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Abstract. In this article, we study solutions of linear differential equations using Hurwitz

series. We first obtain explicit recursive expressions for solutions of such equations and study

the group of differential automorphisms of the solutions. Moreover, we give explicit formulas

that compute the group of differential automorphisms. We require neither that the underlying

field be algebraically closed nor that the characteristic of the field be zero.

1. Conventions and basics. Throughout, all rings are commutative with identity, and
all differential rings are ordinary (i.e., possess a single derivation, which is often suppressed
from the notation). Also, N will denote the natural numbers {0, 1, 2, . . .} and Q the field
of rational numbers. Unless otherwise noted, k will denote a field. If V is a vector space
over k and X ⊂ V , then SpankX will denote the k-subspace of V spanned by X. Let R
be a differential ring and let y1, y2, . . . , yn ∈ R. We denote the Wronskian of y1, y2, . . . , yn
by w(y1, y2, . . . , yn). The set of all n × n matrices and n × n invertible matrices over a
field k will be denoted by M(n, k) and GL(n, k) respectively. For A ∈M(n, k), we denote
the centralizer of A in M(n, k) by Ck(A) := {T ∈ M(n, k)|AT = TA}. Finally, for any
m,n ∈ N, δmn will denote the Kronecker delta, i.e., δmn = 1 if m = n and δmn = 0 if m 6= n.

From [1] we recall that for any commutative ring R with identity, the ring of Hurwitz

series over R, denoted by HR, is defined as follows. The elements of HR are sequences
(an) = (a0, a1, a2, . . .), where an ∈ R for each n ∈ N. Let (an), (bn) ∈ HR. Addition in
HR is defined termwise, i.e.,

(an) + (bn) = (cn), where cn = an + bn
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for all n ∈ N. The (Hurwitz) product of (an) and (bn) is given by

(an) · (bn) = (cn), where cn =
n∑
j=0

(
n

j

)
ajbn−j

for all n ∈ N. We recall from [1] that if Q ⊆ R, then HR ∼= R[[t]] via the mapping
(an) 7→

∑∞
n=0

an

n! t
n.

Moreover, HR is a differential ring with derivation ∂R : HR→ HR given by

∂R((a0, a1, a2, . . .)) = (a1, a2, a3, . . .).

We will often write ∂ in place of ∂R. We have, as in [2], for any j ∈ N, the additive
mapping πj : HR→ R defined by πj((an)) = aj .

In [1] it was shown that H is a functor from Comm (the category of commutative
rings with identity) to Diff (the category of ordinary differential rings) which is the right
adjoint to the functor U : Diff → Comm that “forgets” the derivation d of a differential
ring (R, d). This can be expressed as follows.

Proposition 1.1. For any differential ring (R, d) and any ring S, there is a natural
bijection between the sets of morphisms

Comm(R,S) ∼= Diff((R, d), (HS, ∂S)).

In particular, for any ring homomorphism f : R → S, there is a unique differential ring
homomorphism

f̃ : (R, d)→ (HS, ∂S) given by f̃(r) = (f(r), f(d(r)), f(d2(r)), . . .).

2. Linear homogenous differential operators. Throughout this section, let k be a
field of any characteristic and let Hk be the differential ring of Hurwitz series over k. Let
h0, . . . , hn−1 ∈ Hk and consider the monic linear homogeneous differential operator

L : Hk → Hk

defined for any h ∈ Hk by

L(h) = ∂n(h) +
n−1∑
i=0

hi∂
i(h).

We are interested in solutions to L(h) = 0 in Hk. To this end, let V ={h∈Hk | L(h)=0}.
We see from Corollary 4.3 of [2] that for any c0, c1, . . . , cn−1 ∈ k, there exists a unique
y ∈ V such that πj(y) = cj for j = 0, 1, . . . , n− 1.

Proposition 2.1. Let h0, h1, . . . , hn−1 ∈ Hk, and let L be the linear homogeneous dif-
ferential operator on Hk defined for any h ∈ Hk by

L(h) = ∂n(h) +
n−1∑
i=0

hi∂
i(h).

Then V is an n-dimensional k-vector space.

