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1. Introduction. Throughout this paper, we assume that H is a real Hilbert space with
inner product and norm which are denoted by 〈., .〉 and ‖.‖, respectively, C is a closed
convex subset of H, R is the set of real numbers and N is the set of natural numbers.
A mapping T : C → C is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C.
We use F (T ) to denote the set of fixed points of T , that is, F (T ) = {x ∈ C : Tx = x}.
Recall that a self-mapping f : C → C is a contraction on C if there exists a constant
α ∈ (0, 1) and x, y ∈ C such that ‖f(x)− f(y)‖ ≤ α‖x− y‖. Let B be a strongly positive
bounded linear operator on H, that is, there is a constant γ > 0 with the property

〈Bx, x〉 ≥ γ‖x‖2 for all x ∈ H. (1)

Let ϕ : C → R ∪ {+∞} be a proper extended real-valued function and F be a
bifunction of C×C into R. Ceng and Yao [CY] considered the mixed equilibrium problem
for finding x ∈ C such that

F (x, y) + ϕ(y) ≥ ϕ(x) for all y ∈ C. (2)

The set of solutions of (2) is denoted by MEP (F,ϕ). We see that x is a solution of
problem (2) which implies that x ∈ domϕ = {x ∈ C | ϕ(x) < +∞}. If ϕ = 0, then the
mixed equilibrium problem (2) becomes the following equilibrium problem: find x ∈ C
such that

F (x, y) ≥ 0 for all y ∈ C. (3)

The set of solutions of (3) is denoted by EP (F ). Given a mapping T : C → H, let
F (x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then z ∈ EP (F ) if and only if 〈Tz, y − z〉 ≥ 0
for all y ∈ C, i.e., z is a solution of the variational inequality. The mixed equilib-
rium problems include fixed point problems, variational inequality problems, optimiza-
tion problems, Nash equilibrium problems and the equilibrium problem as special cases.
Numerous problems in physics, optimization and economics are reduced to find a so-
lution of (3). Some methods have been proposed to solve the equilibrium problem (see
[BO, FA, K1, K2, K3, KK, MT]).

Let A : H → H be a mapping. Then A is called:

(1) monotone if
〈Ax−Ay, x− y〉 ≥ 0 ∀x, y ∈ H;

(2) σ-strongly monotone if there exists a positive real number σ such that

〈Ax−Ay, x− y〉 ≥ σ‖x− y‖2 ∀x, y ∈ H.

For constant σ > 0, this implies that

‖Ax−Ay‖ ≥ σ‖x− y‖,

that is, A is σ-expansive and when σ = 1, it is expansive;
(3) σ-inverse-strongly monotone if there exists a positive real number σ such that

〈Ax−Ay, x− y〉 ≥ σ‖Ax−Ay‖2 ∀x, y ∈ H;

(4) k-strictly pseudo-contractive, if there exists a constant k ∈ [0, 1) such that

‖Ax−Ay‖2 ≤ ‖x− y‖2 + k‖(I −A)x− (I −A)y‖2 ∀x, y ∈ H.
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Let A : H → H be a single-valued nonlinear mapping and M : H → 2H be a
set-valued mapping. We consider the following variational inclusion problem, which is to
find a point u ∈ H such that

θ ∈ A(u) +M(u), (4)

where θ is the zero vector in H. The set of solutions of problem (4) is denoted by I(A,M).
If M = ∂δC , where C is a nonempty closed convex subset of H and δC : H → [0,∞]

is the indicator function of C, i.e., δC(x) = 0 for x ∈ C and δC(x) = +∞ for x /∈ C, then
the variational inclusion problem (4) is equivalent to finding u ∈ C such that

〈Au, v − u〉 ≥ 0 ∀v ∈ H. (5)

This problem is called the Hartman-Stampacchia variational problem ([Bro, HS, LS]).
The set of solutions of problem (5) is denoted by V I(C,A).

