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ABSOLUTELY CONTINUOUS LINEAR OPERATORS
ON KÖTHE-BOCHNER SPACES

KRZYSZTOF FELEDZIAK

Abstract. Let E be a Banach function space over a �nite and atomless measure space (Ω,Σ, µ)

and let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real Banach spaces. A linear operator T acting from
the Köthe-Bochner space E(X) to Y is said to be absolutely continuous if ‖T (1Anf)‖Y → 0

whenever µ(An)→ 0, (An) ⊂ Σ. In this paper we examine absolutely continuous operators from
E(X) to Y . Moreover, we establish relationships between di�erent classes of linear operators
from E(X) to Y .

1. Introduction and notation. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real Banach spaces

and let BX stand for the closed unit ball in X. Let X∗ and Y ∗ stand for the Banach

duals of X and Y respectively. Let N and R denote the sets of natural and real numbers.

Now we establish terminology concerning function spaces (see [AB], [KA], [Z]).

Throughout the paper we assume that (Ω,Σ, µ) is a �nite and atomless measure space.

By 1A we will denote the characteristic function of a set A ∈ Σ. By L0 we denote the

corresponding space of µ-equivalence classes of Σ-measurable real valued functions de-

�ned on Ω. Let (E, ‖ · ‖E) be a Köthe function space in L0, that is, E is an ideal of L0

with suppE = Ω and ‖ · ‖E is a Riesz norm.

Now we recall terminology and basic concepts from the theory of vector-valued func-

tion spaces (see [CM], [DU], [L]). By L0(µ,X) we denote the space of µ-equivalence

classes of all strongly Σ-measurable functions f : Ω −→ X. For f ∈ L0(µ,X) let us set

f̃(ω) := ‖f(ω)‖X for ω ∈ Ω. The linear space E(X) = {f ∈ L0(µ,X) : f̃ ∈ E} provided
with the norm ‖f‖E(X) := ‖f̃‖E is a Banach space and is called a Köthe-Bochner space .

Orlicz [O] and Orlicz and Wnuk [OW] de�ned and studied absolutely continuous

operators acting from Banach function spaces E to a Banach space Y . In this paper we
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extend the results of [OW] to the vector-valued setting, i.e., we study linear operators

from E(X) to Y .
For each u ∈ E+ the set Iu = {f ∈ E(X) : f̃ ≤ u} will be called an order interval

in E(X).
Nowak ([N1], [N2]) studied order-bounded and order-weakly compact operators acting

from E(X) to Y . Recall that a linear operator T : E(X)→ Y is said to be order-weakly

compact (resp. order-bounded) whenever for each u ∈ E+ the set T (Iu) is relatively-

weakly compact (resp. norm-bounded) in Y . We will need the following result (see

[N1, Theorem 2.3]).

Proposition 1.1. A linear operator T : E(X) −→ Y is order-bounded if and only if T

is (‖ · ‖E , ‖ · ‖Y )-continuous.

Moreover, if ‖ · ‖E is order continuous and X is a re�exive Banach space, then every

(‖ · ‖E , ‖ · ‖Y )-continuous linear operator T : E(X) −→ Y is order-weakly compact (see

[N2, Theorem 3.6]).

2. Absolutely continuous operators on Köthe-Bochner spaces

Definition 2.1. A linear operator T : E(X) −→ Y will be called absolutely continuous

whenever for every f ∈ E(X), T (1Anf) −→ 0 as µ(An) −→ 0, (An) ⊂ Σ.

Proposition 2.2. If T : E(X) −→ Y is absolutely continuous, then it maps order

bounded sequences in E(X) with pairwise disjoint terms into null sequences.

Proof. Let u ∈ E+ and let (fn) be a sequence in Iu with pairwise disjoint terms, i.e.,

supp fn ∩ supp fm = ∅ if n 6= m. Let f : Ω −→ X be the function de�ned by

f(ω) =


fn(ω) if ω ∈ supp fn, n = 1, 2, . . .

0 if ω ∈ Ω \
∞⋃
n=1

supp fn .

Thus f̃ ≤ u, so f ∈ Iu.
Since fn = 1supp fnf and

∑∞
n=1 µ(supp fn) = µ(

⋃∞
n=1 supp fn) ≤ µ(Ω) < ∞, we get

µ(supp fn) −→ 0 and it follows that T (fn) = T (1supp fnf) −→ 0 in Y .

