the blocks corresponding to the application of ϕ(n−1) to the letters of ϕ(a).
The finite sets forming Bratteli diagrams, consist of sequences of pairs (block, its position
in bigger block), they correspond to some subwords of W . On these sets the relations of
being left and right neighbors inside a bigger block can be naturally defined. The first
and last occurrence in the bigger block needs special attention, because the bigger block
itself may have some position and can be preceded or followed by another bigger block.
Details can be found in [44, 45]. See also [31]. The properties of adic transformations and
interval exchange transformations and different invariant measures are studied in [14].

5. Main constructions and definitions

5.1. Complexity function, special factors, and uniformly recurrent words. In
this section we define the basic notions of combinatorics of words. By A we denote a
finite alphabet, i.e., a nonempty set of elements (symbols). We use the notation A+ for
the set of all finite sequences of symbols or words.

A finite word can always be uniquely represented in the form w = w1 · · ·wn, where
wi ∈ A, 1 ≤ i ≤ n. The number n is called the length of the word w; it is denoted by |w|.

The set A+ of all finite words over A is a simple semigroup with concatenation as
semigroup operation.
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If the element Λ (the empty word) is included in the set of words, then this is actually
the free monoid A∗ over A. By definition the length of the empty word is |Λ| = 0.

A word u is a subword (or factor) of a word w if there exist words p, q ∈ A+ such that
w = puq.

Denote the set of all factors (both finite and infinite) of a word W by F (W ). Two
infinite words W and V over the alphabet A are said to be equivalent if F (W ) = F (V ).
The beginning wb of length b of the word w can be defined in a natural way.

We say that the symbol a ∈ A is a left (accordingly, right) extension of the factor v
if av (accordingly, va) belongs to F (W ). A subword v is called a left (accordingly, right)
special factor if it possesses at least two left (right) extensions. A subword v is said to
be bispecial if it is both a left and right special factor at the same time. The number
of different left (right) extensions of a subword is called the left (right) valence of this
subword.

A word W is said to be recurrent if any of its factors occurs infinitely many times
(in the case of a doubly-infinite word, each factor occurs infinitely many times in both
directions). A word W is said to be uniformly recurrent (or u.r. word) if it is recur-
rent and, for each of its factor v, there exists a positive integer N(v) such that, for
any subword u of length at least N(v) of the word W , the factor v occurs in u as a
subword.

Below we formulate several theorems about u.r. words, which will be needed later.
The proof of these theorems can be found in the monograph [8].

Theorem 5.1. The following two properties of an infinite word W are equivalent:

a) For any k there exists N(k) such that any segment of length k of the word W occurs
in any segment of length N(k) of the word W ;

b) If all finite factors of a word V are at the same time finite factors of a word W ,
then all finite factors of the word W are also finite factors of the word V .

Theorem 5.2. Let W be an infinite word. Then there exists a uniformly recurrent word
Ŵ all of whose factors are factors of W .

One can consider the action of the shift operator τ on the set of infinite words. The
Hamming distance between words W1 and W2 is the quantity d(W1,W2) =

∑
n∈Z λn2−|n|,

where λn = 0 if the symbols at the n-th positions of the words coincide, and λn = 1
otherwise.

An invariant subset is a subset of the set of all infinite words which is invariant under
the action of τ . A minimal closed invariant set, or briefly m.c.i.s., is a closed (with re-
spect to the Hamming metric introduced above) invariant subset which is nonempty and
contains no closed invariant subsets except itself and the empty subset.

Theorem 5.3 (Properties of closed invariant sets). The following properties of a super-
word W are equivalent:

1. W is a uniformly recurrent word;
2. The closed orbit of W is minimal and is a m.c.i.s.



52 A. Ya. BELOV, G. V. KONDAKOV AND I. V. MITROFANOV

Theorem 5.4. Let W be a uniformly recurrent nonperiodic infinite word. Then

1. All the words which are equivalent to W are u.r. words; the set of such words is
uncountable;

2. There exist distinct u.r. words W1 6= W2 which are equivalent to the given word
and can be written as W1 = UV1, W2 = UV2, where U is a left-infinite word and
V1 6= V2 are right-infinite words.

6. Unipotent dynamics on a torus

6.1. Essential evolution of points. Let f : M → M be a continuous map on the
space M and U ⊂ M be a subset. The starting point x determines a binary word w

describing the evolution as above: wn = 1, if f (n)(x) ∈ U and wn = 0 if f (n)(x) 6∈ U . We
assume that U is an open set, mes(∂U) = 0 and M is a compact metric space.

Definition 1. vbx denotes an evolution of length b of point x. A finite word vf is said to
be an essential finite evolution of a point x∗ if every neighborhood of a point x∗ contains
an open set V so that for all x ∈ V the equality vbx = vf holds.

