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Abstract. We study continuity envelopes of function spaces Bsp,q(R
n, w) and F sp,q(R

n, w) where

the weight belongs to the Muckenhoupt class A1. This essentially extends partial forerunners

in [13,14]. We also indicate some applications of these results.

1. Introduction. The purpose of this paper is to use the recently introduced concept
of continuity envelopes in function spaces in order to characterise weighted spaces of type
Bsp,q(R

n, w) and F sp,q(R
n, w) where w belongs to the Muckenhoupt class A1. This can be

understood as some counterpart of a parallel consideration for growth envelopes in [15].
It is well-known that weights from the Muckenhoupt class A1 ⊂ A∞ may have local

singularities, which can influence properties of the corresponding function spaces. One
may take the weight function

wα,β(x) =

{
|x|α, |x| < 1,

|x|β , |x| ≥ 1,
x ∈ Rn, (1)

as typical example, where α, β > −n. Weighted Besov and Triebel-Lizorkin spaces with
Muckenhoupt weights are meanwhile well known concepts, cf. [3,4] for a first systematic
approach; we refer to subsequent papers and some history in further detail below. In
contrast to this, the study of continuity envelopes has a rather short history; this new
tool was developed in [12, 13, 35], initially intended for a more precise characterisation
of function spaces. It turned out, however, that it leads not only to surprisingly sharp
results based on classical concepts, but allows a lot of applications, too, e.g. to the study
of compact embeddings. We return to this point later. Roughly speaking, a continuity
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envelope EC(X) of a function space X consists of a so-called continuity envelope function

EXC (t) ∼ sup
‖f |X‖≤1

ω(f, t)
t

, t > 0,

together with some ‘fine index’ uXC ∈ (0,∞]; here ω(f, t) stands for the modulus of
continuity, as usual.

By dealing with continuity envelopes of weighted spaces of type Bsp,q(R
n, w) and

F sp,q(R
n, w) first (special) results were obtained in [13, 14], essentially concentrating on

the model weight (1). Our main intention now is to extend this idea, that is, to study
the interplay between the weight w ∈ A1 and the Lipschitz continuity of functions from
spaces Bsp,q(R

n, w) and F sp,q(R
n, w) characterised by their continuity envelopes. Moreover,

we restrict ourselves to the smallest weight class in this context, i.e., to A1. Here we have
a complete result which essentially coincides with the unweighted situation if we assume,
in addition, that

inf
m∈Zn

w(Q0,m) ≥ cw > 0, (2)

where Q0,m are unit cubes in Rn centred at m ∈ Zn, and w(Ω) =
∫

Ω
w(x) dx. Our main

outcome, Theorem 4.5 below, establishes that for 0 < p < ∞, 0 < q ≤ ∞, s > n
p , and

w ∈ A1 with (2),

EC(Bsp,q(R
n, w)) =

(t−n/p+s−1, q), n
p < s < n

p + 1,

(|log t|1/q
′
, q), s = n

p + 1 and 1 < q ≤ ∞,

and

EC(F sp,q(R
n, w)) =

(t−n/p+s−1, p), n
p < s < n

p + 1,

(|log t|1/p
′
, p), s = n

p + 1 and 1 < p <∞.

All this will be explicated by our model weight (1) and another one, wκ,Γ, related to a
fractal d-set Γ. Moreover, we briefly indicate some applications of our results to Hardy
type inequalities, criteria for sharp embeddings, and compact embeddings. In particular,
we prove that under the above assumptions,

Bsp,q(R
n, w) ↪→ Lip1(Rn) if and only if

{
s > n

p + 1, or

s = n
p + 1 and 0 < q ≤ 1,

and

F sp,q(R
n, w) ↪→ Lip1(Rn) if and only if

{
s > n

p + 1, or

s = n
p + 1 and 0 < p ≤ 1.

Here Lip1(Rn) stands for the classical Lipschitz space defined as the space of all functions
f ∈ C(Rn) such that ∥∥f |Lip1(Rn)

∥∥ = ‖f |C(Rn)‖+ sup
t∈(0,1)

ω(f, t)
t

is finite.
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The main tools to prove such results are unweighted counterparts, sharp embeddings
and atomic decompositions of corresponding spaces. We also benefit from related obser-
vations on embeddings and local singularities Ssing(w) of the weight w ∈ A1 contained
in [17,18].

The paper is organised as follows. In Section 2 we collect all the material on Muck-
enhoupt weights, weighted spaces of type Bsp,q(R

n, w), F sp,q(R
n, w), and embeddings that

will be needed below. This is followed by a short introduction to the concept of continuity
envelopes in Section 3, before we deal exclusively with w ∈ A1 in Section 4 and determine
the corresponding continuity envelopes of Bsp,q(R

n, w), F sp,q(R
n, w). Finally we present a

number of applications in Section 5.

2. Weighted function spaces. We fix some notation. By N we mean the set of natural
numbers, by N0 the set N∪{0}, and by Zn the set of all lattice points in Rn having integer
components. The positive part of a real function f is denoted by f+(x) = max(f(x), 0),
the integer part of a ∈ R by bac = max{k ∈ Z : k ≤ a}. If 0 < u ≤ ∞, the number
u′ is given by 1

u′ = (1 − 1
u )+. For two positive real sequences {αk}k∈N and {βk}k∈N we

mean by αk ∼ βk that there exist constants c1, c2 > 0 such that c1αk ≤ βk ≤ c2αk for all
k ∈ N; similarly for positive functions. Given two (quasi-) Banach spaces X and Y , we
write X ↪→ Y if X ⊂ Y and the natural embedding of X in Y is continuous.

All unimportant positive constants will be denoted by c, occasionally with subscripts.
For convenience, let both dx and | · | stand for the (n-dimensional) Lebesgue measure in
the sequel. If not otherwise indicated, log is always taken with respect to base 2.

As we shall mainly deal with function spaces on Rn, we may often omit the ‘Rn’ from
their notation for convenience.

2.1. Muckenhoupt weights. We briefly recall some fundamentals on the Muckenhoupt
class A1. By a weight w we shall always mean a locally integrable function w ∈ Lloc

1 (Rn),
positive a.e. in the sequel. Let M stand for the Hardy-Littlewood maximal operator given
by

Mf(x) = sup
B(x,r)∈B

1
|B(x, r)|

∫
B(x,r)

|f(y)|dy, x ∈ Rn, (3)

where B is the collection of all open balls

B(x, r) =
{
y ∈ Rn : |y − x| < r

}
, r > 0.

Definition 2.1. Let w be a weight on Rn. Then w belongs to the Muckenhoupt class A1

if there exists a constant 0 < A <∞ such that the inequality

Mw(x) ≤ Aw(x) (4)

holds for almost all x ∈ Rn.

The class A1 is a special ‘extremal’ case of the larger scale of so-called A∞ weights, see
the pioneering work of Muckenhoupt in [22–24], and the monographs [11], [29, Ch. V], [30],
and [31, Ch. IX] for a complete account on the theory of Muckenhoupt weights. We shall
concentrate on the special class A1 only in this paper. As usual, we use the abbreviation

w(Ω) =
∫

Ω

w(x) dx,
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where Ω ⊂ Rn is some bounded, measurable set. Then a weight w on Rn belongs to A1

if and only if
1
|B|

∫
B

f(y) dy ≤ c

w(B)

∫
B

f(x)w(x) dx

for all nonnegative f and all balls B. In particular, with E ⊂ B and f = χE , this implies
that

|E|
|B|
≤ c′ w(E)

w(B)
, E ⊂ B, w ∈ A1. (5)

Examples 2.2.

