
ALGEBRAIC METHODS IN DYNAMICAL SYSTEMS

BANACH CENTER PUBLICATIONS, VOLUME 94

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2011

PICARD-VESSIOT THEORY
IN GENERAL GALOIS THEORY

HIROSHI UMEMURA

Graduate School of Mathematics

Chikusa-ku, Nagoya, 464-8602, Japan

E-mail: umemura@math.nagoya-u.ac.jp

Abstract. We give a transparent proof that difference Picard-Vessiot theory is a part of the

general difference Galois theory. We apply the proof to iterative q-difference Picard-Vessiot

theory to show that Picard-Vessiot theory for iterative q-difference field extensions is in the

scope of the general Galois theory of Heiderich. We also show that Picard-Vessiot theory is

commutative in the sense that studying linear difference-differential equations, no matter how

twisted the operators are, we cannot encounter quantification of the Galois groupoid.

1. Introduction. Morikawa proved in [12], Section 3 that our general difference Galois
theory includes difference Picard-Vessiot theory as a particular case. As his proof does not
seem accessible, at least for our taste, our aim is to give a transparent proof, dependent on
few fundamental principles so that it would work also for other generalized Picard-Vessiot
theories (Theorem 3.20 in 3.1). Namely, we expect that we could apply this proof, without
any change to the Picard-Vessiot theories to show that these Picard-Vessiot theories are in
the scope of the general Galois theory of D-module fields of Heiderich [7], [8]. Hardouin’s
Picard-Vessiot theory [5] for iterative q-difference equations is one of such instances.

We show in 3.2 how our proof works for the Picard-Vessiot theory of differential
equations.

In 3.3 we apply the proof to the Picard-Vessiot theory of iterative q-difference fields
(Theorem 3.50).

In general setting, for a given difference-differential algebra A of certain type, the
generalized universal Taylor morphism

ι : A→ RA
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is a difference-differential algebra morphism where RA is a non-commutative ring. See for
example Proposition 3.44. The Galois hull that is an algebraic counterpart of groupoid,
is constructed in the non-commutative algebra RA.

We show that Picard-Vessiot theory is commutative (Proposition 3.52). Namely, for
a Picard-Vessiot extension, however non-commutative the ring of operators may be, the
Galois hull is a commutative algebra showing that we cannot encounter the quantum
groupoid in studying linear difference-differential equations.

So the challenging question is to ask what happens when the Galois hull is not com-
mutative. Does a non-commutative Galois hull describe a quantification of the Galois
groupoid? Give an example of equations with non-commutative Galois hull. See Pro-
posal 4.7 at the end of the note.

We use the notation and convention of Morikawa [12]. So we are in characteristic 0.
When we speak of rings without mentioning commutativity, they are commutative except
for Lie algebras.

2. Review of our previous paper

2.1. Notation. Let us recall basic notation. Let (R, σ) be a difference ring so that
σ : R → R is an endomorphism of a ring R. When there is no danger of confusion, we
simply speak of the difference ring R without referring to the endomorphism σ. We often
have to talk however about the abstract ring R that we denote by R\. For a ring S, we
denote by F (N, S) the ring of functions on the set

N = {0, 1, 2, . . .}

taking values in the ring S. For a function f ∈ F (N, S), we define the shifted function
Σf ∈ F (N, S) by

(Σf)(n) = f(n+ 1) for every n ∈ N.

Hence the shift operator
Σ : F (N, S)→ F (N, S)

is an endomorphism of the ring F (N, S) so that (F (N, S),Σ) is a difference ring.

2.2. Universal Euler morphism. Let (R, σ) be a difference ring and S a ring. An
Euler morphism is a difference morphism

(R, σ)→ (F (N, S),Σ). (1)

Given a difference ring (R, σ), among the Euler morphisms (1), there exists a universal
one. In fact, for an element a ∈ R, we define the function u[a] ∈ F (N, R\) by

u[a](n) = σn(a) for n ∈ N.

Then the map
ι : (R, σ)→ (F (N, R\),Σ) a 7→ u[a]

is the universal Euler morphism (Proposition 2.5, [12]).
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2.3. Galois hull L/K. Let (L, σ)/(k, σ) be a difference field extension such that the
abstract field L\ is finitely generated over the abstract base field k\. We construct the
Galois hull L/K in the following manner.

We take a mutually commutative basis

{D1, D2, . . . , Dd}

of the L\-vector space Der (L\/k\) of k\-derivations of the abstract field L\. So we have

[Di, Dj ] = DiDj −DjDi = 0 for 1 ≤ i, j ≤ d.

Now we introduce a partial differential structure on the abstract field L\ using the
derivations {D1, D2, . . . , Dd}. Namely we set

L] := (L\, {D1, D2, . . . , Dd})

that is a partial differential field. Similarly we define a differential structure on the ring
F (N, L\) of functions taking values in L\ by considering the derivations {D1, D2, . . . , Dd}.
In other words, we work with the differential ring F (N, L]). So the ring F (N, L\) has dif-
ference-differential structure defined by the shift operator Σ and the set {D1, D2, . . . , Dd}
of derivations. Since there is no danger of confusion of the choice of the difference oper-
ator Σ, we denote this difference-differential ring by

F (N, L]).

We have the universal Euler morphism

ι : L→ F (N, L\) (2)

that is a difference morphism. We add further the {D1, D2, . . . , Dd}-differential structure
on F (N, L\) or we replace the target space F (N, L\) of the universal Euler morphism (2)
by F (N, L]) so that we have

ι : L→ F (N, L]).

In the definition below, we work in the difference-differential ring F (N, L]) with dif-
ference operator Σ and differential operators {D1, D2, . . . , Dd}. We may identify L] with
the set of constant functions on N. Namely,

L] = {f ∈ F (N, L]) | f(0) = f(1) = f(2) = · · · ∈ L]}.

Hence L] is a difference-differential sub-field of the difference-differential ring F (N, L]).
The action of the shift operator on L] being trivial, the notation is adequate. Similarly,
we set

k] := {f ∈ F (N, L]) | f(0) = f(1) = f(2) = · · · ∈ k ⊂ L]}.

So both the shift operator and the derivations act trivially on k] and so k] is a difference-
differential sub-field of L] and hence of the difference-differential algebra F (N, L]).

Definition 2.1. The Galois hull L/K is a difference-differential sub-algebra of F (N, L]),
where L is the difference-differential sub-algebra generated by the image ι(L) and L] and
K is the sub-algebra generated by the image ι(k) and L]. So L/K is a difference-differential
algebra extension with difference operator Σ and derivations {D1, D2, . . . , Dd}.
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2.4. Universal Taylor morphism. The differential counterpart of Euler morphism is
Taylor morphism. Let

(R, {∂1, ∂2, . . . , ∂d})

be a partial differential ring. So ∂i : R→ R are mutually commutative derivations. For a
ring S, the power series ring(

S[[X1, X2, . . . , Xd]],
{

∂

∂X1
,
∂

∂X2
, . . . ,

∂

∂Xd

})
gives us an example of partial differential ring.

A Taylor morphism is a differential morphism

(R, {∂1, ∂2, . . . , ∂d})→
(
S[[X1, X2, . . . , Xd]],

{
∂

∂X1
,
∂

∂X2
, . . . ,

∂

∂Xd

})
. (3)

For a differential algebra (R, {∂1, ∂2, . . . , ∂d}), among Taylor morphisms (3), there exists
the universal one ιR given below.

Definition 2.2. The universal Taylor morphism is a differential morphism

ιR : (R, {∂1, ∂2, . . . , ∂d})→
(
R\[[X1, X2, . . . , Xd]],

{
∂

∂X1
,
∂

∂X2
, . . . ,

∂

∂Xd

})
(4)

defined by the formal power series expansion

ιR(a) =
∑
n∈Nd

1
n!
∂naXn

for an element a ∈ R, where we use the standard multi-index notation.
Namely, for n = (n1, n2, . . . , nd) ∈ Nd,

|n| =
d∑
i=1

ni, ∂n = ∂n1
1 ∂n2

2 · · · ∂
nd

d ,

n! = n1!n2! · · ·nd!, Xn = Xn1
1 Xn2

2 · · ·X
nd

d .

See Proposition (1.4) in Umemura [17].

2.5. The functor FL/k of infinitesimal deformations. For the partial differential
field L], we have the universal Taylor morphism

ιL] : L] → L\[[W1,W2, . . . ,Wd]] = L\[[W ]], (5)

where we replaced the variables X in (4) by W ’s for a notational reason. The universal
Taylor morphism (5) gives a difference-differential morphism

F (N, L])→ F (N, L\[[W1,W2, . . . ,Wd]]). (6)

Restricting the morphism (6) to the difference-differential sub-algebra L of F (N, L]), we
get a difference-differential morphism L → F (N, L\[[W1,W2, . . . ,Wd]]) that we denote
by ι. So we have the difference-differential morphism

ι : L → F (N, L\[[W1,W2, . . . ,Wd]]). (7)

Similarly for every L\-algebra A, thanks to the differential morphism

L\[[W ]]→ A[[W ]]
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we have the canonical difference-differential morphism

ι : L → F (N, A[[W1,W2, . . . ,Wd]]). (8)

We define the functor
FL/k : (Alg/L\)→ (Sets)

from the category (Alg/L\) of L\-algebras to the category (Sets) of sets, by associating
to an L\-algebra A the set of infinitesimal deformations of the canonical morphism (7).
So

FL/k(A) = {f : L → F (N, A[[W1,W2, . . . ,Wd]]) | f is a difference-differential

morphism congruent to the canonical morphism ι modulo nilpotent elements

such thatf = ι when restricted to the sub-algebra K}.