Proof. Since L : Hk → Hk is a k-linear operator, it is clear that V = ker(L) is a
k-vector space, so it remains to prove that dimk V = n. To see this, we define a mapping
T : kn → V as follows: If a = (a1, . . . , an) ∈ kn, then T (a) is the unique solution in Hk
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to L(h) = 0 such that πi(T (a)) = ai+1 for i = 0, . . . , n−1 by [2, Corollary 4.3]. It is clear
that T is a k-vector space isomorphism, from which the result follows.

It follows that Hk has the following “completeness” property: Any nth order monic
linear homogeneous ordinary differential equation with coefficients in Hk has a complete
set of n linearly independent solutions in Hk.

This can be done more generally as follows. Let A denote any commutative ring with
identity, let h0, h1, . . . , hn−1 ∈ HA and c0, c1, . . . , cn−1 ∈ A. As before, consider the linear
homogeneous differential operator L defined on HA for any h ∈ HA by L(h) = ∂n(h) +∑n−1
i=0 hi∂

i(h). We know from Corollary 4.3 of [2] that for any c0, c1, . . . , cn−1 ∈ A, there
is a unique solution y ∈ HA to L(h) = 0 such that πi(y) = ci for each i = 0, 1, . . . , n− 1.
We now give a constructive method for finding solutions to L(h) = 0 in HA.

Proposition 2.2. Let A be a commutative ring with identity, let hi ∈ HA and let ci ∈ A
for i = 0, . . . , n− 1. Let L be the linear homogeneous differential operator defined on HA

for any h ∈ HA by

L(h) = ∂n(h) +
n−1∑
i=0

hi∂
i(h).

The unique solution y ∈ HA to L(h) = 0 such that πi(y) = ci for each i = 0, 1, . . . , n− 1
is given by

πi(y) = ci, i = 0, 1, . . . , n− 1

and

πn+m(y) = −
n−1∑
i=0

m∑
j=0

(
m

j

)
πj(hi)πm−j+i(y),m ∈ N.

Proof. Clearly y ∈ HA given by the above prescription is unique, and y satisfies the
initial conditions πi(y) = ci, i = 0, 1, . . . , n − 1 by definition, so we must only show that
L(y) = 0. This means we must show that for each r ∈ N, πr(L(y)) = 0. Now we have

πr(L(y)) =
n−1∑
i=0

πr(hi∂i(y)) + πr(∂n(y))

=
n−1∑
i=0

r∑
j=0

(
r

j

)
πj(hi)πr−j(∂i(y)) + πr(∂n(y))

=
n−1∑
i=0

r∑
j=0

(
r

j

)
πj(hi)πr−j+i(y) + πr+n(y)

=
n−1∑
i=0

r∑
j=0

(
r

j

)
πj(hi)πr−j+i(y) +

(
−
n−1∑
i=0

r∑
j=0

(
r

j

)
πj(hi)πr−j+i(y)

)
= 0. �

The following corollary gives a very simple description of the solutions in the case
that the coefficients of the equation are constants.

Corollary 2.3. Let A be a commutative ring with identity, let a0, . . . , an−1 ∈ A and let
c0, . . . , cn−1 ∈ A. Let L be the linear homogeneous differential operator defined on HA
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for any h ∈ HA by

L(h) = ∂n(h) +
n−1∑
i=0

ai∂
i(h).

The unique solution y ∈ HA to L(h) = 0 such that πi(y) = ci for each i = 0, 1, . . . , n− 1
is given by

πi(y) = ci, i = 0, 1, . . . , n− 1

and

πn+m(y) = −
n−1∑
i=0

aiπm+i(y),m ∈ N,

or more simply,

yn+m = −
n−1∑
i=0

aiym+i,m ∈ N.

Proof. Since the hi = ai are constants, we have πj(hi) = ai if j = 0 and πj(hi) = 0 if
j ≥ 1. Therefore the only nonzero term in the inner sum is the j = 0 term. From this the
result follows.

Corollary 2.3 shows that, in the case of constant coefficients, the solutions in Hk to
L(y) = 0 are linearly recursive sequences.

3. Linear homogeneous differential equations with constant coefficients. As
before, let k be a field of any characteristic and let Hk be the differential ring of Hurwitz
series over k. For any β ∈ k, the element exp(β) = (1, β, β2, . . . , βn, . . .) ∈ Hk is called
the exponential of β. Note that for any c ∈ k, c exp(β) is the unique solution in Hk to the
differential equation ∂(y) − βy = 0 with initial condition y(0) = c. The following result
is immediate.