(i) One of the most prominent examples of a Muckenhoupt weight w ∈ A1 is given by
w(x) = |x|%, where −n < % ≤ 0.

(ii) We modified this example in [17,19] by

wα,β(x) =

{
|x|α, |x| < 1,

|x|β , |x| ≥ 1,
(6)

and

wlog(x) =

{
|x|α(1− log |x|)γ , |x| < 1,

|x|β(1 + log |x|)δ, |x| ≥ 1,

where α, β > −n, and γ, δ ∈ R. Plainly, wα,β = wlog when γ = δ = 0. For simplicity
we shall only regard wα,β in this paper. A straightforward calculation shows that
wα,β ∈ A1 when

−n < min(α, β) ≤ max(α, β) ≤ 0. (7)

(iii) Finally we recall a ‘fractal’ example studied in [16]. Let Γ ⊂ Rn be a d-set, 0 < d < n,
in the sense of [34, Def. 3.1], [20] (which is different from [8]), i.e., there exists a Borel
measure µ in Rn such that suppµ = Γ compact, and there are constants c1, c2 > 0
such that for arbitrary γ ∈ Γ and all 0 < r < 1

c1r
d ≤ µ(B(γ, r) ∩ Γ) ≤ c2rd.

We proved in [16] that the weight wκ,Γ given by

wκ,Γ(x) =

{
dist(x,Γ)κ, if dist(x,Γ) ≤ 1,

1, if dist(x,Γ) ≥ 1,
(8)

satisfies wκ,Γ ∈ A1 if −(n− d) < κ ≤ 0.
In a slight abuse of notation one may incorporate in this approach the distance
weight to some hyperplane in Rn, Γ = {(x′, 0) ∈ Rn : x′ ∈ Rn−1} ∼ Rn−1, with
d = n− 1, −1 < κ ≤ 0, and

wκ,n−1(x) =

{
|xn|κ, if |xn| ≤ 1,

1, if |xn| ≥ 1.

For further examples we refer to [9, 17,18].

We need some refined study of the singularity behaviour of Muckenhoupt A1 weights.
Let for m ∈ Zn and ν ∈ N0, Qν,m denote the n-dimensional cube with sides parallel to
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the axes of coordinates, centred at 2−νm and with side length 2−ν . In [18] we introduced
the following notion of their set of singularities Ssing(w).

Definition 2.3. For w ∈ A1 we define the set of singularities Ssing(w) by

Ssing(w) = S∞(w) =
{
x0 ∈ Rn : sup

Qν,m3x0

w(Qν,m)
|Qν,m|

=∞
}
.

Remark 2.4. This is a special case of Ssing(w1, w2) defined in [18] with w2 ≡ 1, w1 ≡ w.
Moreover, for w 6∈ A1 another set S0(w) may appear (in obvious analogy to S∞(w) and
thus explaining the notation), but we proved in [18] that S0(w) = ∅ for w ∈ A1.

Examples 2.5. Let wα,β be given by (6) with (7) such that

wα,β(Qν,m)
|Qν,m|

∼


2−να if m = 0,

|2−νm|α if 1 ≤ |m| < 2ν ,

|2−νm|β if |m| ≥ 2ν .

(9)

Hence

Ssing(wα,β) =

{
{0}, if α < 0,

∅, if α = 0.

In case of the weight wκ,Γ introduced in (8) with 0 < d < n and −(n− d) < κ ≤ 0, one
obtains that

Ssing(wκ,Γ) =

{
∅, if κ = 0,

Γ, if κ < 0,

based on the estimate

wκ,Γ(Qν,m)
|Qν,m|

∼

{
1, if 2Qν,m ∩ Γ = ∅,
2−νκ, otherwise,

see [16].

Remark 2.6. Note that we always have |Ssing(w)| = 0 for w ∈ A1, cf. [18].

2.2. Function spaces of type Bsp,q(R
n,w) and F sp,q(R

n,w) with w ∈ A1. Let
w ∈ A1 be a Muckenhoupt weight and 0 < p < ∞. Then the weighted Lebesgue space
Lp(Rn, w) contains all measurable functions such that

‖f |Lp(Rn, w)‖ =
(∫
Rn

|f(x)|pw(x) dx
)1/p

is finite. For p =∞ one obtains the classical (unweighted) Lebesgue space,

L∞(Rn, w) = L∞(Rn), w ∈ A1;

we thus mainly restrict ourselves to p <∞ in what follows.
The Schwartz space S(Rn) and its dual S ′(Rn) of all complex-valued tempered dis-

tributions have their usual meaning here. Let ϕ0 = ϕ ∈ S(Rn) be such that

suppϕ ⊂ {y ∈ Rn : |y| < 2} and ϕ(x) = 1 if |x| ≤ 1,

and for each j ∈ N let ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x). Then {ϕj}∞j=0 forms a smooth
dyadic resolution of unity. Given any f ∈ S ′(Rn), we denote by Ff and F−1f its Fourier
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transform and its inverse Fourier transform, respectively. Let f ∈ S ′(Rn), then the Paley-
Wiener-Schwartz theorem implies that F−1(ϕjFf) is an entire analytic function on Rn.

Definition 2.7. Let w ∈ A1, 0 < q ≤ ∞, 0 < p < ∞, s ∈ R and {ϕj}j∈N0 a smooth
dyadic resolution of unity.

(i) The weighted Besov space Bsp,q(R
n, w) is the set of all distributions f ∈ S ′(Rn) such

that ∥∥f |Bsp,q(Rn, w)
∥∥ =

∥∥∥{2js
∥∥F−1(ϕjFf)|Lp(Rn, w)

∥∥}
j∈N0

|`q
∥∥∥

is finite.
(ii) The weighted Triebel-Lizorkin space F sp,q(R

n, w) is the set of all distributions
f ∈ S ′(Rn) such that∥∥f |F sp,q(Rn, w)

∥∥ =
∥∥∥∥∥{2js|F−1(ϕjFf)(·)|}j∈N0 |`q

∥∥ ∣∣∣ Lp(Rn, w)
∥∥∥

is finite.

Remark 2.8. The spaces Bsp,q(R
n, w) and F sp,q(R

n, w) are independent of the particular
choice of the smooth dyadic resolution of unity {ϕj}j appearing in their definitions. They
are quasi-Banach spaces (Banach spaces for p, q ≥ 1), and S(Rn) ↪→ Bsp,q(R

n, w) ↪→
S ′(Rn), where the first embedding is dense if q < ∞, similarly for the F -case; cf. [3].
Moreover, for w0 ≡ 1 ∈ A1 these are the usual (unweighted) Besov and Triebel-Lizorkin
spaces; we refer, in particular, to the series of monographs [32–36] for a comprehensive
treatment of the unweighted spaces.