An infinite word w is said to be an essential (infinite) evolution of a point x∗ if every
initial subword is an essential finite evolution of a point x∗.

The word evolution will further mean essential evolution.

Proposition 6.1. Let v be a finite word, then the set of points with fixed finite evolution
is closed (i.e. contains all its limit points)

A similar statement holds for an infinite word w. (The intersection of any family of
closed sets is closed.)

We shall not use the next proposition although it has its own interest:

Proposition 6.2. Let (M,f, U, x) be a dynamical system without closed invariant sub-
sets, and such that different points have different evolutions. Let (M̂, s, U, x) be the cor-
responding symbolical dynamical system, i.e. the set of all superwords with Tikhonov
topology. Then M is naturally isomorphic to the factor M̂ by spaces consisting of sets
of superwords which are an essential evolution of one point from M ; this isomorphism
induces natural isomorphisms of dynamical systems.

6.2. Morphism of dynamics

Definition 2. A morphism of two dynamics G : (M1, f1) → (M2, f2) is a continuous
map such that the diagram

M1 −→g M2

f1 ↓ ↓ f2
M1 −→g M2

is commutative.

The notions of epimorphism, monomorphism and isomorphism are defined in the
natural way.
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The factor-dynamics is naturally defined on the quotient topology if and only if f
permutes the equivalence classes of the map f . Note that the inverse image of a point
under a morphism is closed.

Definition 3. A set V is irreducible if its closure is not the inverse image of a closed set
under any morphism (except monomorphism), and reducible otherwise.

Theorem 6.3. Let a set U be irreducible, then

1. Different points have different evolutions.
2. For any ε > 0 there exists N(ε) such that any two words of length N(ε), corre-

sponding to initial points with distance greater than ε are different.

Proof. 1. Classes of points with the same evolution are closed and the map f permutes
them.

2. This point follows from the previous one by contradiction and a limit passage.

6.3. Quasi-invariant sets

Definition 4. A dynamics is said to be minimal if M does not contain closed invariant
sets apart from M and Ø, and is said to be irreducible if it does not contain proper
quasi-invariant sets.

Definition 5. A closed set N is quasi-invariant if for any two points A,B ∈ N and any
convergent sequence f (ni)(A)→ C such that C ∈ N for ni →∞ every limit point of the
sequence f (ni)(B) is in N .

Proposition 6.4.

1. Every closed invariant set is quasi-invariant.
2. A partition of quasi-invariant sets corresponds to each factor-dynamics and con-

versely.
3. The image of a quasi-invariant set is quasi-invariant.
4. The set of points with fixed evolution is quasi-invariant.

Definition 6. The A−B cloud (or 0-cloud) with center A, generated by the point B is
the set of conditional limit points of f (ni)(B) under the condition f (ni)(A)→ A.

The A−B k-cloud with center A, generated by the point B is the closure of the union
of sets of conditional limit points of f (ni)(B) under the condition f (ni)(A) → A∗ where
A∗ ∈ A−B (k − 1).

The A−B ∞-cloud with center A, generated by the point B is the closure of the union
of the sets of A−B k-clouds, k ∈ N .

Note that the A−B k-cloud is closed.

Proposition 6.5. a) The image of the A − B k-cloud under the l-th iteration is the
f (l)(A)− f (l)(B)-cloud.
b) If An → A, Bn → B then ρ(An −Bn, A−B)→ 0.

Denote the A − B-cloud by L0, and denote by Li+1 the closure of the union of all
Ai − Bi-clouds, for which Ai, Bi ∈ Li. Write LAB =

⋃
Li. The factorization generated

by LAB is the weakest factorization that glues points A and B.
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6.4. Unipotent dynamics on a torus. The problems connected with the study of
the behavior of fractional parts of values of a polynomial at integer points are in fact
the classical problems of symbolic dynamics. Let P (n) be a polynomial of degree m+ 1
with irrational coefficient am+1 of the highest degree. Define a sequence of polynomials
Pk(n), k = 0, . . . ,m, in the following way:

Pm(n) = P (n),
Pm−1(n) = Pm(n+ 1)− Pm(n),

. . .

Pi−1(n) = Pi(n+ 1)− Pi(n),
. . .