See Definition 2.13 in [12] for a rigorous definition.

2.6. Group functor Inf-gal (L/k) of infinitesimal automorphisms. The Galois
group in our Galois theory is the group functor

Inf-gal (L/k) : (Alg/L\)→ (Grp)

defined by

Inf-gal (L/k)(A) = {f : L⊗̂L]A[[W ]]→ L⊗̂L]A[[W ]] | f is a difference-differential

K ⊗L] A[[W ]]-automorphism continuous with respect to the W -adic topology

and congruent to the identity modulo nilpotent elements}

for an L\-algebra A. See Definition 2.19 in [12].
Then the group functor Inf-gal (L/k) operates on the functor FL/k in such a way that

the operation (Inf-gal (L/k),FL/k) is a principal homogeneous space (Theorem 2.20, [12]).

3. Picard-Vessiot theory is a part of general Galois theory

3.1. Difference Picard-Vessiot theory. As we study Picard-Vessiot extensions, we
further assume that the endomorphism σ : R → R of a difference ring (R, σ) is an
automorphism and that for a base difference field (k, σ), the field Ck of constants is
algebraically closed. We consider a linear difference system

σ(y) = Ay (9)

with A ∈ GLn(k) and y = (yij) is an unknown invertible (n× n)-matrix.
Let X = (Xij) be an (n×n)-matrix of indeterminates Xij over k. We extend the auto-

morphism σ of the field k to the automorphism of the k-algebra k[Xij , (detX)−1] by set-
ting σ(X) = AX. We denote the extended automorphism of the algebra k[Xij , (detX)−1]
also by σ so that

(k[Xij , (detX)−1], σ)/(k, σ)

is a difference ring extension. For a maximal σ-invariant ideal I of the difference ring
k[Xij , (detX)−1], we call the quotient difference ring k[Xij , (detX)−1]/I a Picard-Vessiot
ring of the linear difference equation (9) over k. We know that Picard-Vessiot rings are
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determined up to isomorphism ([3], [14]). The total Picard-Vessiot ring L is the total ring
of fractions of the Picard-Vessiot ring.

We call the group Gal (L/k) of k-automorphisms of the ring L commuting with the
action of σ the difference Galois group of equation (9) over the field k. The following
theorems are well-known.

Theorem 3.1. The difference Galois group Gal (L/k) has a natural structure of reduced
linear algebraic group over C.

See Theorem 1.13 of [14].

Theorem 3.2. Let L/k be the total Picard-Vessiot ring. Then there exist idempotents
e0, e1, . . . , et−1 ∈ L with eiej = 0 for 0 ≤ i 6= j ≤ t− 1 such that

(i) L = L0 ⊕ L1 ⊕ · · · ⊕ Lt−1 where Li = Lei,
(ii) σ(ei) = ei+1 mod t,
(iii) (L0, σ

t)/(k, σt) is a Picard-Vessiot field.

Moreover there exists an exact sequence

0→ Gal (L0/k)→ Gal (L/k)→ Z/tZ→ 0 (10)

of algebraic groups over C.

See Corollary 1.16 and Corollary 1.17 of [14]. By exact sequence (10), we get an
isomorphism

Lie (Gal (L0/k)) ∼= Lie (Gal (L/k))

of C-Lie algebras. As we are interested in the Lie algebra of the Galois group, we may
assume that the Picard-Vessiot ring R is a domain so that the total Picard-Vessiot ring
L is a field. Replacing the base field by its algebraic closure in L, we may assume that
the base field k is algebraically closed in L.

Namely we consider a difference field extension (L, σ)/(k, σ), called a Picard-Vessiot
field extension, such that

(1) L = k(zij)1≤i, j≤n,
(2)

σ(Z) = AZ (11)

with A ∈ GLn(k), Z = (zij) ∈ GLn(L), and such that
(3) CL = Ck.

We take a mutually commutative basis D1, D2, . . . , Dd of the L\-vector space
Der(L\/k\) of derivations. So as we assume that the base field k is algebraically closed
in L, we have

{c ∈ L |Di(c) = 0 for all 1 ≤ i ≤ d} = k.

We show that after an extension of the field of constants the Lie algebra of the Galois
group Gal (L/k) in Picard-Vessiot theory coincides with the Lie algebra of the infinitesi-
mal Galois group Inf-gal (L/k) (Theorem 3.20). To this end, we need several lemmas. We
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treat sub-algebras of the ring of functions on N that is not a domain. We notice, however,
that since C is algebraically closed in L, for a domain R over C, the tensor product

S = L⊗C R

is a domain and a fortiori every sub-algebra of S is a domain. Hence we can speak of its
field of fractions. Similarly for the tensor product k[Z, (detZ)−1]⊗C R.

Now we work in the difference-differential ring F (N, L\[[W ]]) and we identify the
difference-differential ring F (N, L]) with its image in F (N, L\[[W ]]). Let

ιW : L] → L\[[W1,W2, . . . ,Wd]]

be the universal Taylor morphism. We identify the elements through the morphisms

L] → F (N, L])→ F (N, L\[[W ]]).

So if we take an element a ∈ L], by the first morphism we identify a with the constant
function on N taking the constant value a ∈ L] and finally by the second arrow, we
identify it with the constant function on N taking the constant value ιW (a) ∈ L\[[W ]]. As
derivations Der(L\/k\) operate trivially on k, for an element a ∈ k, ιW (a) = a ∈ k\ ⊂ L\
so that we have

k] = k\ ⊂ L\ ⊂ L\[[W ]] ⊂ F (N, L\[[W ]]).

Since the universal Euler morphism ι = ιL is a difference morphism, the image

ι(Z) = (ι(zij)) ∈ GLn(F (N, L])) = F (N,GLn(L]))

of the matrix Z by the universal Euler morphism ι : L→ F (N, L]) satisfies

Σ(ι(Z)) = ι(A)ι(Z) (12)

by (11), Σ : F (N, L])→ F (N, L]) being the shift operator. We set

B := ι(Z)(Z])−1 ∈ GLn(F (N, L])) = F (N,GLn(L])), (13)

where Z] = (z]ij) ∈ GLn(L]) ⊂ GLn(F (N, L])) = F (N,GLn(L])) or the constant function
on N taking the value Z] ∈ GLn(L]). It follows from (12) and (13) that

Σ(B) = ι(A)B. (14)

Lemma 3.3. The matrix B ∈ F (N,GLn(L])) is in F (N,GLn(k])).

Proof. We prove the assertion that B(l) ∈ GLn(k]) for all l ∈ N by induction on l. It
follows from (13) that B(0) = In ∈ GLn(k]). Since ι(A)(m) = σm(A) ∈ GLn(k]) for every
m ∈ N, if the assertion is proved for j ≤ l, the assertion for l + 1 follows from (14).

Remark 3.4. By (12) and (13), we can explicitly write the function B. Namely, for l ∈ N,
the value B(l) of the function B ∈ F (N,GLn(L])) is given by

B(l) =

{
In, for l = 0,

σl−1(A)σl−2(A) · · ·σ(A)A ∈ GLn(k]), for l ≥ 1.
(15)

As we explained in 2.3, in the construction of Galois hull L in general difference Galois
theory, we start from the universal Euler morphism

ι : L→ F (N, L]). (16)
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It seems, however, more adequate to take a model of the field extension L/k. So we
replace the difference field L by the difference ring k[Z, (detZ)−1] of finite type over k
and the field k(Z, (detZ)−1) of fractions is the difference field L. Namely we start from the
restriction of the universal Euler morphism ι to the difference sub-algebra k[Z, (detZ)−1]
of L. We denote the restriction also by ι so that we have

ι : k[Z, (detZ)−1]→ F (N, L]).

If the reader prefers logical conformity, please replace k[Z, (detZ)−1] by L in the sequel.
The replacement does not affect the arguments.

Lemma 3.5. In the difference-differential ring F (N, L]), the sub-ring

ι(k[Z, (detZ)−1]).L]

coincides with the sub-ring ι(k)[B, (detB)−1].L].

Proof. We get by (13)

ι(k[Z, (detZ)−1]).L] = ι(k)[ι(Z), ι((detZ)−1)].L]

= ι(k)[BZ], (detBZ])−1].L] = ι(k)[B, (detB)−1].L].

Lemma 3.6. The sub-ring ι(k[Z, (detZ)−1]).L] is closed under the shift operator Σ and
the derivations Di for 1 ≤ i ≤ d . So it is a difference-differential sub-ring of F (N, L]).

Proof. Since both ι(k[Z, (detZ)−1]) and L] are closed under the shift operator Σ, the
sub-ring ι(k[Z, (detZ)−1]).L] is closed under the shift operator. To see that the difference
ring ι(k[Z, (detZ)−1]).L] is closed under the derivations Di for 1 ≤ i ≤ d, we have to
show by Lemma 3.5 that the ring ι(k)[B, (detB)−1].L] is closed under the derivations.
The sub-ring L] is evidently differentially closed and ι(k)[B, (detB)−1] is differentially
trivial by Lemma 3.3.