The above spaces with weights of type w ∈ A∞ have been studied systematically
in [3, 4], with subsequent papers [5, 6]. It turned out that many of the results from the
unweighted situation have weighted counterparts: e.g., we have F 0

p,2(Rn, w) = hp(Rn, w),
0 < p <∞, where the latter are Hardy spaces, see [3, Thm. 1.4]. Further details can be
found in [1–4, 10, 11, 25, 26]. In [27] the above class of weights was extended in order to
incorporate locally regular weights, too, creating in that way the class A`ocp . We partly
rely on our approaches in [16–19].

We briefly recall the definition of atoms.

Definition 2.9. Let K ∈ N0 and b > 1.

(i) The complex-valued function a ∈ CK(Rn) is said to be an 1K-atom if supp a ⊂ bQ0,m

for some m ∈ Zn, and |Dαa(x)| ≤ 1 for |α| ≤ K, x ∈ Rn.
(ii) Let s ∈ R, 0 < p ≤ ∞, and L + 1 ∈ N0. The complex-valued function a ∈ CK(Rn)

is said to be an (s, p)K,L-atom if for some ν ∈ N0,

supp a ⊂ bQν,m for some m ∈ Zn,

|Dαa(x)| ≤ 2−ν(s−n/p)+|α|ν for |α| ≤ K, x ∈ Rn,∫
Rn

xβa(x) dx = 0 for |β| ≤ L.

We shall denote an atom a(x) supported in some Qν,m by aν,m in the sequel. Choosing
L = −1 in (ii) means that no moment conditions are required. For 0 < p <∞, 0 < q ≤ ∞,
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w ∈ A1, we introduce suitable sequence spaces bpq(w) by

bpq(w) =
{
λ = {λν,m}ν,m : λν,m ∈ C,∥∥λ|bpq(w)

∥∥ ∼ ∥∥∥∥{( ∑
m∈Zn

|λνm|p2νnw(Qν,m)
)1/p}

ν∈N0

|`q
∥∥∥∥ <∞}.

The atomic decomposition result used below reads as follows.

Proposition 2.10. Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R, and w ∈ A1. Let K,L+ 1 ∈ N0

with

K ≥ (1 + bsc)+ and L ≥ max
(
−1,

⌊
n
(1
p
− 1
)

+
− s
⌋)
. (10)

Then f ∈ S(Rn) belongs to Bsp,q(R
n, w) if and only if it can be written as a series

f =
∞∑
ν=0

∑
m∈Zn

λνmaν,m(x), converging in S ′(Rn), (11)

where aν,m(x) are 1K-atoms (ν = 0) or (s, p)K,L-atoms (ν ∈ N) and λ ∈ bpq(w). Fur-
thermore,

inf ‖λ|bpq(w)‖ (12)

is an equivalent quasi-norm in Bspq(R
n, w), where the infimum ranges over all admissible

representations (11).

Remark 2.11. The above result is a special case of [16, Thm. 3.10], cf. also [1, Theorem
5.10]. There are parallel F -results, too.

Notational agreement. We adopt the nowadays usual custom to write Asp,q instead of
Bsp,q or F sp,q, respectively, when both scales of spaces are meant simultaneously in some
context.

2.3. Continuous embeddings. We collect some embedding results for weighted spaces
that will be used later. We immediately specify the general criterion obtained in [17] to
one-weight situations with w ∈ A1, cf. [17, 18]. Recall that we deal with function spaces
on Rn exclusively, and will thus omit the ‘Rn’ from their notation.

Proposition 2.12. Let w ∈ A1 and

−∞ < s2 ≤ s1 <∞, 0 < p1 <∞, 0 < p2 ≤ ∞, 0 < q1, q2 ≤ ∞. (13)

Then
idw : Bs1p1,q1(w) ↪→ Bs2p2,q2

is continuous if and only if 
infm w(Q0,m) ≥ c > 0, and{

2−jδ∗
}
j∈N0

∈ `q∗ , and

p1 ≤ p2,

(14)

where
δ∗ = s1 −

n

p1
− s2 +

n

p2
and

1
q∗

=
( 1
q2
− 1
q1

)
+
.
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In particular,

Bsp,q(w) ↪→ Bsp,q if and only if inf
m
w(Q0,m) ≥ c > 0. (15)

Remark 2.13. If w ≡ 1 ∈ A1, then (14) reduces to p1 ≤ p2 and δ∗ > 0 with the extension
to δ∗ ≥ 0 if q1 ≤ q2. This recovers the well-known unweighted result.

In case of our special weights wα,β and wκ,Γ this reads as follows, cf. [19].

Corollary 2.14. Let the parameters satisfy (13).

(i) Let wα,β be given by (6) with (7). The embedding

idα,β : Bs1p1,q1(wα,β) ↪→ Bs2p2,q2

is continuous if and only if p1 ≤ p2, β = 0, and
{

2−jδ∗
}
j∈N0

∈ `q∗ . In particular,

Bsp,q(wα,β) ↪→ Bsp,q if and only if β = 0.

(ii) Let Γ ⊂ Rn be a d-set, 0 < d < n, and wκ,Γ be given by (8) with −(n−d) < κ ≤ 0.
The embedding

idκ,Γ : Bs1p1,q1(wκ,Γ) ↪→ Bs2p2,q2 (16)

is continuous if and only if p1 ≤ p2 and
{

2−νδ∗
}
ν∈N0

∈ `q∗ , in particular,

Bsp,q(wκ,Γ) ↪→ Bsp,q.

Remark 2.15. Though we deal in this paper with A1 weights mainly, we recall the
following extension of Corollary 2.14 to values α ≥ 0, β ≥ 0, κ ≥ 0. In [15,17] we proved
that for 0 < p <∞, 0 < q ≤ ∞, s ∈ R, α > −n, β ≥ 0, κ > −(n− d),

Bsp,q(wα,β) ↪→ Bs−max(α,0)/p
p,q if and only if β ≥ 0, (17)

and

Bsp,q(wκ,Γ) ↪→ Bs−max(κ,0)/p
p,q . (18)

In [17, 18] we also considered situations where both source and target spaces are
weighted with the same w ∈ A∞. Here we shall only need the following basic observation.

Proposition 2.16. Let 0 < q ≤ ∞, 0 < p <∞, s ∈ R and w ∈ A1.

(i) Let −∞ < s1 ≤ s0 <∞ and 0 < q0 ≤ q1 ≤ ∞, then

As0p,q(w) ↪→ As1p,q(w) and Asp,q0(w) ↪→ Asp,q1(w).

(ii) We have
Bsp,min(p,q)(w) ↪→ F sp,q(w) ↪→ Bsp,max(p,q)(w). (19)

(iii) Assume that
inf
m
w(Q0,m) ≥ cw > 0. (20)

Let 0 < p0 < p < p1 <∞, s1 < s < s0 satisfy

s0 −
n

p0
= s− n

p
= s1 −

n

p1
. (21)
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Then
Bs0p0,p(w) ↪→ F sp,q(w) ↪→ Bs1p1,p(w). (22)

Remark 2.17. These embeddings are natural extensions from the unweighted case w ≡ 1,
see [32, Prop. 2.3.2/2, Thm. 2.7.1] and [28, Thm. 3.2.1]. The above result essentially
coincides with [3, Thm. 2.6] and can be found in [15, 17]. For later use, let us recall the
following extension of (iii) to values α ≥ 0, β ≥ 0, κ ≥ 0 for our weights wα,β and wκ,Γ,
cf. [15]: Let β ≥ 0, α > −n, and 0 < p0 < p < p1 <∞, s1 < s < s0 satisfy

s0 −
max(α, 0) + n

p0
= s− max(α, 0) + n

p
= s1 −

max(α, 0) + n

p1
. (23)

Then (22) holds for w = wα,β . In case of

s0 −
max(κ, 0) + n

p0
= s− max(κ, 0) + n

p
= s1 −

max(κ, 0) + n

p1
, (24)

(22) is true for w = wκ,Γ, where we assume κ > −(n− d), 0 < d < n.