Lemma 3.1. Let α, β ∈ k. Then

(a) exp(α+ β) = exp(α) exp(β).
(b) exp(0) = 1.
(c) For each β ∈ k, exp(β) is invertible in Hk, and exp(−β) = exp(β)−1.

From [2] we recall the divided powers x[i] in Hk, for i ∈ N, defined by x[i] = (δin), so
that

x[0] = 1Hk, x[1] = x = (0, 1, 0, 0, . . . , 0, . . .), x[2] = (0, 0, 1, 0, . . .),

etc. Using the natural topology on Hk and the divided powers x[i], we have exp(β) =∑∞
i=0 β

ix[i] =
∑∞
i=0(βx)[i]. We will denote exp(β) by eβx.

Let V be a k-subspace of Hk that is closed under the derivation ∂ which we denote
by ′. We denote the group of all k-differential automorphisms of V by G(V |k). That is,
G(V |k) := {σ ∈ AutkV | σ(v)′ = σ(v′) for all v ∈ V }. We will sometimes denote G(V |k)
by G(L|k) if V is the full set of solutions of a linear homogeneous differential equation
L(y) = 0.
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3.1. Computing the group G(V |k). Let y ∈ Hk, y′ = αy where α ∈ k and let
π0(y) = c. Then from Corollary 4.3 of [2], it follows that y = ceαx. Thus V = {ceαx|c ∈
k} forms a full set of solutions of the equation y′ = αy. Let σ ∈ G(V |k) and note
that σ(eαx)′ = ασ(eαx). Thus σ(eαx) is also a non-zero solution of y′ = αy. Therefore
there is some cσ ∈ k∗ such that σ(eαx) = cσe

αx. Also note that στ(eαx) = cτσ(eαx) =
cτ cσe

αx = cσcτe
αx = τσ(eαx). Thus G(V |k) ↪→ (k∗,×) by σ 7→ cσ is an injective group

homomorphism. Moreover, for any c ∈ k∗, we may define σc : V → V by σc(eαx) = ceαx.
It is clear that σc is a k-differential automorphism of V . Thus G(V |k) ∼= (k∗,×).

More generally, for α ∈ k, consider the k-subspace Vt of Hk defined by

Vt = Spank{z0, z1, . . . , zt},

where zj = x[j]eαx for j = 0, 1, · · · , t. It can be shown that {z0, z1, . . . , zt} is linearly
independent over k, since w(z0, z1, . . . , zt)= zt+1

0 = e(t+1)αx, which is invertible in Hk.
One can construct a linear homogeneous differential equation over k whose full set of
solutions equals Vt, namely

Lt(y) =
w(y, z0, z1, . . . , zt)
w(z0, z1, . . . , zt)

= 0.

Theorem 3.2. Let α ∈ k and let zj = x[j]eαx for j = 0, 1, · · · , t. Let Vt =
Spank{z0, z1, . . . , zt}. Let Zt :=

(
z0, z1, · · · , zt

)
and let It be the identity matrix

of order t. Let ut :=
(

0 It

0 0

)
∈M(t+ 1, k) if t ≥ 1, and u0 = 0 ∈ k. Then

(a) Z ′t = Zt(αIt+1 + ut).
(b) Ck(It+1 + ut) = Ck(ut) = Spank{It, ut, u2

t , . . . , u
t
t}.

(c) Under the basis z0, z1, . . . , zt,

G(Vt|k) ∼=
{
Ck(ut) ∩GL(t+ 1, k) if α 6= 0;
Ck(ut) ∩ U(t+ 1, k) if α = 0;

where U(t+ 1, k) is the group of all upper triangular matrices in GL(t+ 1, k) with
1 on the main diagonal.

Proof. Since z′i = αzi+zi−1 for all i ≥ 1 and z′0 = αz0, it follows that Z ′t = Zt(αIt+1+ut).
A straightforward computation proves (b).
Let σ ∈ G(Vt|k). Since σ(zj) ∈ Vt, there is an element Cσ ∈ GL(t + 1, k) such that

σ(Zt) = ZtCσ. Therefore

σ(Z ′t) = σ(Zt)(αIt+1 + ut) = ZtCσ(αIt+1 + ut).