We need to slightly modify the definition of the Galois hull L.

Definition 3.7. The Galois hull L of the Picard-Vessiot extension L/k is the difference-
differential subring of F (N, L]) generated by ι(k[Z, (detZ)−1]) and L].

We replace the Picard-Vessiot extension L/k by the model k[Z, (detZ)−1]/k. If we
pursue a model of groupoid, or a model of the ring extension L/K, maybe we must also
replace the partial differential field L] by a partial differential k-sub-algebra S of L] finite
type over k the field of fractions of which is equal to L]. We do not touch this problem
in this note.

Lemma 3.8. We have

L = ι(k[Z, (detZ)−1]).L] = ι(k)[B, (detB)−1].L]. (17)

Proof. The ring L is by definition the difference-differential sub-algebra of F (N, L]) gen-
erated by ι(k[Z, (detZ)−1]) and L]. The lemma follows from Lemma 3.5.

We need linear disjointness theorems for difference and differential cases. The theorems
are well-known but as we use them repeatedly in a fundamental way, we give a proof for
the difference version.
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Lemma 3.9. Let (R, σ) be a difference ring and M a difference sub-field. Then the field
M and CR of constants of R are linearly disjoint over CM .

Proof. Assume that the lemma were false. Let c1, c2, . . . , cd be elements of CR that are
linearly independent over CM but linearly dependent over M . We choose the elements
ci’s so that the number d is minimum. So there exist elements m1,m2, . . . ,md of M such
that

m1c1 +m2c2 + · · ·+mdcd = 0, (18)

where at least one of the mi’s is not 0. Since M is a field, we have d ≥ 2 and reordering
the elements ci’s if necessary, we may assume m1 6= 0. Multiplying (18) by m−1

1 , we may
assume m1 = 1 so that

c1 +m2c2 + · · ·+mdcd = 0. (19)

Applying σ to (19), we get

c1 + σ(m2)c2 + · · ·+ σ(md)cd = 0. (20)

Subtracting equation (20) from equation (19), we get

(m2 − σ(m2))c2 + · · ·+ (md − σ(md))cd = 0.

Since c2, c3, . . . , cd are linearly independent over CM , by the minimality of d, the elements
c2, c3, . . . , cd are linearly independent over M . Hence we have

m2 − σ(m2) = m3 − σ(m3) = · · · = md − σ(md) = 0

Therefore m1 = 1,m2,m3, . . . ,md are constants. This together with (18) contradicts the
fact that c1, c2, . . . , cd are linearly independent over CM .

Lemma 3.10. In the ring L = ι(k[Z, (detZ)−1]).L], ι(k[Z, (detZ)−1]) and L] are linearly
disjoint over C. So we have a difference isomorphism

k[Z, (detZ)−1]⊗C L\ ' L.

In particular, the ring L and hence the sub-ring ι(k)[B, (detB)−1] of L are domains.

Proof. We are interested in the difference structure of the difference-differential ring L
and forget its differential structure. If the difference sub-ring ι([Z, (detZ)−1]) of L were
a field, we could apply Lemma 3.9 to the difference ring (L,Σ) and ι(k[Z, (detZ)−1]) to
conclude that ι(k[Z, (detZ)−1]) and CL = L] are linearly disjoint over C. To remedy the
situation, we replace the difference ring k[Z, (detZ)−1] by the difference field L that is
the field of fractions of k[Z, (detZ)−1]. We introduce the difference-differential sub-ring
L∗ of F (N, L]) generated by ι(L) and L]. The above argument allows us to show

L∗ = ι(L).L].

We can apply Lemma 3.9 to the difference ring (L∗,Σ) and the difference sub-field ι(L)
to conclude that ι(L) and CL∗ = L] are linearly disjoint over CL = C. Since L ⊂ L∗, this
implies the assertion of the lemma.

Hiroshi Saito pointed out the following lemma.

Lemma 3.11. Let (F (N,M),Σ) be the difference ring of functions on N with values in
a field M . Let R be a difference sub-domain of (F (N,M),Σ) containing the field M of



272 H. UMEMURA

constant functions. If Σ induces an automorphism of the domain R, then the field Q(R)
of fractions of the difference domain R has a natural structure of difference field and we
have

CQ(R) = M,

denoting by CQ(R) the field of constants of the difference field Q(R).

Proof. Since Σ induces an automorphism of R, the automorphism Σ extends naturally
to an automorphism of the field Q(R) of fractions of R. The inclusion M ⊂ CQ(R) follows
from the assumption. Conversely, let f, g ∈ (F (N,M),Σ) with g 6= 0 such that f/g is
Σ-invariant. So for l ∈ N, we have

Σl
(
f

g

)
=

Σl(f)
Σl(g)

=
f

g

and hence
Σl(f)g − fΣl(g) = 0. (21)

Comparing the value at m ∈ N in (21), we get

f(m+ l)g(m)− f(m)g(m+ l) = 0 (22)

for every m ∈ N. Namely, we have (22) for every l, m ∈ N. Since g 6= 0, there exists an
s ∈ N such that g(s) 6= 0. We set c := f(s)/g(s) ∈M that is the constant function c and
show f/g = c ∈ Q(R). We have to show f − cg = 0 which is equivalent to

f(t)− g(t)c = 0 (23)

for every t ∈ N. Equation (23) is equivalent to

f(t)−
(
f(s)
g(s)

)
g(t) = 0,

which is a consequence of (22).

Lemma 3.12. The field CQ(ι(k)[B,(detB)−1].k]) of difference constants of the difference field
Q(ι(k)[B, (detB)−1].k]) of fractions of the difference domain ι(k)[B, (detB)−1].k] is k].

Proof. In fact it is sufficient to apply Lemma 3.11 to ι(k)[B, (detB)−1].k] ⊂ F (N, k]).

The argument of the proof of Lemma 3.12 allows us to show the following result.

Corollary 3.13. The field of constants of the difference field (Q(L),Σ) is L].

Lemma 3.14. In the difference ring (L,Σ), the difference sub-ring ι(k)[B, (detB)−1].k]

and L] are linearly disjoint over k]. So we have a difference isomorphism

(ι(k)[B, (detB)−1].k])⊗k] L\ ' L.

Proof. If the difference sub-ring ι(k)[B, (detB)−1].k] were a field, we could argue as in
the proof of Lemma 3.10. So we work in the difference field Q(L) of fractions and replace
the difference ring ι(k)[B, (detB)−1].k] by its field Q(ι(k)[B, (detB)−1].k]) of fractions.
Now the lemma follows from Lemma 3.12 and Corollary 3.13.

Proposition 3.15. We have a difference-differential isomorphism

(ι(k)[B, (detB)−1].k])⊗k] L\ ' k[Z, (detZ)−1]⊗C L\.
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Proof. We get a difference isomorphism

(ι(k)[B, (detB)−1].k])⊗k] L\ ' k[Z, (detZ)−1]⊗C L\.

by Lemmas 3.10 and 3.14. Since the derivations Di , 1 ≤ i ≤ d operate trivially on both
sides. The difference isomorphism is a difference-differential isomorphism.

We also need later the differential version of Lemma 3.9.

Lemma 3.16. Let (R, {∂1, ∂2, . . . , ∂d}) be a partial differential ring and M a partial dif-
ferential sub-field of R. Then the sub-rings M and CR are linearly disjoint over CM ,
where CR (resp. CL) denotes the ring (resp. field) of constants of R (resp. L).

Remark 3.17. We use in the final step a more general linear disjointness theorem.
Let σα : R→ R, α ∈ I be a set of endomorphisms of a ring R indexed by a set I and

∂β : R → R, β ∈ J a set of differential operators on the ring R indexed by a set J . So
(R, {σα}α∈I , {∂β}β∈J) is a difference-differential ring. Let M be a difference-differential
sub-field of L. Then, in the ring R, the field M and the ring

CR = {c ∈ R |σα(c) = c, ∂β(c) = 0 for every α ∈ I and for every β ∈ J}

of difference-differential constants of the ring R are linearly disjoint over CM .

We have three sub-rings ι(k[Z, (detZ)−1]), L\, L] isomorphic to L as abstract rings,
in F (N, L\[[W ]]) that we should not confuse.

Proposition 3.18. The difference-differential sub-ring

L.L\ = ι(k[Z, (detZ)−1]).L\.L]

generated by ι(k[Z, (detZ)−1]).L\ and L] in F (N, L\[[W ]]) is isomorphic to

(ι(k)[B, (detB)−1]⊗C L\)⊗k] L]

as difference-differential rings.