3. Envelopes

3.1. Definition and basic properties. Let C be the space of all complex-valued
bounded uniformly continuous functions on Rn, equipped with the sup-norm as usual.
Recall that the classical Lipschitz space Lip1 is defined as the space of all functions f ∈ C
such that ∥∥f |Lip1

∥∥ = ‖f |C‖+ sup
t∈(0,1)

ω(f, t)
t

(25)

is finite, the expression (25) defining its norm, where ω(f, t) stands for the modulus of
continuity,

ω(f, t) = sup
|h|≤t

sup
x∈Rn

|f(x+ h)− f(x)|, t > 0.

Definition 3.1. Let X ↪→ C be some quasi-normed function space on Rn.

(i) The continuity envelope function EXC : (0,∞)→ [0,∞] of X is defined by

EXC (t) = sup
‖f |X‖≤1

ω(f, t)
t

, t > 0.

(ii) Assume X 6↪→ Lip1. Let ε ∈ (0, 1), H(t) = − log EXC (t), t ∈ (0, ε], and let µH be the
associated Borel measure. The number uXC , 0 < uXC ≤ ∞, is defined as the infimum
of all numbers v, 0 < v ≤ ∞, such that(∫ ε

0

( ω(f, t)

t EXC (t)

)v
µH(dt)

)1/v

≤ c ‖f |X‖ (26)

(with the usual modification if v = ∞) holds for some c > 0 and all f ∈ X. The
couple

EC(X) =
(
EXC (·), uXC

)
is called continuity envelope for the function space X.
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This concept was introduced and first studied in [35, Ch. 2], [12], see also [13]. For
convenience we recall some properties. In view of (i) we obtain—strictly speaking—
equivalence classes of continuity envelope functions when working with equivalent quasi-
norms in X as we shall usually do. But we do not want to distinguish between repre-
sentative and equivalence class in what follows and thus stick at the notation introduced
in (i). Concerning (ii) we shall assume that we can choose a continuous representative in
the equivalence class [EXC ], for convenience (but in a slight abuse of notation) denoted by
EXC again. It is obvious that (26) holds for v =∞ and any X. Moreover, one verifies that

sup
0<t≤ε

g(t)

EXC (t)
≤ c1

(∫ ε

0

( g(t)

EXC (t)

)v1

µH(dt)
)1/v1

≤ c2
(∫ ε

0

( g(t)

EXC (t)

)v0

µH(dt)
)1/v0

for 0 < v0 < v1 <∞ and all non-negative monotonically decreasing functions g on (0, ε];
cf. [35, Prop. 12.2]. So since EXC is equivalent to some monotonically decreasing function,
we observe that the left-hand sides in (26) are monotonically ordered in v and it is natural
to look for the smallest possible one.

Proposition 3.2.

(i) Let Xi ↪→ C, i = 1, 2, be some function spaces on Rn. Then X1 ↪→ X2 implies that
there is some positive constant c such that for all t > 0,

EX1
C (t) ≤ cEX2

C (t). (27)

(ii) We have X ↪→ Lip1 if and only if EXC is bounded.
(iii) Let Xi, i = 1, 2, be some function spaces on Rn with X1 ↪→ X2. Assume for their

continuity envelope functions

EX1
C (t) ∼ EX2

C (t), t ∈ (0, ε),

for some ε > 0. Then we get for the corresponding indices uXiC , i = 1, 2, that

uX1
C ≤ uX2

C . (28)

This result coincides with [13, Props. 5.3, 6.4].

3.2. Continuity envelopes in unweighted spaces. We briefly summarise some re-
sults for unweighted spaces, in particular, for Besov and Triebel-Lizorkin spaces and
Lipschitz spaces of type Lipa, 0 < a < 1, and Lip(1,−b), b ≥ 0. The latter represent the
natural extensions of (25) and collect all f ∈ C such that

‖f |Lipa‖ = ‖f |C‖+ sup
t∈(0,1)

ω(f, t)
ta

,

and ∥∥f |Lip(1,−b)∥∥ = ‖f |C‖+ sup
t∈(0,1/2)

ω(f, t)

t |log t|b
,

respectively, are finite.
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Proposition 3.3.

(i) Let 0 < a < 1, b ≥ 0. Then

EC (Lipa) =
(
t−(1−a),∞

)
,

EC(C) =
(
t−1,∞

)
,

and

EC

(
Lip(1,−b)) = (|log t|b ,∞).

(ii) Let 0 < p ≤ ∞ (with p <∞ in F -case), 0 < q ≤ ∞, s ≥ n
p . Then

EC(Bsp,q) =


(
t−n/p+s−1, q

)
, n

p < s < n
p + 1,

(|log t|1/q
′
, q), s = n

p + 1 and 1 < q ≤ ∞,(
t−1,∞

)
, s = n

p and 0 < q ≤ 1,

and

EC(F sp,q) =


(
t−n/p+s−1, p

)
, n

p < s < n
p + 1,

(|log t|1/p
′
, p), s = n

p + 1 and 1 < p <∞,(
t−1,∞

)
, s = n

p and 0 < p ≤ 1.

Remark 3.4. Case (i) can be found in [13, Sect. 5.3]. Note that this explains the saying
that continuity envelopes ‘measure’ the lack or deviation from Lipschitz continuity of
function spaces. For proofs and further discussion in (ii) we refer to [13, Thms. 9.2, 9.4,
9.10], [35, Sect. 14], and to [21].

There is a number of partial results in the weighted setting: in [13,14] we studied the
situation of Asp,q(wα,β) in some cases and obtained,

EB
s
p,q(wα,β)

C (t) ∼ EF
s
p,q(wα,β)

C (t) ∼ t−n/p−max(α,0)/p+s−1 , 0 < t < 1, (29)

if β ≥ 0, −n < α ≤ β, max(α,0)
p < s− n

p <
max(α,0)

p + 1.

4. Continuity envelope for w ∈ A1. In this section we characterise the deviation
from Lipschitz continuity of spaces Asp,q(R

n, w) = Asp,q(w), w ∈ A1, in terms of their
continuity envelopes. As a preparation we recall our result from [15] about the embedding
Asp,q(w) ↪→ C, i.e., where the concept of continuity envelopes makes sense. Afterwards
we give a sufficient condition for the embedding Asp,q(w) ↪→ Lip1, i.e., where no deviation
from Lipschitz continuity in the sense of continuity envelopes appears. Later it will turn
out that this condition is also necessary. Borderline situations s = n

p are mainly out of
the scope of the present approach.
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Lemma 4.1. Let 0 < p <∞, 0 < q ≤ ∞, w ∈ A1 with (20).

(i) Then

Bsp,q(w) ↪→ C if and only if

{
s > n

p , or

s = n
p and 0 < q ≤ 1,

and

F sp,q(w) ↪→ C if and only if

{
s > n

p , or

s = n
p and 0 < p ≤ 1.

