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Abstract. The first and the second Painlevé equations are explicitly Hamiltonian with time
dependent Hamilton function. By a natural extension of the phase space one gets corresponding
autonomous Hamiltonian systems in C4. We prove that the latter systems do not have any
additional algebraic first integral. In the proof equations in variations with respect to a parameter
are used.

1. Introduction. The equations

d2x

dt2
= 6x2 + t (1)

and
d2x

dt2
= 2x3 + tx+ α (2)

(α a parameter) are known as the first P1 and the second P2 Painlevé equations re-
spectively (see [GLS]). They are Hamiltonian equations with time dependent Hamilton
functions: 1

2 ẋ
2 − 2x3 − tx and 1

2 ẋ
2 − 1

2x
4 − 1

2 tx
2 − αx.

Denoting ẋ = y, t = q and introducing an additional variable p we get the systems

ẋ = y, ẏ = 6x2 + q, q̇ = 1, ṗ = x (3)

and
ẋ = y, ẏ = 2x3 + xq + α, q̇ = 1, ṗ = x2/2, (4)

where the dot denotes differentiation with respect to a new time (say τ). The latter
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systems are Hamiltonian with the (time independent) Hamilton functions

H =
1
2
y2 − 2x3 − xq + p (5)

and
H =

1
2
y2 − 1

2
x4 − 1

2
x2q − αq + p. (6)

We obtain Hamiltonian systems with two degrees of freedom such that the functions (5)
and (6) are their respective first integrals.

Also other Painlevé equations, i.e. P3, P4, P5 and P6, can be rewritten in the Hamilto-
nian form with time dependent Hamilton functions and admit extensions to autonomous
Hamiltonian systems with two degrees of freedom. (The corresponding changes of coor-
dinates and the Hamilton functions are rather complicated, so we do not present them
here.) Recently E. Horozov and Ts. Stoyanova [HS, Sto] considered the question of inte-
grability in the sense of Liouville and Arnold of the Hamiltonian system in C4 related
to the sixth Painlevé equation. They proved that for some special (but not discrete)
values of parameters α, β, γ, δ (which appear in P6) this system is not integrable in the
Liouville–Arnold sense.

Recall that an autonomous Hamiltonian vector field XH on a (real or complex) sym-
plectic manifold M (of dimension 2n and equipped with a symplectic 2-form ω) is com-
pletely integrable (or integrable in the Liouville–Arnold sense1) if there exist function-
ally independent first integrals H0 = H,H1, . . . ,Hn−1 which have zero pairwise Poisson
brackets (see [Arn]). Here the Hamiltonian vector field XH is defined by the condition

ω(XH , Z) = 〈dH,Z〉 =
∂H

∂Z

(for any vector field Z) and the Poisson bracket of two functions F and G equals

{F,G} = ω(XG, XF ) = ∂G/∂XF .

In our situation M = C4 and ω = dx ∧ dy + dq ∧ dp. If Hj are algebraic functions on C4

then we say that the vector field XH is algebraically integrable in the Liouville–Arnold
sense.

The main result of the paper is the following

Main Theorem 1.1. Each of systems (3) and (4) does not admit any first integral which
is an algebraic function of x, y, p, q and is independent of H.

Horozov and Stoyanova applied a version of the Ziglin method [Zig], developed by
J.-P. Ramis with J. Morales-Ruiz [M-R]. It uses the monodromy group (or the differential
Galois group) of the normal variation equation for a particular algebraic solution of the
corresponding Hamiltonian system. In the case of complete integrability with rational
first integrals the identity component of this differential Galois group should be abelian.
In the case of the P6 equation suitable algebraic solutions exist for special values of the
parameters. By direct computation of the monodromy group Horozov and Stoyanova

1Horozov and Stoyanova say that the system is integrable in the Liouvillian sense. But in
Differential Galois Theory there exists a notion of Liouvillian function (which is a function
expressed in quadratures), so it is safer to speak about Liouville–Arnold integrability.
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show that the identity component of the differential Galois group of the normal variation
equation is not abelian.

Another method to prove the non-integrability is to exhibit heteroclinic orbits after
perturbation of a system with some separatrix connection.

Our method of proof of the Main Theorem is different and probably new. By a suitable
normalization of the variables we arrive at a perturbation of a completely integrable
system with two algebraic first integrals. Then we consider the equation in variations
with respect to a parameter (denoted by ε) around a particular solution which is a rather
general elliptic curve. Then analysis of few initial terms in powers of ε of a possible first
integral of the perturbed system leads to some properties of elliptic integrals which cannot
be true.