On the other hand, σ(Zt)′ = (ZtCσ)′ = Zt(αIt+1 + ut)Cσ. Since σ(Zt)′ = σ(Z ′t), we
obtain that (αIt+1 + ut)Cσ = Cσ(αIt+1 + ut), which is true if and only if Cσut = utCσ.
Thus there is an injective group homomorphism φ : G(Vt|k)→ Ck(ut)∩GL(t+1, k) given
by φ(σ) = Cσ. Moreover, if α = 0 then z0 = 1 and therefore σ(z0) = z0. It then follows
that φ(G(Vt|k)) ⊆ Ck(ut) ∩ U(t+ 1, k) if α = 0.
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To prove that φ is surjective in each of the cases α = 0 and α 6= 0, we first note that
for any c0, c1, . . . , ct ∈ k and 0 ≤ j ≤ t( j∑

i=0

cj−izi

)′
= cjz

′
0 +

j∑
i=1

cj−iz
′
i = αcjz0 +

j∑
i=1

cj−i(αzi + zi−1)

=
j∑
i=0

αcj−izi +
j∑
i=1

cj−izi−1. (1)

Let C =
∑t
i=0 ciu

i
t with c0 6= 0 when α 6= 0 and c0 = 1 if α = 0. Then C ∈

Ck(ut) ∩ GL(t + 1, k) when α 6= 0 and C ∈ Ck(ut) ∩ U(t + 1, k) when α = 0. Then
we may define an automorphism σC of the k-vector space Vt by σC(Z) = ZC, that is,
σC(zj) =

∑j
i=0 cj−izi. Now from Equation (1) it can be seen that σC is a k-differential

automorphism of V . Thus

G(Vt|k) ∼= Ck(ut) ∩GL(t+ 1, k) or G(Vt|k) ∼= Ck(ut) ∩ U(t+ 1, k)

depending on whether α 6= 0 or α = 0 respectively.

The following theorem is an immediate consequence of Theorem 3.2.

Theorem 3.3. Let α1, α2, . . . , αr ∈ k be distinct elements. For t = 1, 2, . . . , r, let Vt =
Spank{zj,t| 0 ≤ j ≤ mt} and V =

⊕r
t=1 Vt, where zj,t = x[j]eαtx. Let Z := z0,1, . . .

. . . , zm1,1, . . . , z0,r, . . . , zmr,r, Imt be the identity matrix of order mt and ut :=
(

0 Imt
0 0

)
∈M(mt + 1, k). Then

(a) Z ′ = Z(S + u), where

S =


α1Im1+1 0 · · · 0

0 α2Im2+1 · · · 0
...

...
. . .

...
0 0 0 αrImr+1

 , u =


u1 0 · · · 0
0 u2 · · · 0
...

...
. . .

...
0 0 0 ur

 .

(b) We have the following group isomorphism

G(V |k) ∼=
r⊕
t=1

G(Vt|k).

Since z0,1, . . . , zm1,1, . . . , z0,r, . . . , zmr,r is a basis for V , each of the groups G(Vt|k)
can be computed using Theorem 3.2.

3.2. Non-algebraically closed fields. Let k be a field and let k̄ denote its algebraic
closure. Let a0, . . . , an−1 ∈ k and consider the monic linear homogeneous differential
operator L(y) = y(n) +

∑n−1
i=0 aiy

(i). Then from Proposition 2.1, we know that there are
k-linearly independent elements y1, y2, . . . , yn ∈ Hk such that L(yi) = 0 for each i. Let
Y := (y1, . . . , yn) and note that y′i is also a solution of L(y) = 0 for each i. Thus, there
is a matrix B ∈M(n, k) such that

Y ′ = Y B. (2)

Considering the differential operator L(y) over the field k̄, the characteristic polyno-
mial of the operator L(y) splits into a product of linear factors. Let α1, α2, . . . , αr be
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the distinct roots of the characteristic polynomial in k̄. Let Z, S, u be as in Theorem
3.3. Then it can be shown that V (Z, k̄) := Spank̄{z1, . . . , zn} is the set of all solutions
of L(y) = 0 in Hk̄. Let V (Y, k) := Spank{y1, . . . , yn} and note that V (Y, k) ⊂ V (Z, k̄)
and since w(y1, . . . , yn) 6= 0, y1, y2, . . . , yn remain linearly independent over k̄. Thus
V (Z, k̄) = V (Y, k̄). Let φ : V (Y, k̄) → V (Z, k̄) be a map of k̄-vector spaces such that φ
maps the ordered basis Y to the ordered basis Z. Then there is a matrix Tφ ∈ GL(n, k̄)
such that Y Tφ = Z. Applying φ to Equation (2), we obtain

Z ′ = Y ′Tφ = Y BTφ = ZT−1
φ BTφ.