(ii) Let s > n
p + 1 or s = n

p + 1 and 0 < q ≤ 1. Then

Bsp,q(w) ↪→ Lip1. (30)

Proof. As mentioned, (i) is covered by [15] (where the target space L∞ there can be
replaced by C here). As for (ii) we use embedding (15) with (20), thus the well-known
embedding Bsp,q ↪→ Lip1 for s > n

p + 1 or s = n
p + 1 and 0 < q ≤ 1 implies Bsp,q(w) ↪→

Lip1.

Remark 4.2. In Corollary 5.2 below we shall prove that for w ∈ A1 we have (30) if and
only if s > n

p +1 or s = n
p +1 and 0 < q ≤ 1 (as in the unweighted case), and a counterpart

for F -spaces. For the moment we conclude from the above result and general facts about
continuity envelopes that their study makes sense for parameters n

p ≤ s ≤
n
p + 1.

4.1. Continuity envelope function. We show that whenever s ≥ n
p and w ∈ A1

satisfies (20), then

EA
s
p,q(w)

C (t) ∼ EA
s
p,q

C (t) for t→ 0.

Proposition 4.3. Let 0 < p <∞, 0 < q ≤ ∞, s ≥ n
p , w ∈ A1 with (20).

(i) Let n
p < s < n

p + 1. Then

EA
s
p,q(w)

C (t) ∼ t−n/p+s−1, t→ 0. (31)

(ii) Let s = n
p + 1. Then

EA
1+n/p
p,q (w)

C (t) ∼

{
|log t|1/q

′
, if A

1+n/p
p,q = B

1+n/p
p,q and 1 < q ≤ ∞,

|log t|1/p
′
, if A

1+n/p
p,q = F

1+n/p
p,q and 1 < p <∞,

t→ 0.

(iii) Let s = n
p and assume, in addition, that 0 < q ≤ 1 if An/pp,q = B

n/p
p,q , and 0 < p ≤ 1

if An/pp,q = F
n/p
p,q . Then

EA
n/p
p,q (w)

C (t) ∼ t−1, t→ 0. (32)

Proof. Step 1. Note first that it is sufficient to deal with B-spaces only: Assume that
we have already proved (i) with Asp,q = Bsp,q; then (19) together with (27) complete the
argument in case of Asp,q = F sp,q; concerning (ii) and (iii) we apply Proposition 2.16(iii).

The estimates from above immediately follow from (15) together with (27) and Propo-
sition 3.3(ii). For the converse assertions we use special atoms (where we do not need any
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moment conditions, recall (10)). We adapt the unweighted arguments appropriately and
construct functions fj,x0 ∈ Bsp,q(w) with ‖fj,x0 |Bsp,q(w)‖ ∼ 1, such that

EB
s
p,q(w)

C (2−j) ≥ c sup
x0

ω(fj,x0 , 2
−j)

2−j
, j ∈ N.

Step 2. We begin with (i) and (iii) and assume that n
p ≤ s <

n
p + 1. Let for x0 ∈ Rn,

j ∈ N,
fj,x0(x) = 2−jsϕ

(
2j(x− x0)

)
w
(
B(x0, 2−j)

)−1/p
, (33)

where ϕ is a mollified version of

ϕ̃(x) =

{
0, |x| ≥ 1,

1− |x|, |x| ≤ 1,
x ∈ Rn,

such that suppϕ(2j ·) ⊂ {y ∈ Rn : |y| ≤ c2−j}, j ∈ N, and

ω
(
ϕ(2j ·), t

)
t

∼ 2j , t ∼ 2−j , j ∈ N.

Thus
ω(fj , t)

t
∼ 2−j(s−1)w

(
B(x0, 2−j)

)−1/p
, t ∼ 2−j , j ∈ N.

We put
aj(x) = 2−j(s−n/p)ϕ

(
2j(x− x0)

)
and observe that these are special atoms according to Definition 2.9, since supp aj ⊂
suppϕ(2j(· − x0)) ⊂ B(x0, 2−j),

|Dαaj(x)| ≤ cα,ϕ2−j(s−n/p)+j|α|, |α| ≤ K,

and our assumption on s implies that we do not need to impose moment conditions,
see (10). Now let λj = 2−jn/pw

(
B(x0, 2−j)

)−1/p, then

fj,x0(x) = λjaj(x)

is a special atomic decomposition (11) and we obtain∥∥fj,x0 |Bsp,q(w)
∥∥ ≤ ‖λ|bpq(w)‖ ∼ λj2jn/pw

(
B(x0, 2−j)

)1/p
= 1.

This leads to

EB
s
p,q(w)

C (2−k) ≥ c sup
j,x0

ω(fj,x0 , 2
−k)

2−k

≥ c sup
x0

ω(fk,x0 , 2
−k)

2−k

≥ c′ sup
x0

2−k(s−1)w
(
B(x0, 2−k)

)−1/p

≥ c′′2−k(s−n/p−1) sup
x0

( |B(x0, 2−k)|
w (B(x0, 2−k))

)1/p

.

In view of (31) and (32) it is sufficient to prove that there exists some x0 ∈ Rn such that

w
(
B(x0, 2−k)

)
|B(x0, 2−k)|

≤ c (34)
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independent of k ∈ N0; but since |S∞(w)| = |Ssing(w)| = 0, recall Remark 2.6, we can
always find some x0 ∈ Rn \ S∞(w) and this completes the argument for (i) and (iii).

Step 3. We modify the above approach in order to prove (ii). Let again x0 ∈ Rn\S∞(w)
and put

fm(x) = m−1/q
m∑
j=1

2−jϕ
(
2j(x− x0)

)
, m ∈ N. (35)

Then

ω
(
fm, 2−k

)
≥ m−1/qk 2−k, k = 1, . . . ,m,

in particular,

ω (fm, 2−m)
2−m

≥ m1−1/q, m ∈ N. (36)

Regarding (35) as an atomic decomposition of fm (with aj(x) = 2−jϕ
(
2j(x− x0)

)
,

λj = m−1/q, j = 1, . . . ,m), we conclude that∥∥fm|B1+n/p
p,q (w)

∥∥ ≤ ‖λ|bpq(w)‖ ∼ m−1/q
( m∑
j=1

2jqn/pw
(
B(x0, 2−j)

)q/p)1/q

≤ c, (37)

where we applied (34) with j = k and x0 ∈ Rn \ S∞(w). The rest is similar to Step 2,
since (36) implies

EB
1+n/p
p,q (w)

C (2−k) ≥ c sup
m

ω
(
fm, 2−k

)
2−m

≥ c′
ω
(
fk, 2−k

)
2−k

≥ c′′k1/q′ , k ∈ N.

This concludes the proof.

Remark 4.4. Note that we did not use the assumptions w ∈ A1 and (20) in Step 2 of
the above proof. Hence we always obtain

EB
s
p,q(w)

C (2−k) ≥ c 2−k(s−n/p−1) sup
x0∈Rn

( |B(x0, 2−k)|
w(B(x0, 2−k))

)1/p

, (38)

leading to

EA
s
p,q(w)

C (t) ≥ ct−n/p+s−1 for t→ 0,

where w ∈ A∞ and s ≥ n
p .