Finally note that in [GLS] V. Gromak, I. Laine and S. Shimomura proved the non-
existence of any first integral of the equation P1 which is an algebraic function of x,
ẋ and t. The latter result follows from the Main Theorem. Indeed, any such integral
F (x, ẋ, t), treated as a function of x, y, q, p, would be a first integral of the Hamiltonian
system (3); moreover, independent of H.

2. Proof of the Main Theorem. In the proof we focus on system (3). System (4) is
analyzed along the same lines and we briefly discuss it at the end of this section.

After applying the change x 7→ µ−2x, t 7→ µt equation (1) becomes

ẍ = 6x2 + εt, ε = µ5.

Putting εt = q, ẋ = y and introducing an additional momentum p, we arrive at the
Hamiltonian system

ẋ = y, ẏ = 6x2 + q, q̇ = ε, ṗ = x (7)

with the Hamilton function

Hε =
1
2
y2 − 2x3 − qx+ εp. (8)

The change between the old and the new variables is the following:

x 7→ µ−2x, y 7→ µ−3y, q 7→ µ−4q, p 7→ µ−1p. (9)

Of course, if system (3) has an additional first integral F then also system (7) has an
integral Fε independent of Hε. Moreover Fε should depend algebraically on ε.

The following result is rather obvious.

Lemma 2.1. For ε = 0 system (7) is completely integrable with the functions H0 = Hε|ε=0

and H1 = q playing the role of first integrals in involution.

The common level sets
H0 = h0, q = q0

are of the form Γ× C1 where Γ is the elliptic curve

Γ = Γ(q0, h0) =
{
y2 = 4x3 + 2q0x+ 2h0

}
(10)
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and C1 is the line {(p, q) : q = q0}.2 The solutions to equation (7) for ε = 0 are

x = P(t− t0), y = P ′(t− t0), p = p0 +Q(t− t0), q = q0. (11)

Here P(t) (the Weierstrass P-function), P ′(t) and Q(t) are elliptic functions defined by
the following formulas:∫ (P,P′)

(x0,y0)

dx

y
= t, Q(t) =

∫ t

0

P(s)ds =
∫ (P,P′)

(x0,y0)

xdx

y
, (12)

where the integral
∫ (P,P′)

(x0,y0)
runs along a path in the complex curve Γ from some initial

point (x0, y0) to the point (x, y) = (P(t),P ′(t)) . Below we fix the initial conditions by
putting

y0 = 0, t0 = 0 (13)

and x0 as some root of the equation 4x3 + 2q0x+ 2h0 = 0.
Suppose that system (7) has an algebraic first integral Fε(x, y, p, q) = F (x, y, p, q; ε),

which depends algebraically on ε and is independent of Hε. Let us expand Fε in (rational)
powers of ε:

Fε = F0(x, y, p, q) + εα1F1(x, y, p, q) + . . . , (14)

where 0 < α1 < α2 < . . . .We can assume the above form, otherwise we multiply the first
integral by a power of ε.

Of course, F0 is a first integral of system (7) for ε = 0. Therefore it is an algebraic
function of H0 and q,

F0 = G0(H0, q).

We have two possibilities:

(i) G0 depends on q;
(ii) G0 does not depend on q, G0 = G0(H0).

In the second case we replace Fε with Fε − G0(Hε) and divide it by a power of ε.
After finitely many such operations we arrive to the form (14) with F0 = G0(H0, q) and
∂G0/∂q 6≡ 0.

Take q0 and h0 in equation (2.4) such that
∂G0

∂q
(h0, q0) 6= 0. (15)

Take also the solution (11) with the initial condition (13): x = P(t), y = P ′(t), p =
p0 +Q(t), q = q0.

We consider the equation in variations with respect to the parameter along this solu-
tion. Therefore we substitute

x = P(t) + εx1(t), y = P ′(t) + εy1(t), p = p0 +Q(t) + εp1(t), q = q0 + εq1(t), (16)

2In the real case the elliptic curve has (typically) either one unbounded component (and
Γ × R1 is diffeomorphic to R2) or two components with one compact oval (the corresponding
component of Γ×R1 is diffeomorphic to S1×R1). This agrees with the Liouville–Arnold theorem
[Arn] about completely integrable Hamiltonian systems: the connected components of common
level surfaces of the first integrals Hj are of the form Tk × Rn−k.
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x1(0) = y1(0) = p1(0) = q1(0) = 0, into system (7) and solve it modulo O(ε2). But for
our purposes we do not need to solve the whole system, we need only the solution for q.
It takes the form

q(t) = q0 + εt. (17)

We have also
Hε ≡ h0 + εh1 +O(ε2), Fε ≡ f0 + εα1f1 + . . . (18)

on this solution; here f0 = G0(h0, q0) and hj and fj depend on h0, q0 and p0.