(1)

From these formulas it follows that P0(n) = n!am+1 is irrational. Put ε = P0(n), xi(n) =
{Pi(n)} and x′i(n) = xi(n+ 1), then from (1) we obtain the following dynamical system:

x′m = xm + xm−1 mod 1,
x′m−1 = xm−1 + xm−2 mod 1,

· · ·
x′1 = x1 + ε mod 1,

(2)

where ε is irrational as ε = n!am+1. The condition [2{P (n)}] = 0 turns into 0 ≤ xm(n) <
1/2. Consequently the vector (x′1, . . . , x

′
m) is obtained from (x1, . . . , xm) by a unipotent

transformation (corresponding to a linear transformation with unitary eigenvalues).
The images of the hyperplanes xm = 0 and xm = 1/2 divide the space into polyhedra.

The same word of length k corresponds to all points of the same polyhedron.

6.5. Mismatch function

Definition 7. The mismatch function ρ of the words w and v is defined in the following
way:

ρ(i) =
{

0, if wi = vi,

1, if wi 6= vi,

The density of mismatch of ρ(w, v) of the words w and v is defined by the formula

ρ(w, v) = lim
i→∞

∑i
j=1 ρ(j)
i

.

Theorem 6.6. Let w and v be two different evolutions of the point x0 ∈ T . Then
ρ(w, v) = 0.

Proof. From a lemma of Weyl [47] it follows that the orbit of any point x0 ∈ T is
everywhere dense and evenly distributed. From the continuity of the map f , the condition
mes(∂U) = 0 and the definition of evolution it follows that wn = vn if f (n)(x0) 6∈ ∂U .
The proof of the theorem follows from these statements.

Theorem 6.7. Let the points x and x∗ be different and have different evolutions. Then
the density of mismatch ρ(wx, wx∗) is defined and is greater than 0.
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Proof. We can assume that the words wx and wx∗ differ in the first position. Consider
the direct product T ×T . We divide the set of points into two classes: the first containing
those words with the same current position and the second containing those words with
different current position. Let O ⊂ T × T be the set of different pairs, then the orbit
of the pair (x, x∗) lies in O. The closed orbit of any pair is a torus, a minimal closed
invariant set, on which the dynamics on the torus is realized. Let ρ be the volume of the
intersection, then ρ 6= 0 and ρ is the density.

The mismatch function was introduced in [10] and studied by Yu. Pritykin [37].

6.6. Description of torus factor-dynamics. We will consider the dynamics that do
not glue the coordinate xn. Consider the k-th iteration of the transformation of the
torus: 

x
(k)
m = xm + C1

kxm−1 + . . .+ Cmk ε mod 1,
· · ·

x
(k)
i = xi + C1

kxi−1 + . . .+ Cikε mod 1,
· · ·

x
(k)
1 = x1 + C1

kε mod 1.

(3)

If the points A (x1, . . . , xm) and B (x1 +∆x1, . . . , xm+∆xm) belong to some quasiin-
variant set M ′, then f (k)(A) and f (k)(B) also belong to the same set. From (3) it follows
that 

∆x(k)
m = ∆xm + C1

k∆xm−1 + . . .+ Cm−1
k ∆x1 mod 1,

· · ·
∆x(k)

i = ∆xi + C1
k∆xi−1 + . . .+ Ci−1

k ∆x1 mod 1,
· · ·

∆x(k)
1 = ∆x1 mod 1.

(4)

Proposition 6.8. The closed orbit of any pair of points is a torus T ′, a minimal closed
invariant set, on which the dynamics of the torus is realized.

Remark 1. For the two-dimensional case, there exists an area U with analytic boundary
and a starting point x∗ that has infinitely many different evolutions, which differ in an
infinite number of positions.

Proposition 6.9. Let 1, ε, ∆xi be linearly independent over Q. Then the A− B cloud
contains all points whose first i−1 coordinates coincide with the corresponding coordinates
of the point B.

Proof. We may assume that ∆xj is rational when j < i and let ∆xj = pj/qj be the
presentation of ∆xj as an irreducible fraction and let k be divisible by the product
m!
∏i
j=1 qj , then x

(kl)
j = xj when j < i and the systems (3) and (4) can be rewritten

as



56 A. Ya. BELOV, G. V. KONDAKOV AND I. V. MITROFANOV

x
(kl)
m = xm + C1

klxm−1 + . . .+ Cmklε mod 1,
· · ·

x
(kl)
j = xj + C1

klxj−1 + . . .+ Cjklε mod 1,
· · ·

x
(kl)
1 = x1 + C1

klε mod 1,
∆x(kl)

m = ∆xm + C1
kl∆xm−1 + . . .+ Cm−1

kl ∆x1 mod 1,
· · ·

∆x(kl)
j = ∆xj + C1

kl∆xj−1 + . . .+ Cj−1
kl ∆x1 mod 1 (j ≥ i),

∆x(kl)
j = ∆xj mod 1 (j < i).