4.2. Continuity envelopes. We complete the characterisation of Asp,q(w), w ∈ A1, in
terms of their continuity envelopes.

Theorem 4.5. Let 0 < p <∞, 0 < q ≤ ∞, w ∈ A1 with (20).

(i) Then

EC(Bsp,q(w)) =

(t−n/p+s−1, q), n
p < s < n

p + 1,

(|log t|1/q
′
, q), s = n

p + 1 and 1 < q ≤ ∞.
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(ii) Then

EC(F sp,q(w)) =

(t−n/p+s−1, p), n
p < s < n

p + 1,

(|log t|1/p
′
, p), s = n

p + 1 and 1 < p <∞.

Proof. In view of Proposition 4.3, (28), and Proposition 3.3(ii) it remains to prove that
u
Bsp,q(w)

C ≥ q and u
F sp,q(w)

C ≥ p. By Proposition 2.16(iii) and another application of (28)
we may restrict ourselves to the B-case.

Step 1. Let first n
p < s < n

p + 1 and ε > 0. We have to verify that(∫ ε

0

[
ω(f, t)
ts−n/p

]v dt
t

)1/v

≤ c
∥∥f |Bsp,q(w)

∥∥ (39)

for all f ∈ Bsp,q(w) implies v ≥ q. For this purpose we construct extremal functions based
on a combination of the functions fj,x0 given by (33). We choose {xj}j ∈ Rn \ S∞(w)
with, say, |xj − xr| ≥ 4, j 6= r, such that suppϕ(2j(· − xj)) ∩ suppϕ(2r(· − xr)) = ∅ for
j 6= r, j, r ∈ N0, and ϕ behaves as described in Step 2 of the proof of Proposition 4.3
above. Let {bj}j∈N be a sequence of non-negative numbers where we may assume, in
addition, that b1 = . . . = bJ−1 = 0, and J is suitably chosen such that 2−J ∼ ε. Let

fb(x) =
∞∑
j=1

2−jsbjϕ(2j(x− xj))w(B(xj , 2−j))−1/p. (40)

Seen as atomic decomposition of fb with atoms aj = 2−j(s−n/p)ϕ(2j(· − xj)) and coeffi-
cients λj = 2−jn/pbjw(B(xj , 2−j))−1/p, this implies∥∥fb|Bsp,q(w)

∥∥ ≤ ‖λ|bpq(w)‖

≤ c
( ∞∑
j=J

2−jqn/pw(B(xj , 2−j))−q/pb
q
j2
jqn/pw(B(xj , 2−j))q/p

)1/q

∼ ‖b|`q‖.

Since

ω(fb, 2−j) ≥ cbj2−jsw(B(xj , 2−j))−1/p ≥ c′bj2−j(s−n/p), j ∈ N, (41)

inequality (39) can be extended on both sides to

‖b|`v‖ =
( ∞∑
j=J

bvj

)1/v

≤ c1
(∫ ε

0

[
ω(fb, t)
ts−n/p

]v dt
t

)1/v

≤ c2‖fb|Bsp,q(w)‖ ≤ c3‖b|`q‖

for arbitrary sequences of non-negative numbers. This obviously requires v ≥ q.
Step 2. It remains to consider the situation s = n

p + 1. We have to show the sharpness
of v = q in(∫ ε

0

[
ω(f, t)

t |log t|1/q
′+1/v

]v
dt
t

)1/v

≤ c
∥∥f |B1+n/p

p,q (w)
∥∥, f ∈ B1+n/p

p,q (w), (42)

but this works exactly as before, that is, we proceed by contradiction and assume v < q.
We refine the approach presented in Step 3 of the proof of Proposition 4.3. Let
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x0 ∈ Rn \ S∞(w), m ∈ N, and

fm,b(x) =
m∑
j=1

bj2−jϕ
(
2j(x− x0)

)
, x ∈ Rn, (43)

where

bj = j−1/q(1 + log j)−1/v, j = 1, . . . ,m,

in (40). Then similarly to (37),∥∥∥fm,b|B1+n/p
p,q (w)

∥∥∥ ≤ c ‖b|`q‖ = c
( m∑
j=1

1
j(1 + log j)q/v

)1/q

≤ c2

since v < q, where c2 does not depend on m ∈ N. On the other hand, by our choice
of {bj}j ,

ω(fm,b, 2−k) ≥ c2−k
k∑
j=1

bj ≥ c2−kkbk, k = 1, . . . ,m,

that is,

ω(fm,b, 2−k)
2−k

≥ ck1−1/q(1 + log k)−1/v, k = 1, . . . ,m, m ∈ N,

such that for m ≥ J ,(∫ ε

0

[
ω(fm,b, t)

t |log t|1/q
′+1/v

]v
dt
t

)1/v

≥ c1
( m∑
k=1

[
ω(fm,b, 2−k)
2−kk1/q′+1/v

]v)1/v

≥ c2
( m∑
k=1

1
k(1 + log k)

)1/v

.

Obviously the expression on the right-hand side diverges for m→∞, such that there are
functions fm,b ∈ B1+n/p

p,q (w), not satisfying (42). This completes the proof.

Remark 4.6. It is natural to expect that

EC

(
An/pp,q (w)

)
=
(
t−1,∞

)
, w ∈ A1,

where we have, in addition, to assume that 0 < p ≤ 1 in case of Fn/pp,q (w) and 0 < q ≤ 1 in
case of Bn/pp,q (w). However, the celebrated result in [21] for the unweighted case is rather
tricky to prove, so its weighted counterpart is postponed.

Remark 4.7. Let w ∈ A1 with (20). Then Proposition 4.3 and Theorem 4.5 describe
exactly the counterparts of the unweighted situations with w ≡ 1, see Proposition 3.3
(apart from borderline cases). In other words, though we only have the embedding (15)
in this setting, the spaces are so close together that their Lipschitz continuity behaviour
(measured in continuity envelopes) cannot be distinguished. This phenomenon is already
known from similar studies concerning singularity behaviour [15] and questions of com-
pactness, cf. [18].
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We separately formulate Theorem 4.5 for our example weights wα,β and wκ,Γ. Note
that (20) requires β ≥ 0. Hence to apply Theorem 4.5 to wα,β requires β = 0 in view
of (7), thus only the local behaviour can differ from the unweighted setting.

Corollary 4.8. Let 0 < p <∞, 0 < q ≤ ∞, s > n
p .

(i) Let wα,β be given by (6) with −n < α ≤ 0, and β = 0. Then

EC(Bsp,q(wα,0)) =


(
t−n/p+s−1, q

)
, n

p < s < n
p + 1,

(|log t|1/q
′
, q), s = n

p + 1 and 1 < q ≤ ∞,

and

EC(F sp,q(wα,0)) =


(
t−n/p+s−1, p

)
, n

p < s < n
p + 1,

(|log t|1/p
′
, p), s = n

p + 1 and 1 < p <∞.

(ii) Let Γ ⊂ Rn be a d-set, 0 < d < n, and wκ,Γ given by (8) with −(n − d) < κ ≤ 0.
Then

EC(Bsp,q(wκ,Γ)) =


(
t−n/p+s−1, q

)
, n

p < s < n
p + 1,

(|log t|1/q
′
, q), s = n

p + 1 and 1 < q ≤ ∞,

and

EC(F sp,q(wκ,Γ)) =


(
t−n/p+s−1, p

)
, n

p < s < n
p + 1,

(|log t|1/p
′
, p), s = n

p + 1 and 1 < p <∞.