A set-valued mapping M : H → 2H is called monotone if for all x, y ∈ H, f ∈ Mx

and g ∈ My imply 〈x− y, f − g〉 ≥ 0. A monotone mapping M : H → 2H is maximal if
the graph of G(M) of M is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping M is maximal if and only if for (x, f) ∈
H ×H, 〈x− y, f − g〉 ≥ 0 for every (y, g) ∈ G(M) implies f ∈Mx.

Let the set-valued mapping M : H → 2H be maximal monotone. We define the
resolvent operator JM,λ associated with M and λ as follows:

JM,λ(u) = (I + λM)−1(u) u ∈ H, (6)

where λ is a positive number. It is worth mentioning that the resolvent operator JM,λ is
single-valued, nonexpansive and 1-inverse strongly monotone ([Bré, PWSY, PS, ZLC]).

In this paper, we introduce a new iterative process (16) below for finding a common
element of the set of solutions for mixed equilibrium problems, the set of solutions of
the variational inclusion problems for inverse strongly monotone mappings and the set
of common fixed points for an infinite family of strictly pseudo-contractive mappings in
a Hilbert space. Then, we prove strong convergence theorems which extend and improve
the corresponding results of Peng and Yao [PY] and Plubtieng and Sriprad [PS].

2. Preliminaries. Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉
and let C be a closed convex subset of H. Then

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉 (7)

and
‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2 (8)

for all x, y ∈ H and λ ∈ R. For every point x ∈ H, there exists a unique nearest point
in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a nonexpansive
mapping of H onto C and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 (9)
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for every x, y ∈ H. Moreover, PCx is characterized by the following properties: PCx ∈ C
and

〈x− PCx, y − PCx〉 ≤ 0, (10)

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 (11)

for all x ∈ H, y ∈ C.
For solving the mixed equilibrium problem, let us give the following assumptions for

the bifunction F , ϕ and the set C:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C, limt→0 F (tz + (1− t)x, y) ≤ F (x, y);
(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous;
(A5) for each y ∈ C, x 7→ F (x, y) is weakly upper semicontinuous;
(B1) for each x ∈ H and r > 0, there exist a bounded subset Dx ⊆ C and yx ∈ C such

that for any z ∈ C \Dx,

F (z, yx) + ϕ(yx) +
1
r
〈yx − z, z − x〉 < ϕ(z);

(B2) C is a bounded set.

Lemma 2.1 (Peng and Yao [PY]). Let C be a nonempty closed convex subset of H. Let
F : C × C → R be a bifunction satisfying (A1)–(A5) and let ϕ : C → R ∪ {+∞} be a
proper lower semicontinuous and convex function. Assume that either (B1) or (B2) holds.
For r > 0 and x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C : F (z, y) + ϕ(y) +

1
r
〈y − z, z − x〉 ≥ ϕ(z) ∀y ∈ C

}
for all z ∈ H. Then

1. For each x ∈ H, Tr(x) 6= ∅;
2. Tr is single-valued ;
3. Tr is firmly nonexpansive, i.e., for any x, y ∈ H, ‖Trx−Try‖2 ≤ 〈Trx−Try, x−y〉;
4. F (Tr) = MEP (F,ϕ);
5. MEP (F,ϕ) is closed and convex.

In order to prove our main results, we need the following lemmas.

Lemma 2.2 (Zhou [Z]). If V : C → H is a k-strict pseudo-contraction, then

(1) the fixed point set F (V ) of V is closed convex, so that the projection PF (V ) is well
defined ;

(2) define a mapping T : C → H by

Tx = tx+ (1− t)V x ∀x ∈ C. (12)

If t ∈ [k, 1), then T is a nonexpansive mapping such that F (V ) = F (T ).