Thus we see that T−1
φ BTφ = S + u. In particular, S + u is the Jordan normal form of B.

From the above discussion, we derive the following result.

Proposition 3.4. Let k be a field and let L(y) = y(n) +
∑n−1
i=0 aiy

(i), where ai ∈ k for
each i. Let α1, . . . , αr be the distinct roots of the characteristic polynomial of L(y) = 0
in k̄. Let Z, S, u be as in Theorem 3.3 and let A := S + u. Let y1, y2, . . . , yn ∈ Hk be
k-linearly independent solutions of L(y) = 0 in Hk, Y := (y1, . . . , yn) and let Y ′ = Y B

for some B ∈M(n, k). Then

(a) Spank{Bi|0 ≤ i ≤ n− 1} = Spank{Bi|0 ≤ i ≤ ∞}, where B0 := I.
(b) Ck(B) = Spank{Bi|0 ≤ i ≤ n− 1}.

Proof. Since Y ′ = Y B, we have Bn = −
∑n−1
i=0 aiB

i. To prove (a), it is enough to show
that {I,B, · · · , Bn−1} is linearly independent over k̄. Suppose that b0, . . . , bn−1 ∈ k̄ and∑n−1
i=0 biB

i = 0. Then we have
∑n−1
i=0 biY B

i = 0, which implies
∑n−1
i=0 biY

(i) = 0. Let
G(y) :=

∑n−1
i=0 biy

(i) and note that G(yj) = 0 for each j = 1, 2, . . . , n. Since the order of
G(y) is less than n, we obtain that bi = 0 for all i. Thus (a) is proved.

To show (b), it suffices to consider the case when r = 1. We know from Theorem
3.2 that Ck̄(A) = Spank̄{I, u, u2, . . . , un−1}. Let T ∈ GL(n, k̄) such that Y T = Z. Then
since Ck̄(B) = TCk̄(A)T−1, we see that Ck̄(B) is a k̄-vector space of dimension n. As
noted in the proof of (1), {I,B, · · · , Bn−1} is k̄−linearly independent, so it follows that
Ck̄(B) = Spank̄{I,B, · · · , Bn−1}. Now clearly Ck(B) ⊇ Spank{I,B, · · · , Bn−1}. To see
that Ck(B) ⊆ Spank{I,B, · · · , Bn−1}, let X = α0I + α1B + · · · + αn−1B

n−1, where
αi ∈ k̄ for i = 0, . . . , n − 1, and let E be the smallest Galois extension of k containing
α0, . . . , αn−1. Let σ ∈ Gal(E|k) and extend σ to an automorphism of M(n,E) in the
usual way. Then σ(B) = B and σ(X) = X, and it follows that σ(αi) = αi and hence
αi ∈ k for each i = 0, 1, . . . , n− 1, so that X ∈ Spank{I,B, · · · , Bn−1}.

Theorem 3.5. Let k be a field, k̄ be its algebraic closure and let L(y) = y(n)+
∑n−1
i=0 aiy

(i),

where ai ∈ k for each i. Let α1, . . . , αr be the distinct roots of the characteristic polynomial
of L(y) = 0 in k̄. Let Z, S, u be as in Theorem 3.3 and let A := S+u. Let y1, y2, . . . , yn ∈
Hk be k-linearly independent solutions of L(y) = 0 in Hk, Y := (y1, . . . , yn) and let
Y ′ = Y B for some B ∈M(n, k).

Then,

(a) if a0 6= 0, with respect to the basis Y ,

G(V |k) ∼= Ck(B) ∩GL(n, k) = Spank{Bi|0 ≤ i ≤ n− 1} ∩GL(n, k),
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(b) if a0 = 0, with respect to the basis Y ,

G(V |k) ∼= GL(n, k) ∩ T


G1 0 · · · 0
0 G2 · · · 0
...

...
. . .