Remark 4.9. Plainly, the case −n < β < 0 in the above example, referring to weights
w ∈ A1 which do not satisfy (20) is of some interest, too, but not yet covered by our
above techniques, apart from lower estimates, see Remark 4.4.

Though we dealt in this paper with A1 weights only, we may extend the above Corol-
lary 4.8 for our examples wα,β and wκ,Γ to values α ≥ 0, β ≥ 0, κ ≥ 0. This is also based
on the embeddings recalled in Remark 2.15.

Corollary 4.10. Let 0 < p <∞, 0 < q ≤ ∞, and s > n
p .

(i) Let α > −n, β ≥ 0, and wα,β given by (6). Assume s− max(α,0)
p > n

p . Then

EC(Bsp,q(wα,β)) =


(
t−n/p+s−1−max(α,0)/p, q

)
, s < n

p + 1 + max(α,0)
p ,

(|log t|1/q
′
, q), s = n

p + 1 + max(α,0)
p , 1 < q ≤ ∞,

and

EC(F sp,q(wα,β)) =


(
t−n/p+s−1−max(α,0)/p, p

)
, s < n

p + 1 + max(α,0)
p ,

(|log t|1/p
′
, p), s = n

p + 1 + max(α,0)
p , 1 < p <∞.
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(ii) Let Γ ⊂ Rn be a d-set, 0 < d < n, and wκ,Γ be given by (8) with κ > −(n − d).
Assume s− max(κ,0)

p > n
p . Then

EC(Bsp,q(wκ,Γ)) =


(
t−n/p+s−1−max(κ,0)/p, q

)
, s < n

p + 1 + max(κ,0)
p ,

(|log t|1/q
′
, q), s = n

p + 1 + max(κ,0)
p , 1 < q ≤ ∞,

and

EC(F sp,q(wκ,Γ)) =


(
t−n/p+s−1−max(κ,0)/p, p

)
, s < n

p + 1 + max(κ,0)
p ,

(|log t|1/p
′
, p), s = n

p + 1 + max(κ,0)
p , 1 < p <∞.

Proof. Step 1. We begin with (i) and may concentrate on the B-case again in view of
the extended version of Proposition 2.16(iii) according to Remark 2.17. Thus the upper
estimates are a consequence of embedding (17) together with Proposition 3.3(ii). The
lower estimate for EB

s
p,q(wα,β)

C (t) in case of s < n
p + 1 + max(α,0)

p immediately follows
from (38) and x0 = 0, recall (9). So all what is left to show is the lower bound for
EB

s
p,q(wα,β)

C (t) in case of s = n
p + 1 + max(α,0)

p , as well as the lower bound for the index

u
Bsp,q(wα,β)

C . We modify the corresponding arguments in the above proofs appropriately.
Let α > 0 and s = n+α

p + 1. We use fm given by (35) with x0 = 0 and observe that
again this can be understood as an atomic decomposition of fm with atoms aj(x) =
2−j(1+α/p)ϕ(2jx) and coefficients λj = m−1/q2jα/p, j = 1, . . . ,m. We conclude that∥∥fm|Bsp,q(wα,β)

∥∥ ≤ ‖λ|bpq(wα,β)‖ ∼ m−1/q
( m∑
j=1

2jq(n+α)/pw(B(0, 2−j))q/p
)1/q

≤ c,

where we applied (9). The rest works as above. It remains to show that u
Bsp,q(wα,β)

C ≥ q if
n+α
p < s ≤ n+α

p + 1. We proceed similarly to the approach in the proof of Theorem 4.5
and consider the function

fb(x) =
∞∑
j=1

2−j(s−(n+α)/p)bjϕ(2jx),

where {bj}j∈N is a sequence of non-negative numbers. Since 2−j(s−n/p)ϕ(2jx) are atoms
according to Definition 2.9 (no moment conditions needed), we obtain by Proposition 2.10
that ∥∥fb|Bsp,q(wα,β)

∥∥ ≤ c( ∞∑
j=1

2jq(n+α)/pbqjw(B(0, 2−j))q/p
)1/q

, (44)

(with obvious modification if q =∞). Since w(B(0, 2−j)) ∼ 2−j(α+n), (44) implies that∥∥fb|Bsp,q(wα,β)
∥∥ ≤ c ‖b|`q‖ . (45)

We follow the same line of arguments as in the proof of Theorem 4.5. The counterpart
of (39) reads for s < n+α

p + 1 as(∫ ε

0

[
t(n+α)/p−s ω(fb, t)

]v dt
t

)1/v

≤ c
∥∥fb|Bsp,q(wα,β)

∥∥ (46)



LIPSCHITZ CONTINUITY IN A1 WEIGHTED SPACES 125

and can thus be extended on both sides to( ∞∑
j=J

bvj

)1/v

≤ c1
(∫ ε

0

[
t(n+α)/p−s ω(fb, t)

]v dt
t

)1/v

≤ c2
∥∥fb|Bsp,q(wα,β)

∥∥ ≤ c3‖b|`q‖
for arbitrary sequences of non-negative numbers with, say, b1 = . . . = bJ = 0 for some
J ∈ N with 2−J ∼ ε. This follows by (45), (46) and the counterpart of (41),

ω(fb, 2−j) ≥ cbj2−j(s−(n+α)/p),

and leads to v ≥ q. In case of s = n+α
p + 1 we take bj = 0, j > m, such that fb obtains

the special form

fb(x) =
m∑
j=1

bj2−jϕ(2jx), m ∈ N.

The rest is now completely parallel to the end of the proof of Theorem 4.5.
Step 2. The argument to verify part (ii) works completely parallel. Since we now have

Ssing(wκ,Γ) = Γ, κ 6= 0, instead of Ssing(wα,β) = {0}, α 6= 0, one has to choose x0 ∈ Γ
for κ > 0 accordingly.

Remark 4.11. The above result does not only extend Corollary 4.8 above, but (i) also
completes partial forerunners in [13,14], recall also (29). In case of singularity behaviour
characterised by growth envelopes the complete counterpart can be found in [15].

5. Applications. We briefly present some typical applications of the preceding envelope
results: Hardy type inequalities, sharp embedding criteria, and estimates for approxima-
tion numbers of related compact embeddings.

5.1. Hardy type inequalities

Corollary 5.1. Let 0 < p < ∞, 0 < q ≤ ∞, s > n
p , w ∈ A1 with (20), and ε > 0 be

small.