Proof. The sub-ring
ι(k[Z, (detZ)−1]).L\.L]

of F (N, L][[W ]]) generated by ι(k[Z, (detZ)−1]).L\ and L] coincides with L.L\ by Lem-
ma 3.8 and hence is closed under the shift operator Σ and the derivations ∂/∂Wi’s. We
also have

ι(k[Z, (detZ)−1]).L\.L] = (ι(k)[B, (detB)−1]).L\.L]

by Lemma 3.8 in such a way that all the sub-rings ι(k)[B, (detB)−1], L\ and L] are
difference-differential invariant. In other words they are difference-differential rings. We
are going to show that this decomposition gives the desired isomorphism thanks to the
linear disjointness theorems. In fact, in the differential ring

F (N, L\[[W1,W2, . . .Wd]], {∂/∂W1, ∂/∂W2, . . . , ∂/∂Wd}),

we apply Lemma 3.16 to the differential ring (ι(k)[B, (detB)−1].L\).L] and to the differ-
ential sub-field L] to conclude that C(ι(k)[B,(detB)−1].L\).L] = ι(k)[B, (detB)−1].L\ and
L] are linearly disjoint over k\. So we have a differential isomorphism

ι(k)[B, (detB)−1].L\L] ' (ι(k)[B, (detB)−1].L\)⊗k\ L]. (24)
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We notice here that since the sub-rings are also difference invariant, isomorphism (24) is
also a difference isomorphism so that (24) is a difference-differential isomorphism. The
tensor product in (24) taken over the field k algebraically closed in L by assumption,
is a domain and consequently ι(k[Z, (detZ)−1]).L\.L] = (ι(k)[B, (detB)−1].L\)L] is a
domain. Therefore we can speak of its field of fractions.

Now we show that ι(k)[B, (detB)−1].k\ and L\ are linearly disjoint over k\. Indeed, we
work in the difference field Q(ι(k)[B, (detB)−1].L\) of fractions of ι(k)[B, (detB)−1].L\.
The argument of Lemma 3.12 allows us to show that the field of constants

CQ(ι(k)[B,(detB)−1].L\)

of the difference field Q(ι(k)[B, (detB)−1].L\), that is the field of fractions of the dif-
ference ring ι(k)[B, (detB)−1].L\, is L\. We apply Lemma 3.9 to the difference field
Q((ι(k)[B, (detB)−1].L\) and the difference sub-field Q((ι(k)[B, (detB)−1].k\) to con-
clude that the difference field Q(ι(k)[B, (detB)−1].k\) and L\ are linearly disjoint over k\.
Hence we have a difference isomorphism

ι(k)[B, (detB)−1].L\ ' (ι(k)[B, (detB)−1].k\)⊗k\ L\. (25)

Since derivations operate trivially in all the difference ring involved in (25), the difference
isomorphism (25) is also a differential isomorphism. Now the proposition follows from
(24), (25) and Proposition 3.15.

Remark 3.19. Under the assumption of Proposition 3.18, by working in the difference-
differential algebra F (N, A[[W ]]) for an L\-algebra A, the argument of the proof of the
proposition allows us to show the difference-differential isomorphism

ι(k[Z, (detZ)−1]).A.L] ' (L⊗C A)⊗k\ L].

Theorem 3.20. Let L = k(zij)1≤ i, j≤n/k be a Picard-Vessiot field. Then we have an
isomorphism

Lie (Inf-gal (L/k)) ' Lie (Gal (L/k))⊗C L\

of L\-Lie algebras.

Proof. Let f ∈ Lie(Gal(L/k))⊗C L\ so that

f : k[Z, (detZ)−1]⊗C L\[ε]→ k[Z, (detZ)−1]⊗C L\[ε] ( ε2 = 0 ) (26)

is a k⊗c L\[ε]-difference isomorphism that is an infinitesimal deformation of the identity.
Tensoring (26) with L] over k], we get a difference isomorphism

f ′ : L⊗L\ L\[ε]⊗k] L] → L⊗L\ L\[ε]⊗k] L]. (27)

Then by Lemma 3.15, Proposition 3.18 and Remark 3.19, we get a difference-differential
isomorphism

L.L\[ε] ' L⊗L\ L\[ε]⊗k] L]. (28)
So by (27) and (28), we get the composition map

f̃ : L → L.L\[ε] ' L⊗L\ L\[ε]⊗k] L]
f ′→ L⊗L\ L\[ε]⊗k] L] ' L.L\[ε]→ F (N, L\[ε][[W ]])

(29)
giving an infinitesimal deformation of the canonical map

L → F (N, L\[[W ]]).



P-V THEORY IN GENERAL GALOIS THEORY 275

In sequence (29), the morphisms except for f ′ are canonical. So f̃ ∈ FL/k(L\[ε]). We
denote by f̂ the element in Inf-gal (L/k)(L\[ε]) corresponding to f̃ . So we have a group
morphism and hence an L\-Lie algebra morphism

Lie (Gal(L/k))⊗C L\ → Inf-gal (L/k)(L\[ε]), f 7→ f̂ .

Conversely let g ∈ Lie(Inf-gal (L/k)). So g defines an infinitesimal deformation

g : L → F (N, L\[ε][[W ]]).

It follows from Remark 3.17 that in the difference-differential ring LL\, L and L\ are
linearly disjoint over k\. So we have a difference-differential isomorphism

L.L\ ' L⊗k\ L\.

Therefore we get a morphism

L.L\ ' L⊗k\ L\ → F (N, L\[ε][[W ]]).

So by Proposition 3.18, we have an infinitesimal deformation over L] ⊗C L\

g̃ : k[Z, (detZ)−1]⊗C L\ → F (N, L\[[ε][[W ]]) (30)

so that g̃ is a a difference-differential morphism. Since the derivations Di operate trivially
on L by definition and hence Di(Z) = 0 for every 1 ≤ i ≤ d, morphism (30) induces an
infinitesimal deformation

g̃ : k[Z, (detZ)−1]⊗C L\ → F (N, L\[ε])

that is a difference morphism. So g̃ arises from an infinitesimal deformation

k[Z, (detZ)−1]⊗C L\[ε]→ k[Z, (detZ)−1]⊗C L\[ε]

that is a difference automorphism. So we construct an L\-Lie algebra morphism

Lie(Inf-gal (L/k))→ Lie(Gal(L/k))⊗C L\, g 7→ ĝ. (31)

Since the mappings (30) and (31) are mutually inverse, we have proved the Theorem.

3.2. Differential Picard-Vessiot theory

3.2.1. Review of general differential Galois theory ([18], [19], [20] and [13]). General
differential Galois theory is formulated as in the difference case explained in Section 1.

For a differential ring (R, ∂) so that ∂ : R → R is a derivation, we denote the
abstract ring R by R\. Let (L, ∂L)/(k, ∂k) be a differential field extension. So L/k is
a field extension and ∂L : L → L and ∂k : k → k are derivations such that ∂L is an
extension of ∂k. We have the universal Taylor morphism

ι : L→ L\[[X]]. (32)

We assume that the abstract field L\ is finitely generated over k\. We choose a mutually
commutative basis D1, D2, . . . , Dd of the L\-vector space Der(L\/k\) of k\-derivations
of the field L\. We introduce the partial differential field L] := (L\, {D1, D2, . . . , Dd}).
Just as we introduced the difference-differential ring F (N, L]) in the difference case, we
consider the partial differential field

L][[X]] :=
(
L\[[X]],

{
d

dX
,D1, D2, . . . , Dd

})
,
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where the derivations D1, D2, . . . , Dd operate through the coefficients. We regard the
universal Taylor morphism (32) as

ι : L→ L][[X]]. (33)

We denote by L] the partial differential field of constant power series so that

L] :=
{ ∞∑
i=0

aiX
i ∈ L][[X]] | ai = 0 for i ≥ 1

}
.

Hence L] is a partial differential sub-field of L][[X]].

Definition 3.21. The Galois hull L/K is a partial differential algebra extension in the
partial differential ring L][[X]], where L is the partial differential sub-algebra generated
by the image ι(L) and L] in L][[X]] and K is the partial differential sub-algebra generated
by the image ι(k) and L] in L][[X]].

We have the universal Taylor expansion

ιL] : L] → L\[[W1,W2, . . . ,Wd]] = L\[[W ]]. (34)

The morphism (34) gives a differential morphism(
L][[X]],

{
d

dX
,D1, D2, . . . , Dd

})
→
(
L\[[W1,W2, . . . ,Wd]][[X]],

{
d

dX
,
∂

∂W1
,
∂

∂W2
, . . . ,

∂

∂Wd

})
. (35)

Restricting the differential morphism (35) to the differential sub-algebra L, we get a
canonical differential algebra morphism

ι : L → L\[[W,X]]. (36)

For an L\-algebra A, we have the partial differential morphism

L\[[W,X]]→ A[[W,X]] (37)

induced by the structural morphism L\ → A. The composition of morphisms (36) and (37)
gives the canonical morphism

ι : L → A[[W,X]].

The infinitesimal deformation functor

FL/k : (Alg/L\)→ (Sets)

is defined by setting

FL/k(A) = {f : L → A[[W,X]] | f is a partial differential morphism

congruent to the canonical morphism ι modulo nilpotent elements

such that the restriction to K coincides with the canonical morphism ι}.

Our Galois group is a group functor

Inf-gal (L/k) : (Alg/L\)→ (Grp)
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associating to an L\-algebra A the automorphism group

Inf-gal (L/k)(A) = {f : L⊗̂L]A[[W ]]→ L⊗̂L]A[[W ]] | f is a differential

K⊗̂L]A[[W ]]-automorphism continuous with respect to the W -adic topology

and congruent to the identity modulo nilpotent elements}.

The group functor Inf-gal (L/k) operates on the functor FL/k in such a manner that the
operation (Inf-gal (L/k),FL/k) is a principal homogeneous space.