Lemma 2.3. If an operator T : E(X) −→ Y is absolutely continuous, then for each

f ∈ E(X) and ε > 0 there exists δ > 0 such that ‖T (1A g)‖Y ≤ ε for every A ∈ Σ with

µ(A) ≤ δ and g ∈ If̃ .

Proof. Assume that there exist f ∈ E(X), ε > 0 and sequences (An) in Σ, (gn) in If̃
such that

∑∞
n=1 µ(An) <∞ and ‖T (1Angn)‖Y > ε.

Since T is absolutely continuous, there exists k1 ∈ N such that ‖T (1⋃∞
i=k1

Ai g1)‖Y ≤ ε
2 .

Then, we can �nd k2 > k1 with ‖T (1⋃∞
i=k2

Ai gk1)‖Y ≤ ε
2 . Following this way we are able
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to �nd a sequence (kn) such that ‖T (1⋃∞
i=kn+1

Aigkn)‖Y ≤ ε
2 for n ∈ N. Thus we have

ε < ‖T (1Akn gkn)‖Y = ‖T (1Akn\
⋃∞
i=n+1Aki

gkn + 1⋃∞
i=n+1Aki

gkn)‖Y
≤ ‖T (1Akn\

⋃∞
i=n+1Aki

gkn)‖Y + ‖T (1⋃∞
i=n+1Aki

gkn)‖Y

≤ ‖T (1Akn\
⋃∞
i=n+1Aki

gkn)‖Y +
ε

2
,

so

(∗) ‖T (1Akn\
⋃∞
i=n+1Aki

gkn)‖Y >
ε

2
for n = 1, 2, . . . .

Let us put Bn = Akn \
⋃∞
i=n+1Aki and hn = 1Bngkn for n ∈ N. Then the sets

B1, B2, . . . are pairwise disjoint and h̃n ≤ g̃kn ≤ f̃ for n ∈ N. By Proposition 2.2 we get

‖T (hn)‖Y −→ 0, which contradicts (∗).

Theorem 2.4. If a linear operator T : E(X) −→ Y is absolutely continuous, then it is

(‖ · ‖E(X), ‖ · ‖Y )-continuous.

Proof. By Proposition 1.1 it is enough to show that T (Iu) is bounded in Y for every

u ∈ E+. If T (Iu) were not bounded, then we would �nd a sequence (fn) in Iu such

that ‖T (fn)‖Y −→ ∞. Thus we have ‖T (fn1)‖Y > 2 for some n1 ∈ N. Using the ab-

solute continuity of T we can �nd k ∈ N such that ‖T (1Afn1)‖Y < 1 for every A ∈ Σ
with µ(A) ≤ µ(Ω)

k . Since the measure µ is atomless, there exist pairwise disjoint sets

A1, . . . , Ak in Σ such that Ω =
⋃k
i=1Ai and µ(Ai) = µ(Ω)

k for i = 1, . . . , k. Thus we have
‖T (1Aifn1)‖Y < 1 for i = 1, . . . , k and supn ‖T (1Ajfn)‖Y = ∞ for some j ∈ {1, . . . , k}.
Putting g1 = 1Ω\Ajfn1 , we obtain ‖T (g1)‖Y > 1. Moreover, we can �nd a natural number

n2 > n1 such that ‖T (1Ajfn2‖Y > 2. Using the absolute continuity of T again, we can

�nd m ∈ N such that ‖T (1Afn2)‖Y < 1 for every A ∈ Σ, A ⊂ Aj with µ(A) ≤ µ(Aj)
m .

Obviously, there exist pairwise disjoint sets B1, . . . , Bm in Σ such that Aj =
⋃m
i=1Bi and

µ(Bi) = µ(Aj)
m for i = 1, . . . ,m. Then we have ‖T (1Bifn2)‖Y < 1 for i = 1, . . . ,m and

supn ‖T (1Blfn)‖Y = ∞ for some j ∈ {1, . . . ,m}. Let us put g2 = 1Aj\Blfn2 . Note that

‖T (g2)‖Y > 1 and g̃1 ∧ g̃2 = 0.
By induction we can de�ne a sequence (gn) of pairwise disjoint functions in Iu with

‖T (gn)‖Y > 1 for n = 1, 2, . . . .
The last inequality contradicts Proposition 2.2 and it proves that T is continuous.