(i) Let n
p < s < n

p + 1, 0 < u ≤ ∞ and let κ be a positive monotonically decreasing
function on (0, ε]. Then(∫ ε

0

[
κ(t)tn/p−sω(f, t)

]u dt
t

)1/u

≤ c ‖f |Asp,q(w)‖

for some c > 0 and all f ∈ Asp,q(w) if and only if κ is bounded and{
q ≤ u ≤ ∞, if Asp,q = Bsp,q,

p ≤ u ≤ ∞, if Asp,q = F sp,q,

with the modification

sup
t∈(0,ε)

κ(t)tn/p−sω(f, t) ≤ c ‖f |Asp,q(w)‖ (47)

if u = ∞. In particular, if κ is an arbitrary non-negative function on (0, ε], then
(47) holds if and only if κ is bounded.
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(ii) Let s = n
p + 1, 1 < q ≤ ∞, 0 < u ≤ ∞ and let κ be a positive monotonically

decreasing function on (0, ε]. Then(∫ ε

0

[
κ(t)

ω(f, t)

t |log t|1/q
′

]u
dt

t |log t|

)1/u

≤ c
∥∥∥f |B1+n/p

p,q (w)
∥∥∥

for some c > 0 and all f ∈ B1+n/p
p,q (w) if and only if κ is bounded and q ≤ u ≤ ∞,

with the modification

sup
t∈(0,ε)

κ(t)
ω(f, t)

t |log t|1/q
′ ≤ c

∥∥∥f |B1+n/p
p,q (w)

∥∥∥ (48)

if u = ∞. In particular, if κ is an arbitrary non-negative function on (0, ε], then
(48) holds if and only if κ is bounded.

(iii) Let s = n
p + 1, 1 < p < ∞, 0 < u ≤ ∞ and let κ be a positive monotonically

decreasing function on (0, ε]. Then(∫ ε

0

[
κ(t)

ω(f, t)

t |log t|1/p
′

]u
dt

t |log t|

)1/u

≤ c
∥∥∥f |F 1+n/p

p,q (w)
∥∥∥

for some c > 0 and all f ∈ F 1+n/p
p,q (w) if and only if κ is bounded and p ≤ u ≤ ∞,

with the modification

sup
t∈(0,ε)

κ(t)
ω(f, t)

t |log t|1/p
′ ≤ c

∥∥∥f |F 1+n/p
p,q (w)

∥∥∥ (49)

if u = ∞. In particular, if κ is an arbitrary non-negative function on (0, ε], then
(49) holds if and only if κ is bounded.

This follows immediately from Definition 3.1 and Theorem 4.5. Of course, the above
Hardy type inequalities can be explicated for the particular weights wα,β and wκ,Γ con-
sidered in Corollary 4.10, but this is left to the reader.

5.2. Sharp embedding criteria. Another type of application concerns sharp (or limit-
ing) embeddings which naturally can be understood as sharp inequalities, too. We begin
with a general result and restrict ourselves afterwards to a few model cases only to
demonstrate the method.

Corollary 5.2. Let 0 < p <∞, 0 < q ≤ ∞, s > n
p , w ∈ A1 with (20). Then

Bsp,q(w) ↪→ Lip1 if and only if

{
s > n

p + 1, or

s = n
p + 1 and 0 < q ≤ 1.

Similarly,

F sp,q(w) ↪→ Lip1 if and only if

{
s > n

p + 1, or

s = n
p + 1 and 0 < p ≤ 1.

Proof. Again the F -result follows from the B-assertion, embeddings (19) and Propo-
sition 2.16(iii). The sufficiency is covered by Lemma 4.1(ii), so it remains to disprove
Bsp,q(w) ↪→ Lip1 when s < n

p + 1 or s = n
p + 1 and 1 < q ≤ ∞. However, in these
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situations we have the unboundedness of EB
s
p,q(w)

C (t) when t → 0 in view of Proposi-
tion 4.3(i),(ii) which is by Proposition 3.2(ii) equivalent to Bsp,q(w) 6↪→ Lip1.

Remark 5.3. The above criterion completes Proposition 4.1(ii) and can be seen as the
counterpart of Proposition 4.1(i). In the unweighted setting w ≡ 1 this is well-known,
cf. [35, Thm. 11.4] and [7, Thm. 2.1].

In case of our special weights wα,β and wκ,Γ this can be extended based on Corol-
lary 4.10.

Corollary 5.4. Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R.

(i) Assume that α > −n, β ≥ 0. Then

Bsp,q(wα,β) ↪→ Lip1 if and only if

either s > n
p + 1 + max(α,0)

p ,

or s = n
p + 1 + max(α,0)

p , 0 < q ≤ 1,

and

F sp,q(wα,β) ↪→ Lip1 if and only if

either s > n
p + 1 + max(α,0)

p ,

or s = n
p + 1 + max(α,0)

p , 0 < p ≤ 1.

(ii) Let Γ ⊂ Rn be a d-set, 0 < d < n, and wκ,Γ be given by (8) with κ > −(n − d).
Then

Bsp,q(wκ,Γ) ↪→ Lip1 if and only if

either s > n
p + 1 + max(κ,0)

p ,

or s = n
p + 1 + max(κ,0)

p , 0 < q ≤ 1,

and

F sp,q(wκ,Γ) ↪→ Lip1 if and only if

either s > n
p + 1 + max(κ,0)

p ,

or s = n
p + 1 + max(κ,0)

p , 0 < p ≤ 1.

Remark 5.5. In the same spirit one can prove criteria for limiting embeddings between
spaces of type Asp,q(w); for instance, we have shown in [15] with similar arguments that
for w ∈ A1 with (20), 0 < p0 < p < p1 < ∞, s1 < s < s0 which satisfy (21), and
0 < u, v ≤ ∞,

Bs0p0,u(w) ↪→ F sp,q(w) ↪→ Bs1p1,v(w) if and only if u ≤ p ≤ v. (50)

This obviously refines Proposition 2.16(iii).

5.3. Compact embeddings. Finally we want to focus on the relation between continu-
ity envelopes and approximation numbers of compact embeddings. We briefly recall this
concept. Let A1 and A2 be two complex (quasi-) Banach spaces and let T ∈ L(A1, A2)
be a linear and continuous operator from A1 into A2. The k-th approximation number
of T is given by

ak(T ) = inf{‖T − S‖ : S ∈ L(A1, A2), rankS < k}.
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Now let Ω ⊂ Rn be some bounded domain, X some function space on Rn, and X(Ω) be
defined by restriction. Assume that X(Ω) ↪→ C(Ω). We proved in [13, Cor. 11.18] that
there exists c > 0 such that for all k ∈ N,

ak+1(id : X(Ω) −→ C(Ω)) ≤ ck−1/nEXC (k−1/n). (51)

This implies the following result.

Corollary 5.6. Let w ∈ A1 and assume that Ω ⊂ Rn is bounded and sufficiently large
such that Ssing(w) ( Ω̊. Let 0 < p <∞, 0 < q ≤ ∞, n

p < s < n
p + 1. Then

ak
(
id : Asp,q(Ω, w) ↪→ C(Ω)

)
≤ ck−s/n+1/p, k ∈ N.

Proof. This is an immediate consequence of (51) together with (the counterpart of)
Theorem 4.5. Note that the assumption Ssing(w) ( Ω̊ admits that the construction of
extremal functions in our proofs can be adapted to this situation immediately, whereas
the upper estimates are due to the introduction of these spaces by restriction. Hence we
have the counterpart of Theorem 4.5 for spaces Asp,q(Ω, w) in this situation.

Remark 5.7. In [18] we could prove that this upper estimate is indeed an equivalence
in case of p > 2. Plainly, Corollary 5.6 can be explicated for our weights wα,β and wκ,Γ
in the slightly more general situation covered by Corollary 4.10. But this is left to the
reader, since the method seems obvious.
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[33] H. Triebel, Theory of Function Spaces II, Monogr. Math. 84, Birkhäuser, Basel, 1992.
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