A family of mappings {Vi : C → H}∞i=1 is called a family of uniformly k-strict pseudo-
contractions, if there exists a constant k ∈ [0, 1) such that

‖Vix− Viy‖2 ≤ ‖x− y‖2 + k‖(I − Vi)x− (I − Vi)y‖2 ∀x, y ∈ C ∀i ≥ 1.
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Let {Vi : C → C}∞i=1 be a countable family of uniformly k-strict pseudo-contractions. Let
{Ti : C → C}∞i=1 be the sequence of nonexpansive mappings defined by (12), i.e.,

Tix = tx+ (1− t)Vix ∀x ∈ C ∀i ≥ 1, t ∈ [k, 1). (13)

Let {Ti} be a sequence of nonexpansive mappings of C into itself defined by (13) and
let {µi} be a sequence of nonnegative numbers in [0, 1]. For each n ≥ 1, define a mapping
Wn of C into itself as follows:

Un,n+1 = I,

Un,k = µkTkUn,k+1 + (1− µk)I, k = n, n− 1, . . . , 2,

Wn = Un,1 = µ1T1Un,2 + (1− µ1)I.

(14)

Such a mappingWn is nonexpansive from C to C and it is called theW -mapping generated
by T1, T2, . . . , Tn and µ1, µ2, . . . , µn.

Let for each n, k ∈ N the mapping Un,k be defined by (14). Then we can have the
following crucial conclusions concerning Wn which can be found in [ST]. Now we only
need the following similar version in Hilbert spaces.

Lemma 2.3 (Shimoji and Takahashi [ST]). Let C be a nonempty closed convex subset of
a real Hilbert space H. Let T1, T2, . . . be nonexpansive mappings of C into itself such that⋂∞
n=1 F (Tn) is nonempty, let µ1, µ2, . . . be real numbers such that 0 ≤ µn ≤ b < 1 for

every n ≥ 1. Then

(1) Wn is nonexpansive and F (Wn) =
⋂n
i=1 F (Ti) for every n ≥ 1;

(2) for every x ∈ C and k ∈ N, the limit limn→∞ Un,kx exists;
(3) a mapping W : C → C defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x ∀x ∈ C (15)

is a nonexpansive mapping satisfying F (W ) =
⋂∞
i=1 F (Ti) and it is called the W -

mapping generated by T1, T2, . . . and µ1, µ2, . . . .

Lemma 2.4 (Chang [C]). Let C be a nonempty closed convex subset of a Hilbert space H,
{Ti : C → C} be a countable family of nonexpansive mappings with

⋂∞
i=1 F (Ti) 6= ∅, {µi}

be a real sequence such that 0 < µi ≤ b < 1 for i ≥ 1. If D is any bounded subset of C,
then

lim
n→∞

sup
x∈D
‖Wx−Wnx‖ = 0.

Lemma 2.5 (Xu [X]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− αn)an + δn, n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1)
∑∞
n=1 αn =∞,

(2) lim supn→∞
δn

αn
≤ 0 or

∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.
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Lemma 2.6 (Osilike and Igbokwe [OI]). Let (E, 〈., .〉) be an inner product space. Then
for all x, y, z ∈ E and α, β, γ ∈ [0, 1] with α+ β + γ = 1, we have

‖αx+ βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2 − αγ‖x− z‖2 − βγ‖y − z‖2.

Lemma 2.7 (Suzuki [S]). Let {xn} and {yn} be bounded sequences in a Banach space X
and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Suppose xn+1 = (1−βn)yn +βnxn for all integers n ≥ 0 and lim supn→∞(‖yn+1− yn‖−
‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

Lemma 2.8 (Marino and Xu [MX]). Assume B is a strongly positive linear bounded
operator on a Hilbert space H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖B‖−1. Then ‖I−ρB‖ ≤
1− ργ̄.

Lemma 2.9 (Opial [O]). Each Hilbert space H satisfies Opial’s condition, i.e., for any
sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖,

holds for each y ∈ H with y 6= x.