(5)

The vector (x(kl)
1 , . . . , x

(kl)
m ,∆x(kl)

i , . . . , ∆x(kl)
j ) by the lemma of Weyl [47] is ev-

erywhere dense in the torus of dimension 2m − i + 1, then from the definition of the
A − B cloud it follows that it contains all points whose first i − 1 coordinates coincide
with the corresponding coordinates of the point B, and the other points can be chosen
arbitrarily.

Proposition 6.10. Let ∆xi be an irrational number. Then there exists a point Bn, the
evolution of which coincides with the evolution of the points A and B, and for which

∆xBni = n∆xBi .

Proof. Let us choose points A and B as B0 and B1 respectively. By induction we will
assume that the point Bk is already built, and for Bk+1 it suffices to take any conditionally
limit point of a sequence f (ni)(Bk), under the condition f (ni)(Bk−1) → Bk. Note that
the point Bk belongs to the A−B k-cloud.

Proposition 6.11. Let ∆xi be an irrational number. Then there exists a point Bδ, the
evolution of which coincides with the evolutions of the points A and B, and for which

∆xBδi = δ, 0 ≤ δ ≤ 1.

This fact follows directly from Proposition 6.10 and the fact that the set of points
with fixed evolution is closed.

Thus the case when ∆xi is irrational reduces to the case when 1, ε, ∆xi are linearly
independent over Q.

The case when all ∆xj are rational leads to factor-dynamics where the i edge of
the torus divides into Mi =

∏i
j=1mj parts, where mj are arbitrary natural numbers

and the points of the torus x = x∗ are identified when for all 1 ≤ j ≤ m the equality
Mjxj = Mjx

∗
j holds.

The description of quasi-invariant sets follows from Proposition 6.11.

Theorem 6.12 (Description of quasi-invariant sets). A quasi-invariant set is a shift of
an abelian group which transforms into themselves under translations by 1/Mi along the
i-coordinate or under all translations along j-coordinates with j greater than some fixed
number.

The theorem provides a description of all possible factor-dynamics.
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Corollary 6.13. The class of closed reducible sets consists of sets, which transform into
themselves under translations by 1/Mi along the i-coordinate or under all translations
along j-coordinates with j greater than some fixed number. The set 0 ≤ xm < 1/2 is
irreducible.

6.7. Proof of Theorem 1.1. This theorem follows from the next proposition:

Proposition 6.14. Consider the dynamics of the torus, given by equation (3) and let
the irreducible set U be given by the condition:

0 ≤ xm ≤ 1/2,

then there exists L(ε) such that the points with the same finite evolution of length L(ε) di-
vide the torus into closed convex polyhedra, and different polyhedra correspond to different
evolutions.

Proof. The set U is irreducible, so by theorem 6.3 there exists a δ′ such that N(δ′)
evolutions of points at a distance greater than δ′ are different. It is obvious that N -
evolutions of all interior points of the polyhedron obtained after i-th iteration are the
same. We call it the evolution of the polyhedron.

Consider the parts of the partition, corresponding to words of length N(δ′), then each
polyhedron of the partition can intersect at most one hyperface from the family n + 1
of planes fn[x1 = q/2, q ∈ N , otherwise we can choose two points that belong to this
polyhedron and are separated by two planes from the family n+ 1.

Assuming the family n + 1 to be the first and turning the time back we get the
situation when the N(δ′) evolution of these points does not allow to distinguish them,
and this is impossible. The polyhedra formed by the family n + 1 of planes with the
same evolution cannot have common points. Let δ∗ be the minimal distance between
the polyhedra with the same evolutions, then by putting L(ε) = max(N(δ′), N(δ∗)) we
obtain the number of iterations, from which certainly the equality between the number
of words of length k and the number of polyhedra into which the torus is divided by
k families of planes f i[x1 = q/2, q = 0, . . . , k − 1 is achieved. When (ε) is irrational
the intersection of more than m hyperplanes is empty and there exists a one-to-one
correspondence between the points of the intersection of m non-parallel planes and the
polyhedra of the partition. By computing the number of points in the intersection of k
families of planes f i[x1 = q/2, q = 0, . . . , k− 1 we obtain a polynomial, which defines the
number of parts and consequently the number of subwords from some moment.

The number of points of intersection of the hyperplanes Q(k) and consequently the
number of subwords T (k) (k ≥ K) of length k can be calculated by the formula:

Q(k) =
∑

0≤k1<...<km≤k

∣∣∣∣∣∣
1
(
km
1

)
. . .

(
km
m

)
. . .

1
(
k1
1

)
. . .

(
k1
m

)
∣∣∣∣∣∣ , degQ(k) =

m(m+ 1)
2

.

For every K there exists some P and k0 > K such that the equality T (k) = Q(k)
holds for k > k0 and does not hold for k0.
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