...
0 0 · · · Gr

T−1,

where T ∈ GL(n, k̄) such that Y T = Z, Gi = Ck̄(ui)∩U(mi + 1, k̄) for at most one
i and in that case αi = 0 and Gt = Ck̄(ut) ∩GL(mt + 1, k) for all other t.

Proof. Let T ∈ GL(n, k) such that Y T = Z. Since Ck̄(B) = TCk̄(A)T−1, with respect
to the basis Y , we obtain

G(V |k̄) ∼= TCk̄(A)T−1 ∩GL(n, k̄).

Since {y1, . . . , yn} is linearly independent over both k and k̄, it follows that

G(V |k) ∼= TCk̄(A)T−1 ∩GL(n, k).

The rest of the proof follows from Theorem 3.3 and Proposition 3.4.

Remark. From Theorem 3.2(b), we see that Ck̄(ut) is a commutative linear algebraic
group for each t, 1 ≤ t ≤ r. Then it follows that G(V |k) is a commutative linear algebraic
group as well. Also, from Theorem 3.5, we see that the condition that k be algebraically
closed is not needed.

4. Examples. Let k be a field of any characteristic. In the following examples, we will
compute the group G(V |k).

Example 1. Consider the second order operator L(y) = y′′. Let Y = (1, x) and note
that V = SpankY consists of all solutions of the equation y′′ = 0. Also note that

Y ′ = Y A,

where A =
(

0 1
0 0

)
. Applying Theorem 3.3, we obtain that G(V |k) ∼= U(2, k).

Example 2. Consider the differential operator

L(y) = y′′ − y′ − y.

Let Y = (y1, y2), where y1 = (1, 0, 1, 1, 2, 3, . . .) and y2 = (0, 1, 1, 2, 3, 5, . . .) are Fibonacci
sequences. Then it can be seen that V = Spank{y1, y2} consists of all solutions of L(y) = 0.
Since a0 = −1, from Equation (1), we obtain that

G(V |k) ∼= Ck(B)

with respect to the basis Y , where B =
(

0 1
1 1

)
. One can directly compute the centralizer

of B and obtain

Ck(B) =
{(

α β

β α+ β

)
∈ GL(2, k)|α, β ∈ k

}
= Spank{I,B} ∩GL(2, k).

A note on initial conditions. Let a0, . . . , an−1 ∈ k and consider the monic linear homo-
geneous differential operator L(y) = y(n) +

∑n−1
i=0 aiy

(i), y ∈ Hk. Let y1, y2, . . . , yn ∈ Hk
be k-linearly independent elements such that L(yi) = 0 and that πi−1(yj) = δji for each
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i, j = 1, 2, . . . , n. Let Z := (z1, z2, . . . , zn), where {z1, . . . , zn} is set of linearly indepen-
dent solutions of L(y) = 0 in Hk̄. Let Y = (y1, y2, . . . , yn) and Z = (z1, z2, . . . , zn). Then
it follows, from the uniqueness of solutions subject to initial conditions, that for

T :=


π0(z1) π0(z2) · · · π0(zn)
π1(z1) π1(z2) · · · π1(zn)

...
...

...
...

πn−1(z1) πn−1(z2) · · · πn−1(zn)


we have Y T = Z. This observation along with Theorem 3.5 enables us to compute the
group G(V |k) with respect to the basis Y .

Example 3. Consider the operator L(y) = y′′′− 3y′′+ 3y′− y and let Y = (y1, y2, y3) be
linearly independent solutions of L(y) = 0 with initial conditions πi−1(yj) = δji for each

i, j = 1, 2 and 3. Let B =
(

0 1 0
0 0 1
1 −3 3

)
and note that Y ′ = Y B. From Proposition 3.4, it

follows that

G(V |k) ∼= Ck(B) ∩GL(3, k) = Spank̄{I,B,B2} ∩GL(3, k).

It is also possible to realize the group as a full set of solutions for a system of linear
equations over k. Note that

Ck̄(u2) =


a b c

0 a b

0 0 a

 ∈ GL(3, k̄)


and that Y T = Z for T =

(
1 0 0
1 1 0
1 2 1

)
. Thus we have

G(V |k) ∼= Ck(B) = TCk̄(u2)T−1 ∩GL(3, k)

=


a− b+ c b− 2c c

c −b+ a− 2c c+ b

c+ b −3b− 2c c+ 2b+ a

 |a, b, c ∈ k, a 6= 0

 .
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