Now we distinguish some classes of linear operators acting from E(X) to Y .

Definition 2.5.

(i) A linear operator T : E(X) −→ Y is said to be σ-smooth if f̃n
(o)−→ 0 in E implies

‖T (fn)‖Y −→ 0.

(ii) A linear operator T : E(X) −→ Y is said to be smooth if f̃α
(o)−→ 0 in E implies

‖T (fα)‖Y −→ Y .

Theorem 2.6. Assume that L∞ ⊂ E. For a linear operator T : E(X) −→ Y the following

statements are equivalent :

(i) T is absolutely continuous.

(ii) T is σ-smooth.
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Proof. (i)=⇒(ii) Assume that T is absolutely continuous. Choose a sequence (fn) in

E(X) with f̃n
(o)−→ 0 in E. Then there exists a decreasing sequence (un) in E+ such

that f̃n ≤ un ↓ 0 in E. Fix ε > 0. By Lemma 2.3 for u1 there exists δ > 0 such that

supn ‖T (1Afn)‖y ≤ ε
2 whenever A ∈ Σ with µ(A) ≤ δ. According to the Egoro� theorem

there exists a set A0 ∈ Σ with µ(Ω \ A0) ≤ δ such that 1A0fn(ω) −→ 0 uniformly

on Ω. It follows that 1A0fn −→ 0 in (E(X), ‖ · ‖). Thus ‖T (1A0fn)‖Y −→ 0 because by

Theorem 2.4 T is continuous. Hence

‖T (fn)‖Y ≤ ‖T (1A0fn)‖Y + ‖T (1Ω\A0fn)‖Y <
ε

2
+
ε

2
= ε

for su�ciently large n's, i.e., ‖T (fn)‖Y −→ 0.
(ii)=⇒(i) It is su�cient to show that for every f ∈ E(X) ‖T (1Anf)‖Y −→ 0 for every

(An) in Σ with µ(An) −→ 0. Let us take f ∈ E(X) and a sequence (An) in Σ such that

µ(An) −→ 0. Obviously 1An f̃
(o)−→ 0 and it follows that ‖T (1Anf)‖Y −→ 0 because T is

σ-smooth.

Now we brie�y recall terminology concerning locally solid topologies and the duality

of E(X) (see [FN], [N2]). A subset H of E(X) is said to be solid whenever f̃1 ≤ f̃2 and

f1 ∈ E(X), f2 ∈ H implies f1 ∈ H. A linear topology τ on E(X) is said to be locally

solid if it has a local base at zero consisting of solid sets. A locally solid topology τ on

E(X) is said to be a Lebesgue topology whenever for any net (fα) in E(X), f̃α
(o)−→ 0 in

E implies fα −→ 0 for τ .

A linear functional F on E(X) is said to be order continuous whenever f̃α
(o)−→ 0

in E implies F (fα) −→ 0. The set consisting of all order continuous linear functionals

on E(X) will be denoted by E(X)∼n and called the order continuous dual of E(X). Then
E(X)∗ = E(X)∼n if and only if the norm ‖ · ‖E is order continuous.

The following theorem will be of importance (see [N3, Theorem 4.1]).

Theorem 2.7. Assume that X∗ has the Radon-Nikodym property. Then the Mackey topol-

ogy τ(E(X), E(X)∼n ) is a locally convex-solid Lebesgue topology on E(X).

Now we are ready to state the following corollary.

Corollary 2.8. Assume that L∞ ⊂ E and X∗ has the Radon-Nikodym property. Then

for a linear operator T : E(X) −→ Y the following statements are equivalent :

(i) y∗ ◦ T ∈ E(X)∼n for every y∗ ∈ Y ∗.
(ii) T is (σ(E(X), E(X)∼n ), σ(Y, Y ∗))-continuous.
(iii) T is (τ(E(X), E(X)∼n ), ‖ · ‖Y )-continuous.
(iv) T is smooth.

(v) T is σ-smooth.

(vi) T is absolutely continuous.

Proof. (i)⇐⇒(ii) See [AB, Theorem 9.26].

(ii)⇐⇒(iii) See [AB, Example 11, p. 149].

(iii)=⇒(iv) It follows from Theorem 2.7.

(iv)=⇒(v) It is obvious.

(v)⇐⇒(vi) See Theorem 2.6.

(v)=⇒(i) It is obvious.
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