Remark 3.22. In Umemura [18], a different definition of Inf-gal (L/K) and of FL/K is
adopted. See page 106 in [18]. Namely we considered the field Q(L) of fractions of the
ring L defined above so that Q(L) is a differential sub-field of the Laurent series ring

L\[[W,X]][W−1, X−1]

We then studied the infinitesimal deformations of Q(L) in the Laurent series ring

A[[W,X]][W−1, X−1]

for an L\-algebra A. This definition agrees with the definition above thanks to Lemma 4.5
on page 105 in [18].

3.2.2. Application of our proof to differential Picard-Vessiot theory. Let (L, ∂)/(k, ∂) be
a differential Picard-Vessiot extension. So the field of constants CL coincides with the
field Ck of constants of k and Ck is algebraically closed. We may assume that the base
field k\ is algebraically closed in L\. There exist matrices (zij) ∈ GLn(L) and A ∈ Mn(k)
satisfying the following conditions

L = k(Z), and ∂Z = AZ,

∂Z being the matrix (∂zij) ∈ Mn(L). We prove the differential analogue of Theorem 3.20
by applying the proof of 3.1. Namely,

Theorem 3.23 (Theorem 3.20). Let L = k(zij)1≤i,j≤n/k be a differential Picard-Vessiot
field. Then we have an isomorphism

Lie (Inf-gal (L/k)) ' Lie (Gal (L/k))⊗C L\

of L\-Lie algebras.

So we examine the procedure of proof of Theorem 3.20 in 3.1 in the differential context.
To this end, we need the list of replacements below.

Difference theory Differential theory
L\ L\

Universal Euler morphism Universal Taylor morphism
F (N, L]) L][[X]]
Shift operator Σ Derivation d/dX

L] L]

D1, D2, . . . , Dd D1, D2, . . . , Dd

F (N, L\[[W ]]) L\[[W,X]]
A[[W ]] A[[W ]]
F (N, A[[W ]]) A[[W,X]]
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For example, when we pass from difference theory to differential theory, we replace the
universal Euler morphism ι in a difference assertion by the universal Taylor morphism (33)
to get the differential analogue.

We mean by Lemma xyz (Lemma abc) that Lemma xyz is a differential analogue of
Lemma abc in difference algebra.

Let us first study the differential analogue of Lemma 3.3.

Lemma 3.24 (Lemma 3.3). Set B := ι(Z)Z]−1 ∈ GLn(L][[X]]). The matrix B ∈
GLn(L][[X]]) is in GLn(k][[X]]).

Proof. The proof in difference algebra works also in differential algebra.

Lemma 3.25 (Lemma 3.5). In the partial differential ring L][[X]], the sub-ring

ι(k[Z, (detZ)−1]).L]

coincides with the sub-ring ι(k)[B, (detB)−1].L].

Proof. The proof in difference algebra works also in differential algebra.

Lemma 3.26 (Lemma 3.6). The sub-ring ι(k[Z, (detZ)−1]).L] is closed under d/dX and
the derivations Di for 1 ≤ i ≤ d . So it is a differential sub-ring of L][[X]].

Proof. The proof in difference algebra works also in differential algebra.

Lemma 3.27 (Lemma 3.8). We have

L = ι(k[Z, (detZ)−1]).L] = ι(k)[B, (detB)−1].L].

Proof. The proof in difference algebra works also in differential algebra.

Lemma 3.28 (Lemma 3.9). Let (R, ∂) be a differential ring and M a differential sub-field.
Then the field M and the sub-ring CR of constants of R are linearly disjoint over CM .

This is a well known result. See for example, Chap. II, 1, Corollary 1 of Kolchin [9]
as well as Lemma (1.1) in Umemura [17]. The proof in the difference case and the proof
in the differential case are analogous.

Lemma 3.29 (Lemma 3.11). Let M [[X]], d/dX) be the differential ring of power series
with coefficients in a field M . Let R be a differential sub-ring of M [[X]] containing the
field M of constant power series. Then the ring R is a domain and the field Q(R) of
fractions of the differential domain R has a natural structure of differential field and we
have

CQ(R) = M,

denoting by CQ(R) the field of constants of the differential field Q(R).

Proof. The assertion is trivial.

Lemma 3.30 (Lemma 3.12). The field CQ(ι(k)[B,(detB)−1].k]) of differential constants of
the differential field Q(ι(k)[B, (detB)−1].k]) of fractions of the differential domain

ι(k)[B, (detB)−1].k]

is k].
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Corollary 3.31 (Corollary 3.13). The field of constants of the differential field

(Q(L),Σ)
is L].

Proof. They are also trivial in the differential case.

Lemma 3.32 (Lemma 3.14). In the differential ring (L, d/dX), the differential sub-ring
ι(k)[B, (detB)−1].k] and L] are linearly disjoint over k]. So we have a d/dX differential
isomorphism

(ι(k)[B, (detB)−1].k])⊗k] L\ ' L.

Proof. This holds for the same reason as in the difference case.

Proposition 3.33 (Proposition 3.15). We have a partial differential isomorphism

(ι(k)[B, (detB)−1].k])⊗k] L\ ' k[Z, (detZ)−1]⊗C L\

with respect to the derivations {d/dX,D1, D2, . . . , Dd}.

Proof. The argument in difference algebra works also in differential algebra.

We notice that the derivations {D1, D2, · · · , Dd} operate trivially.
Remark 3.17 in differential case is nothing but the linear disjointness theorem of

Lemma 3.28.

Proposition 3.34 (Proposition 3.18). In the partial differential algebra(
L\[[W,X]],

{
d

dX
,
∂

∂W1
,
∂

∂W2
, . . . ,

∂

∂Wd

})
,

the partial differential sub-ring

L.L\ = ι(k[Z, (detZ)−1]).L\.L]

generated by ι(k[Z, (detZ)−1]).L\ and L] is isomorphic to

(ι(k)[B, (detB)−1]⊗C L\)⊗k] L]

as partial differential rings.

Proof. As we have shown all the differential analogues of lemmas, corollary and proposi-
tions necessary to prove the proposition, the proof in difference algebra works as well in
differential algebra.

So far we examined all the results that we need to prove Theorem 3.23, the differential
version of Theorem 3.20. Therefore the proof of Theorem 3.23 is achieved as the proof of
Theorem 3.20.

3.3. Hopf Galois theory. So far we treated difference equations and differential equa-
tions. Picard-Vessiot theory is a Galois theory of linear difference or differential equations.
The idea of introducing Hopf algebra in Galois theory goes back to Sweedler [15]. Special-
ists in Hopf algebra succeeded in unifying Picard-Vessiot theories for difference equations
and differential equations [1]. They further succeeded in generalizing the Picard-Vessiot
theory for difference-differential equations, where the operators are not necessarily com-
mutative. Heiderich [7] combined the idea of Picard-Vessiot theory via Hopf algebra with
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our general Galois theory for non-linear equations [18], [12]. His general theory includes
a wide class of difference and differential algebras. It seems, however, that some alge-
bras with operators are excluded from his theory. The sesquilinear difference algebra in
André [2] is such an example.

There are two major advantages in his theory.

(1) Unified study of non-linear difference equations and differential equations.
(2) Generalization of universal Euler morphism and Taylor morphism.

Let C be a field. For C-vector spaces M,N , we denote by CM(M,N) the set of
C-morphisms from M to N .

Example 3.35. Let H := C[Ga] = C[t] be the C-Hopf algebra of the coordinate ring of
the additive group scheme GaC . Let A be a C-algebra and

Ψ ∈C M(A⊗C H, A) =C M(A,C M(H, A))

so that Ψ defines two C-linear maps

(1) Ψ1 : A⊗C H → A,
(2) Ψ2 : A→ CM(H, A).

Definition 3.36. We say that (A,Ψ) is an H-module algebra if the following conditions
are satisfied.

(1) The C-linear map Ψ1 : A ⊗C H → A defines an operation of the C-algebra H on
the C-algebra A.

(2) The C-linear map
Ψ2 : A→ CM(H, A)

is a C-algebra morphism, the dual CM(H, A) of the co-algebraH being a C-algebra.

Concretely the dual algebra CM(H, A) is the formal power series ring A[[X]].
It is a comforting exercise to examine that (A,Ψ) is an H-module algebra if and only

if A is a differential algebra with derivation δ such that δ(C) = 0. When the equivalent
conditions are satisfied, for every element a in the algebra A, Ψ(a ⊗ t) = δ(a) and the
C-algebra morphism

Ψ2 : A→ CM(H, A) = A[[X]]

is the universal Taylor morphism. See Heiderich [7], 2.3.4.
If we take an appropriate bialgebra forH, we get difference structure and the universal

Euler morphism. See [7], 2.3.1.

To illustrate what happens in the general situation, let us study Picard-Vessiot theory
of iterative q-derivations by Hardouin [5], among these Picard-Vessiot theories.

We are going to see that

(1) a non-commutative algebra enters in the generalization of the universal Taylor or
the Euler morphism but

(2) the Galois hull L which is a sub-algebra of the non-commutative algebra is com-
mutative for a Picard-Vessiot extension.
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Let C be a field, q 6= 1 an element of C. We use the standard notation of q-binomial
coefficients. To this end, let Q be a variable over the field C.

We set [n]Q =
∑n−1
i=0 Q

i ∈ C[Q] for a positive integer n. We need also the Q-factorial

[n]Q! :=
n∏
i=1

[i]Q for a positive integer n and [0]Q! := 1.