From equations (8), (17) and (18) we obtain

F0 = G0(H0, q) ≈ G0(Hε − εp, q0 + εt) ≈ G0(h0 + εh1 − εp, q0 + εt)

= f0 + ε

{
∂G0

∂H0
(h0, q0) · (h1 − p0 −Q(t)) +

∂G0

∂q
(h0, q0) · t

}
+O(ε2)

= f0 + ε {A+BQ+ Ct}+O(ε2),

where A, B, C 6= 0 are constants not depending on t. We substitute it to the equation
F0 + εα1F1 + . . . ≡ f0 + εα1f1 + . . . and we arrive at an equation of the form

εα1 · {F1(P,P ′, p0 +Q, q0)− f1}+ . . .+ ε · {A+BQ+ Ct}+ . . . ≡ 0, (19)

Suppose α1 < 1. Then the term εα1 · {F1 − f1} is dominating and hence it vanishes,
it defines some relation between elliptic functions. The same statement holds for other
terms in (19) with εαj , α1 < αj < 1.

But for αk = 1 equation (19) implies a relation of the form

t ≡ Φ(P(t),P ′(t),Q(t)),

where Φ is an algebraic function of its arguments. In other words, t is an algebraic function
of the functions P(t), P ′(t) and Q(t). Let us rewrite the corresponding algebraic equation
in the following form: ∑

m,n

am,n(P,P ′)tmQn = 0, (20)

where am,n are polynomials of P and P ′.
Recall now that the Weierstrass function is doubly periodic:

P(t+ ω1) = P(t), P(t+ ω2) = P(t),

where the periods ωj are defined as complete elliptic integrals

ω1 =
∮
γ1

dx

y
, ω2 =

∮
γ2

dx

y

along two curves γ1,2 ⊂ Γ which generate the first homology group of the Riemann
surface Γ. If x1, x2, x3 are zeroes of the polynomial 4x3+2q0x+2h0, then γ1 (respectively
γ2) is a lift to the Riemann surface of the function

√
4x3 + 2q0x+ 2h0 of a loop which

surrounds the points x1, x2 (respectively x1, x3) in the x-plane.
The function Q(t) is not periodic, but it satisfies the following relations:

Q(t+ ω1) = Q(t) + η1, Q(t+ ω2) = Q(t) + η2,
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where
ηj =

∫ ωj

0

P(t)dt =
∮
γj

xdx

y
, j = 1, 2,

are also complete elliptic integrals. These statements reflect the fact that the integration
path in equations (12) is not unique.

We need the following result whose proof we postpone to the end of the section.

Lemma 2.2. We have ∣∣∣∣ ω1 ω2

η1 η2

∣∣∣∣ 6= 0

for typical parameters q0 and h0.

Let us replace the function t with

R(t) = t− ω1

η1
Q(t).

It has the following properties:

R(t+ ω1) = R(t), R(t+ ω2) = R(t) + κ, κ = ω2 − ω1(η2/η1) 6= 0. (21)

Equation (20) takes the form ∑
m,n

bm,n(P,P ′)RmQn ≡ 0. (22)

Because only the function Q is not invariant with respect to translation by ω1, we
must have n = 0 in the above formula. But then also m = 0, because otherwise the left
hand side is not invariant with respect to the translation by ω2.

On the other hand, the degree with respect to R of the polynomial in equation (22)
must be ≥ 1 since equation (2.14) defines t as an algebraic function of P, Q and P ′.

The latter contradiction proves the Main Theorem for the first Painlevé equation.

In the case of equation P2 an analogous normalization leads to the Hamiltonian system

ẋ = y, ẏ = 2x3 + qx+ β, q̇ = ε, ṗ = x2/2

with the Hamilton function

Hε =
1
2
y2 − 1

2
x4 − 1

2
qx2 − βx+ εp.

(Here β may depend on ε, but it does not change our argument). As before, for ε = 0
the system is completely integrable with H0 and H1 = q as independent first integrals
in involution. The common level surfaces of these first integrals are of the form Γ × C1,

where
Γ =

{
y2 = x4 + q0x

2 + 2βx+ 2h0

}
is also an elliptic curve. The solutions to the unperturbed system are as in (11), with
P(t) an elliptic integral (but not just the Weierstrass P-function) and

Q(t) =
1
2

∫ t

0

P2(s)ds =
1
2

∫ (P,P′)

(x0,y0)

x2dx

y
.

The remaining part of the proof is the same. The complete elliptic integrals ωj are
defined as above, with the loops γj being lifts to the Riemann surface of the function
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x4 + q0x2 + 2βx+ 2h0 of loops (in the x-plane) which surround the pairs {x1, x2} and
{x1, x3} respectively of zeroes of the polynomial x4 + q0x

2 + 2βx+ 2h0. The periods ηj
are

∮
γj
x2dx/y. An analogue of Lemma 2.2 is proved in the same way as below.

The proof of the Main Theorem is complete.

Proof of Lemma 2.2. This result is well known in the theory of integrals of holomorphic
forms along cycles in Riemann surfaces, see [Zol] for example. For the sake of completeness
we present its quite standard proof.

Fix q0 and assume that h0 = −2λ6 < 0 is large. Then the normalization x = λ2X,

y = 2λ3Y replaces the curve (10) with a curve close to Y 2 = X3−1. The elliptic integrals
are

ωj ≈
1

2λ

∮
γj

dX

Y
, ηj ≈

λ

2

∮
γj

XdX

Y
.

We replace the cycles γ1 and γ2 by cycles along ridges of the cut of the x-plane along
segments [0, 1] ∪ [0, e2πi/3] and [0, 1] ∪ [0, e−2πi/3] respectively. We also make the change
X = ζz1/3, z ∈ [0, 1] and ζ = 1 or = e±2πi/3, along corresponding segments. Each
segment gives the contribution

2ζ
∫ 1

0

d
(
z1/3

)
√
z − 1

=
2ζ
3i

∫ 1

0

z−2/3(1− z)−1/2dz

(with a proper sign) to the integral
∫
dX/Y , and an analogous contribution to

∫
XdX/Y.

This gives

ω1 ≈
e2πi/3 − 1

3iλ
B(1/2, 1/3), ω2 ≈

e−2πi/3 − 1
3iλ

B(1/2, 1/3),

η1 ≈
e−2πi/3 − 1

3i
λB(1/2, 2/3), η2 ≈

e2πi/3 − 1
3i

λB(1/2, 2/3),

where B(·, ·) is the Euler beta function.
Now it is clear that the determinant from Lemma 2.2 is nonzero. (In fact, this deter-

minant is constant as a function of h0.)

Acknowledgments. The work was supported by Polish MNiSzW Grant No N N201
397937.

I would like to thank Galina Filipuk for her critical remarks about the first version of
this paper.

References

[Arn] V. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York,
1989; Russian: Nauka, Moskva, 1974.

[GLS] V. Gromak, I. Laine and S. Shimomura, Painlevé Differential Equations in the Complex
Plane, De Gruyter Studies in Mathematics 2, Walter de Gruyter, Berlin, 2002.

[HS] E. Horozov and Ts. Stoyanova, Non-integrability of some Painlevé VI equations and
dilogarithms, Regular Chaotic Dynam. 12 (2007), 620–627.

[M-R] J. Morales-Ruiz, Differential Galois Theory and Non-integrability of Hamiltonian Sys-
tems, Birkhäuser, Basel, 1995.



302 H. ŻOŁĄDEK

[Sto] Ts. Stoyanova, Non-integrability of Painlevé VI in the Liouville sense, Nonlinearity 22
(2009), 2201–2230.

[Zig] S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian
mechanics. I, Funct. Anal. Appl. 16 (1983), 181–189; II, Funct. Anal. Appl. 17 (1983),
6–17; Russian: Funkts. Anal. Prilozh. 16 (1982), 30–41; 17 (1983), 8–23.

[Zol] H. Żołądek, The Monodromy Group, Monografie Matematyczne 67, Birkhäuser, Basel,
2006.

http://dx.doi.org/10.1088/0951-7715/22/9/008
http://dx.doi.org/10.1007/BF01081586

	Introduction
	Proof of the Main Theorem