So [n]Q! ∈ C[Q]. The Q-binomial coefficient is defined for m,n ∈ N by(
m

n

)
Q

=

{
[m]Q!

[m−n]Q![n]Q! if m ≥ n,
0 if m < n.

Then we can show that (
m

n

)
Q

∈ C(Q)

is in fact a polynomial, i.e. (
m

n

)
Q

∈ C[Q].

We have a ring morphism
C[Q]→ C[q], Q 7→ q

over C and we denote the image of (
m

n

)
Q

under this morphism by (
m

n

)
q

.

3.3.1. Iterative q-difference algebra. Let t be a variable over the field C. We consider a
C-automorphism

σ : C(t)→ C(t), t 7→ qt

of the field C(t) so that (C(t), σ) is a difference field.

Definition 3.37. An iterative q-difference algebra (R, σ, δ∗) = (R, σ, {δ(i)}i∈N) consists
of a C-algebra R that is eventually non-commutative, a C-endomorphism σ : R → R

of the algebra R such that (R, σ)/(C(t), σ) is a difference algebra extension, and a set
δ∗ = {δ(i)}i∈N of C-linear maps, called q-difference operators,

δ(i) : R→ R for every i ∈ N

satisfying the following conditions.

(1) δ(0) = Id, Id: R→ R being the identity map.
(2) (q − 1)tδ(1) = σ − Id.
(3) δ(i)(xy) =

∑
l+m=i σ

m(δ(l)(x))δ(m)(y), for every x, y ∈ R and every l ∈ N.
(4) δ(i) ◦ δ(j) =

(
i+j
i

)
q
δ(i+j), for every i, j ∈ N,

(
i+j
i

)
q

being the q-binomial coefficient.

Since as the second formula shows, the endomorphism σ is determined by δ(1), we denote
the iterative q-difference ring by (R, δ∗) or by (R, {δ(i)}i ∈N).
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Lemma 3.38 (Hardouin [5], Lemma 2.6). Let (R, δ∗) be an iterative q-difference ring. We
assume

δ(i)(t) = 0 for i ≥ 2. (38)

If R is commutative and if σ : R → R is a C-automorphism of the algebra R, we have
the following commutation relation between σ and δ(i) for every i ∈ N:

qiσδ(i) = δ(i)σ.

Remark 3.39. Looking at the proof of [5, Lemma 2.6], maybe the author forgot to write
the condition (38). From now on, when we speak of iterative q-difference algebras, we
assume (38).

3.3.2. q-skew iterative σ-differential algebra [6]. We need a slightly more general notion
than iterative q-difference algebra.

Definition 3.40. Let C and q be as above. A q-skew iterative σ-differential algebra
(A, σ, δ∗) = (A, σ, {θ(i)}i∈N), a q-SI σ-differential algebra for short, consists of a C-algebra
A that is eventually non-commutative, a C-endomorphism σ : A → A of the C-algebra
A and a family

θ(i) : A→ A for i ∈ N

of C-linear maps satisfying the following conditions.

(1) θ(0) = Id,
(2) θ(i)σ = qiσθ(i) for every i ∈ N,
(3) θ(i)(ab) =

∑
l+m=i σ

m(θ(l)(a))θ(m)(b),
(4) θ(i) ◦ θ(j) =

(
i+j
i

)
q
θ(i+j).

We say that an element a of the q-SI σ-differential algebra A is a constant if σ(a) = a

and θ(i) = 0 for every i ≥ 1.
A morphism of q-SI σ-differential algebras is a C-algebra morphism compatible with

the endomorphisms σ and the derivations θ∗.

Lemma 3.41. Let (R, δ∗) be an iterative q-difference algebra. If the algebra R is com-
mutative and if the endomorphism σ : R → R is an automorphism, then the iterative
q-difference algebra is a q-SI σ-differential algebra.

Proof. This follows from Definitions 3.37, 3.40 and Lemma 3.38.

3.3.3. Example of q-SI σ-differential algebra. An example of q-SI σ-differential algebra
arises from a C-difference algebra (S, σ). Namely, the twisted power series ring (S, σ)[[X]]
over the difference ring (S, σ) has a natural q-SI σ-differential algebra structure.

Let (S, σ) be a C-difference ring so that σ : S → S is a C-endomorphism of the com-
mutative ring S. We introduce the following twisted formal power series ring (S, σ)[[X]]
with coefficients in S that is the formal power series ring S[[X]] as an additive group with
the following commutation relation

aX = Xσ(a) for every a ∈ S.

So more generally
aXn = Xnσn(a) (39)
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for every n ∈ N. Therefore the twisted formal power series ring (S, σ)[[X]] is non-
commutative in general. By commutation relation (39), we can identify

(S, σ)[[X]] =
{ ∞∑
i=0

Xiai | ai ∈ S for every i ∈ N
}

as additive groups.
We are going to see that the twisted formal power series ring has a natural q-SI

σ-differential structure. We define first a ring endomorphism σ̂ : (S, σ)[[X]]→ (S, σ)[[X]]
by setting

σ̂
( ∞∑
i=0

Xiai

)
=
∞∑
i=0

Xiqiσ(ai) for every i ∈ N, (40)

for every element
∑∞
i=0X

iai ∈ (S, σ)[[X]]. The operators θ∗ = {θ(l)}l∈N are defined by

θ(l)
( ∞∑
i=0

Xiai

)
=
∞∑
i=0

Xi

(
i+ l

l

)
q

ai+l. (41)

Hence the twisted formal power series ring (S, σ)[[X]], σ̂, δ∗) is a non-commutative q-SI
σ-differential ring. We denote this q-SI σ-differential ring simply by (S, σ)[[X]]. See [7], 2.3.

Remark 3.42. If there exists a non-constant element a in the difference ring (S, σ) so that
σ(a) 6= a, then the q-SI σ-differential algebra (S, σ)[[X]] is not an iterative q-difference
algebra.

In fact, then 0 = (q − 1)tδ(1)(a) by (41). On the other hand, σ̂(a)− a = σ(a)− a 6= 0
by (40) so that

(q − 1)tδ(1)(a) 6= σ̂(a)− a.

and the second condition of Definition 3.37 is not satisfied.

Lemma 3.43. The construction above is functorial for (S, σ). Namely let ϕ : (S1, σ1) →
(S2, σ2) be a difference C-algebra morphism, Then the C-morphism ϕ induces a morphism

(S1, σ1)[[X]]→ (S2, σ2)[[X]],
∞∑
i=0

Xiai 7→
∞∑
i=0

Xiϕ(ai)

of q-SI σ-differential algebras.

Proof. This follows from the definition of the q-SI σ-differential algebra structure on the
twisted formal power series ring.

In particular, if we take as the coefficient difference ring S the difference ring

(F (N, A),Σ)

of functions on N taking values in a ring A, where Σ is the shift operator, we obtain the
q-SI σ-differential ring

(F (N, A),Σ)[[X]].

Proposition 3.44 (Heiderich [7], Proposition 2.3.17). For a q-SI σ-differential alge-
bra R, hence in particular for an iterative q-difference ring R, there exists a canonical
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morphism called the universal twisted Taylor morphism

ι : R→ (F (N, R\),Σ)[[X]], a 7→
∞∑
i=0

Xiu[δ(i)(a)]

of q-SI σ-differential algebras. We denote here for an element b ∈ R by u[b] a function
on N taking values in the abstract ring R\ such that

u[b](n) = σn(b) for every n ∈ N

so that u[b] ∈ F (N, R\).

We can also characterize the twisted universal Taylor morphism as the solution of a
universal mapping property.

Let us recall the following fact.

Lemma 3.45. Let (R, σ, θ∗) be a q-SI σ-differential domain. If the endomorphism σ : R→
R is an automorphism, then the field Q(R) of fractions of R has the unique structure of
q-SI σ-differential field.

If moreover R is an iterative q-difference algebra, then the field Q(R) of fractions of
R is also an iterative q-difference field.

Proof. See for example, Proposition 2.5 of [6].

We can develop a general Galois theory for iterative q-difference field extensions anal-
ogous to our theories in [17] and [23]. Let L/k be an extension of q-iterative difference
fields such that the abstract field L\ is finitely generated over the abstract field k\. Let us
assume that we are in characteristic 0. The general theory in [7] and [8] works, however,
also in characteristic p ≥ 0. We have by Proposition 3.44 the universal twisted Taylor
morphism

ι : L→ (F (N, L\),Σ)[[X]] (42)

so that the image ι(L) is a copy of the iterative q-difference field L. We have another
copy of L\. The set{

f =
∞∑
i=0

Xiai ∈ F (N, L\)[[X]] | ai = 0 for every i ≥ 1 and Σ(a0) = a0

}
= {f ∈ F (N, L\)[[X]] | σ̂(f) = f, θ(i)(f) = 0 for every i ≥ 1} (43)

forms the sub-ring of constants in the q-SI σ-differential algebra of the twisted power
series

(F (N, L\),Σ)[[X]].

We may denote the sub-ring in (43) by L\. In fact, as an abstract ring it is isomorphic
to the abstract field L\ and the endomorphism σ̂ and the derivations θ(i) (i ≥ 1) operate
trivially on the sub-ring.

We choose a mutually commutative basis {D1, D2, . . . , Dd} of the L\-vector space
Der(L\/k\) of k-derivations. So L] := (L\, {D1, D2, . . . , Dd}) is a differential field. We
are now exactly in the same situation as in 2.2 of the difference case.

So we introduce derivations D1, D2, . . . , Dd operating on the coefficient ring F (N, L\).
In other words, we replace the target space F (N, L\)[[X]] by F (N, L])[[X]]. Hence the
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twisted universal Taylor morphism in Proposition 3.44 becomes

ι : L→ F (N, L])[[X]].

In the twisted formal power series ring (F (N, L])[[X]], σ̂, δ∗), we add differential operators

D1, D2, . . . , Dd.

So we have a set D of the following operators on the ring (F (N, L]),Σ)[[X]].

(1) The endomorphism σ̂,

σ̂
( ∞∑
i=0

Xiai

)
=
∞∑
i=0

Xiqi(Σ(ai)),

Σ : F (N, L])→ F (N, L]) being the shift operator of the ring of functions on N.
(2) The q-skew σ̂-derivations θ(i) in (41),

θ(l)
( ∞∑
i=0

Xiai

)
=
∞∑
i=0

Xi

(
l + i

l

)
ai+l for every l ∈ N.

(3) The derivations D1, D2, . . . , Dd operating through the coefficient ring F (N, L]).

Hence we may write F (N, L]),D), where

D = {σ̂, D1, D2, . . . , Dd, θ
∗} and θ∗ = {θ(i)}i∈N.

For an element a ∈ L], we denote by a] the constant function on N taking the value
a so that

a](n) = a for every n ∈ N.

Therefore a] ∈ F (N, L]). The latter is a sub-ring of the ring of twisted power series ring
F (N, L])[[X]]. We can canonically identify the ring

F (N, L]) = {
∞∑
i=0

Xiai | ai = 0 for every i ∈ N∗}.

Namely, we have canonical inclusions

L] → F (N, L])→ F (N, L])[[X]].

We denote the image of an element a ∈ L] by a].
We are ready to define Galois hull as in Definition 2.1.

Definition 3.46. The Galois hull L/K is a D-invariant sub-algebra extension in
F (N, L])[[X]], where L is the D-invariant sub-algebra generated by the image ι(L) and
L] and K is the D-invariant sub-algebra generated by the image ι(k) and L]. So L/K is
a D-algebra extension.

We pass to the task of defining the infinitesimal deformation functor FL/k and the in-
finitesimal automorphism functor Inf-gal (L/k). We have the universal Taylor morphism

ιL] : L] →
(
L\[[W1,W2, . . . ,Wd]],

{
∂

∂W1
,
∂

∂W2
, . . . ,

∂

∂Wd

})
(44)

as in (5). So by (44), we have the canonical morphism

(F (N, L]),D)→ (F (N, L\[[W ]]),D), (45)
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where in the target space

D =
{

Σ,
∂

∂W1
,
∂

∂W2
, . . . ,

∂

∂Wd
, θ∗
}

by abuse of notation.
For an L\-algebra A, the structure morphism L\ → A induces the canonical morphism

(F (N, L\[[W ]]),D)→ (F (N, A[[W ]]),D). (46)

The composite of the D-morphisms (45) and (46) gives us the canonical morphism

(F (N, L]),D)→ (F (N, A[[W ]]),D). (47)

The restriction of the morphism (47) to the D-invariant sub-algebra L gives us the canon-
ical morphism

ι : (L,D)→ (F (N, A[[W ]]),D). (48)

We can define the functors exactly as in 2.5 and 2.6 in the difference case.

Definition 3.47. We define the functor

FL/k : (Alg/L\)→ (Sets)

from the category (Alg/L\) of L\-algebras to the category (Sets) of sets, by associating
to an L\-algebra A, the set of infinitesimal deformations of the canonical morphism (47).

Hence

FL/k(A) = {f : (L,D)→ (F (N, A[[W1,W2, . . . ,Wd]])[[X]],D) | f is a D-morphism

congruent to the canonical morphism ι modulo nilpotent elements

such that f = ι when restricted to the sub-algebra K}.

The definition of the group functor Inf-gal (L/k) is similar.

Definition 3.48. The Galois group in our Galois theory is the group functor

Inf-gal (L/k) : (Alg/L\)→ (Grp)

defined by

Inf-gal (L/k)(A) = { f : L⊗̂L]A[[W ]]→ L⊗̂L]A[[W ]] |
f is a K ⊗L] A[[W ]]-automorphism compatible with D,

continuous with respect to the W -adic topology

and congruent to the identity modulo nilpotent elements}

for an L\-algebra A. See Definition 2.19 in [12].

Then the group functor Inf-gal (L/k) operates on the functor FL/k in such a way that
the operation (Inf-gal (L/k),FL/k) is a principal homogeneous space.

3.3.4. Picard-Vessiot theory in iterative q-difference algebra. From now on in this sec-
tion, for an iterative q-difference algebra (R, σ, δ∗), we assume that the endomorphism
σ : R→ R is an automorphism. We denote by CR the ring

{a ∈ R | δ(i)(a) = 0 for every i ∈ N∗}
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of constants of R. Let L be a Picard-Vessiot extension of iterative q-difference field k as
in Hardouin [5]. Hence we have

(1) L = k(zij)1≤i, j≤n,
(2)

δ(i)(Z) = AiZ for every i ∈ N∗ = {1, 2, 3, . . .} (49)

with Ai ∈ Mn(k), Z = (zij) ∈ GLn(L), and such that
(3) C := CL = Ck.
(4) R = k[Z, (detZ)−1] is a Picard-Vessiot ring in the sense of Definition 4.3 in [5].

Theorem 3.49 (Theorem 4.12 in [5]). The automorphism group Aut(L/k) has a natural
structure of affine group scheme of finite type over the field C := Ck.

In fact, to be more precise, Hardouin [5] proved that the group functor Aut(L/k) on
the category (Alg/CR) of CR-algebra is representable. We denote the affine group scheme
Aut(L/k) by Gal(L/k).

Theorem 3.50. Let L/k be a iterative q-difference Picard-Vessiot extension. Then there
exists a canonical isomorphism

Lie (Inf-gal (L/k)) ' Lie (Gal (L/k))⊗C L\

of Lie algebras over L\.

This theorem is a particular case of the following general conjecture.

Conjecture 3.51. We can expect an extreme generalization of Theorem 3.50. Namely,

(1) We have a Picard-Vessiot theory with respect to a bialgebra D.
(2) One can develop a further generalization of our general Galois theory that we have

seen in Section 2 for the difference case and in Sub-section 3.2 for the differential
case.

(3) For a Picard-Vessiot extension L/k with respect to a bialgebra, we have a canonical
isomorphism

Lie (Inf-gal (L/k)) ' Lie (Gal (L/k))⊗C L\

of Lie algebras over L\.

Heiderich [7], [8] constructed a general Galois theory and he answered affirmatively
Conjecture 3.51 for a wide class of Picard-Vessiot extensions. In the last part of [7],
however, he assumes that the bialgebra is a cocommutative Hopf algebra. So Picard-
Vessiot theory of iterative q-difference equations is excluded from Corollary 4.2.8, [7].
Recent preprint of Masuoka [11] offers us a way to reduce iterative q-difference Picard-
Vessiot theory to a cocommutative Hopf algebra.

Another uncomfortable point of Corollary 4.2.8 is that the isomorphism of Lie algebras
is not defined over the field L\ but over a finite separable extension L′ of L\.

We expect that the proof of Theorem 3.20 in 3.1 would yield a proof of Conjecture 3.51.

3.3.5. Proof of Theorem 3.50. In the difference case, we started from the universal Euler
morphism

L→ (F (N, L]),Σ)
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and then we added the derivations {D1, D2, . . . , Dd} to the difference ring (F (N, L\),Σ).
We worked in the difference-differential ring

(F (N, L]),Σ, {D1, D2, . . . , Dd})

for construction of the Galois hull L.
Similarly in the differential case, we use the universal Taylor morphism

L→ (L\[[X]], d/dX)

to start with and then add the derivations {D1, D2, . . . , Dd} to the differential ring

(L\[[X]], d/dX).

We worked in the partial differential ring

(L\[[X]], d/dX, {D1, D2, . . . , Dd})

to construct the Galois hull L in the partial differential ring.
The proof of Theorem 3.23 which is a differential analogue of Theorem 3.20 is done

by using the differential counterparts according to the list in 3.2.
We are in the same situation for the iterative q-difference case. We start from the

twisted universal Taylor morphism

L→ ((F (N, L\)[[X]], σ̂, θ∗)

and then we add the derivations {D1, D2, . . . , Dd} to the q-SI σ-differential ring to get

((F (N, L\)[[X]], σ̂, θ∗, {D1, D2, . . . , Dd}.) (50)

The Galois hull L is constructed in the ring (50). The proof of the theorem is more or
less automatic if we replace, according to the list below, what is in difference algebra by
its counterpart in iterative q-difference algebra.

Proposition 3.52. We use the notation above so that L/k is a iterative q-difference
Picard-Vessiot extension. Then

L = ι(L).L]

that is a D-sub-algebra of the non-commutative algebra F (N, L])[[X]] of twisted formal
power series. Moreover the Galois hull L is commutative.

Proof. Using the notation above, we set B := ι(Z)Z]−1 ∈ GLn(F (N, L])[[X]]).
Then iterative q-difference analogues of lemmas in the difference case hold without

any change according to the list of replacements below. Then all the arguments in the
proof of Lemmas 3.3, 3.5, 3.6 and 3.8 work showing

L = ι(L).L] (51)

in the twisted formal power series ring F (N, L])[[X]]. Since L] is in the center of the
non-commutative ring F (N, L])[[X]], the algebra L is commutative by (51).
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We give below the list of replacements.

Difference theory Iterative q-difference theory
L\ L\

Universal Euler morphism Universal twisted Taylor morphism
(F (N, L\),Σ) (F (N, L\)[[X]], σ̂, θ∗)
Shift operator Σ Difference operators σ̂, θ∗

L] L]

D1, D2, . . . , Dd D1, D2, . . . , Dd

F (N, L\[[W ]]) F (N, L\[[W ]])[[X]]
A[[W ]] A[[W ]]
F (N, A[[W ]]) F (N, A[[W ]])[[X]]

Now using the list, we examine the procedure of proof of Theorem 3.20 in 3.1 in iterative
q-difference context.

Once the Galois hull L is determined in Proposition 3.52, the next goal is to show
an iterative q-difference analogue of Proposition 3.18 which implies Theorem 3.50. In the
proof of Proposition 3.18, we use only Lemma 3.11 and linear disjointness theorems over
constants of which Lemma 3.9 is a typical example.

As for the linear disjointness theorems, the following lemma generalizes Lemma 3.9
as well as Lemma 3.28.

Lemma 3.53. Let (R, σ, θ∗) be a q-SI σ-differential ring and M a q-SI σ-differential
sub-field. Then the field M and the ring CR of constants of R are linearly disjoint
over CM .

Proof. The proof of Lemma 3.9 and the proof of Lemma 3.28 depend on the same prin-
ciple. In a q-SI σ-differential ring we have both an endomorphism σ and a family θ∗ of
C-linear maps. The combination of the proofs of Lemmas 3.9, 3.28 gives the proof of
Lemma 3.53.

We also need a linear disjointness theorem in a mixed version as in Remark 3.17.
The proof of the mixed version poses no problem and Theorem 3.50 is proved. We have
to discuss q-SI σ-differential analogue of Lemma 3.11. We can prove an analogue of
Lemma 3.11 if q is not a root of 1. When q is a root of 1, however, a naive analogue of
Lemma 3.11 looks false. We used Lemma 3.11, in the proof of Proposition 3.18, to show
that ι(k)[B, (detB)−1]k\ and L\ are linearly disjoint over k\ = k].

To remedy this we prove Lemma 3.55 below so that we can prove Proposition 3.18
without Lemma 3.11. To this end, we first need

Lemma 3.54. The field
CQ(ι(k)[B,(detB)−1]L].L\)

of constants of the q-SI σ-differential field

Q(ι(k)[B, (detB)−1]L].L\)

is Q(L].L\).
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Proof. We have ι(k)[B, (detB)−1]L].L\ = ι(k)[Z, (detZ)−1]L]. So we have to show that

CQ(ι(k)[Z,(detZ)−1]L]L\) = Q(L]L\).

We have

ι(k[Z, (detZ)−1]).L].L\ ' (k[Z, (detZ)−1]⊗C L])⊗k] L\ (52)

' k[Z, (detZ)−1]⊗C (L] ⊗k] L\) (53)

as q-SI σ-differential rings. So the field Q(ι(k[Z, (detZ)−1]).L].L\) is obtained from the
field ι(k[Z, (detZ)−1]) by extending the constant field. Therefore the lemma is proved.

Lemma 3.55. The field
CQ(ι(k)[B,(detB)−1]k])

of constants of of the q-SI σ-differential field Q(ι(k)[B, (detB)−1]k]) is k].

Proof. Let w be a constant of the q-SI σ-differential field Q(ι(k)[B, (detB)−1]k]). So
there exist elements f, g ∈ ι(k)[B, (detB)−1]k] with g 6= 0 such that

w =
f

g
. (54)

The elements f and g belong to F (N, k])[[X]],

f =
∞∑
i=0

Xiai(n), g =
∞∑
i=0

Xibi(n). (55)

where ai(n), bi(n) ∈ F (N,M) are functions on N. We mean by n a variable varying
in N. If we work in the over-ring F (N, L\((W )))[[X]] of F (N, L\[[W ))]][[X]], we have
by Lemma 3.54, w is a constant function w(n) taking a constant value c ∈ Q(L].L\)
⊂ L\((W )). It follows from (54) that we have

f = cg,

which is an equality in F (N, L\((W ))[[X]] so that by (55),
∞∑
i=0

Xiai(n) = c

∞∑
i=0

Xibi(n). (56)

Therefore
ai(n) = bi(n) for every i ∈ N.

We choose an integer l ∈ N such that bl(n) 6= 0 so that

al(n) = cbl(n). (57)

Since bl(n) 6= 0, there exists an integer n ∈ N such that

bl(n) 6= 0.

By (57)
c = al(n)/bl(n) ∈ k].

So we have proved the inclusion

CQ(ι(k)[B,(detB)−1]k]) ⊂ k].

The opposite inclusion being trivial, the lemma is proved.
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4. Beyond Picard-Vessiot theory

4.1. Strongly normal extensions. We can apply the argument of the proof of The-
orem 3.20 not only to differential Picard-Vessiot extensions but also to strongly normal
extensions in differential algebra or in Kolchin’s Galois theory.

Theorem 4.1 (Theorem (5.15) in [18]). Let L/k be a strongly normal extension with
Galois group G = Gal(L/k). Then we have an isomorphism

Lie (Inf-gal (L/k)) ' Lie (Gal (L/k))⊗C L\

of L\-Lie algebras.

Wibmer [24] defined difference strongly normal extensions.

Question 4.2. Let L/k be a strongly normal extension of difference fields. Do the argu-
ments in the proof of Theorem 3.20 apply to this case so that we have an isomorphism

Lie (Inf-gal (L/k)) ' Lie (Gal (L/k))⊗C L\

of L\-Lie algebras?

4.2. Quantification of the Galois groupoid? In unified general Galois theory with
Hopf algebra H, the universal Euler morphism or the universal Taylor morphism is nicely
generalized as the algebra morphism

ι : L→C M(H, L).

As we have seen for an iterative q-difference algebra, the algebra CM(H, L), which is the
dual of the coalgebra H, is not commutative if the coalgebra H is not cocommutative.
The Galois hull L is a sub-algebra of the eventually non-commutative algebra CM(H, L).
We have, however, the following result generalizing Proposition 3.52.

Lemma 4.3 (Heiderich [7]). For a Picard-Vessiot extension L/k in Hopf Galois theory,
the Galois hull L = ι(L).L] and L is a commutative algebra.

Proof. The proof of Proposition 3.52 works in a general setting. See Heiderich [7], Lem-
ma 4.2.1.

A similar assertion is expected for G-primitive extensions.

Question 4.4. Can we define G-primitive extension in the framework of Heiderich [7]
so that we can prove an analogue of Lemma 4.3?

This does not seem difficult.
We explained in [13], [21] and [22] that the Galois hull L/K is an algebraic counterpart

of the Galois groupoid. Hence Lemma 4.3 says that so far as we deal with linear difference,
difference-differential equations, no matter how twisted or how non-commutative the
operators are, the Galois hull L is commutative. In other words, we do not encounter the
quantum groupoid.

The following natural and fundamental question arises.

Question 4.5. When the Galois hull L is non-commutative, what does it describe? Does
it give a quantification of the algebraic groupoid?
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Since for Picard-Vessiot extensions or more generally G-primitive extensions if we
assume an affirmative answer to Question 4.4, the Galois hull L is commutative, to explore
Question 4.5 we must study an extension L/k far different from G-primitive extensions,
a Picard-Vessiot extension being a particular G-primitive extension. We know in the
differential case that Painlevé equations offer us examples of such extensions L/k.

To illustrate this, we recall, as a particular example, the following theorem that the
first Painlevé equation is not reducible to the classical functions.

Theorem 4.6 (Umemura [16]). Let k be the differential field (C(x), d/dx) of the rational
function field of 1-variable x. Let y be an element of a differential over-field M of C(x)
satisfying the first Painlevé equation

y′′ = 6y2 + x.

Then the differential field extension L := k〈y〉 = C(x, y, y′) over the base field k = C(X)
is not classical. Namely, there does not exist a tower

k = L0 ⊂ L1 ⊂ · · · ⊂ Ln
of differential field extensions such that

L ⊂ Ln
and such that the extension Li+1/Li is of one of the following types:

(1) adjunction of constants,
(2) G-primitive extension, of which a Picard-Vessiot extension is a special case,

for 0 ≤ i ≤ n− 1.

The observation above leads Heiderich to the following proposal.

Proposal 4.7 (Heiderich). Shall we start our expedition with well-twisted Painlevé equa-
tions?

Acknowledgements. We are grateful to Heiderich for explaining to us his Galois theory
of D-module fields. In fact, this note was born out of discussions with him. It is evident
that without these discussions, the note would not exist. We express our thanks also to
Masuoka who taught us recent developments of Hopf Galois theory.
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Acad. Sci. Paris 346 (2008), 1155–1158.

[22] H. Umemura, On the definition of the Galois groupoid, Astérisque 323 (2009), 441–452.
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