Lemma 2.10 (Brézis [Bré]). Let M : H → 2H be a maximal monotone mapping and
A : H → H be a Lipschitz continuous mapping. Then the mapping S = M +A : H → 2H

is a maximal monotone mapping.

Remark 2.11. Lemma 2.10 implies that I(A,M) is closed and convex if M : H → 2H

is a maximal monotone mapping and A : H → H is a Lipschitz continuous mapping.

Lemma 2.12 (Zhang et al. [ZLC]). u ∈ H is a solution of variational inclusion (4) if and
only if u = JM,λ(u− λAu) for each λ > 0, i.e.,

I(A,M) = F (JM,λ(I − λA)) ∀λ > 0.

3. Main results. In this section, we show a strong convergence theorem for finding
a common element of the set of solutions for mixed equilibrium problems, the set of
solutions of the variational inclusion problems for inverse strongly monotone mappings
and the set of common fixed points for an infinite family of strictly pseudo-contractive
mappings in a Hilbert space by using the viscosity approximation method.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F be a bifunction of C × C into real numbers R satisfying (A1)–(A5) and let ϕ : C →
R∪{+∞} be a proper lower semicontinuous and convex function. Let f be a contraction
of H into itself with coefficient α ∈ (0, 1) and B be a strongly bounded linear operator
on H with coefficient γ̄ > 0 and 0 < γ < γ̄

α . Let M1,M2 : H → 2H be maximal
monotone mappings and A1, A2 : H → H be σ1, σ2-inverse-strongly monotone mappings,
respectively. Let {Vi : C → C}∞i=1 be a countable family of uniformly k-strict pseudo-
contractions, {Ti : C → C}∞i=1 be the countable family of nonexpansive mappings defined
by Tix = tx + (1 − t)Vix, for all x ∈ C, i ≥ 1, t ∈ [k, 1). Let Wn be the W -mapping
defined by (14) and W be a mapping defined by (15) with F (W ) 6= ∅. Assume that either
(B1) or (B2) holds and Ω :=

⋂N
n=1 F (Ti)∩ I(A1,M1)∩ I(A2,M2)∩MEP (F,ϕ) 6= ∅. Let
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{xn}, {yn}, {zn} and {un} be sequences generated by x1 ∈ H and
F (un, y) + ϕ(y)− ϕ(un) + 1

rn
〈y − un, un − xn〉 ≥ 0 ∀y ∈ C,

yn = JM2,δ(un − δA2un),

vn = JM1,τ (yn − τA1yn),

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnB)Wnvn

(16)

for every n ≥ 1, where {αn}, {βn} ⊂ (0, 1), {rn} ⊂ (0,∞), τ ∈ (0, 2σ1) and δ ∈ (0, 2σ2)
satisfy:

(i)
∑∞
n=0 αn =∞ and limn→∞ αn = 0;

(ii) lim infn→∞ rn > 0 and
∑∞
n=1 |rn+1 − rn| <∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then {xn} converges strongly to z ∈ Ω which is the unique solution of the variational
inequality

〈(B − γf)z, z − x〉 ≤ 0, x ∈ Ω.

Equivalently, we have z = PΩ(I −B + γf)(z).

Proof. First, we show that I−τA1 and I−δA2 are nonexpansive. Indeed, for all x, y ∈ H
and τ ∈ (0, 2σ1), we note that

‖(I − τA1)u− (I − τA1)v‖2 = ‖(u− v)− τ(A1u−A1v)‖2

= ‖u− v‖2 − 2τ〈u− v,A1u−A1v〉+ τ2‖A1u−A1v‖2

≤ ‖u− v‖2 + τ(τ − 2σ1)‖A1u−A1v‖2 ≤ ‖u− v‖2, (17)

which implies that the mapping I − τA1 is nonexpansive. So is I − δA2.
By condition (i), we may assume, without loss of generality, that αn < ‖B‖−1 for

all n. We assume that ‖I − B‖ ≤ 1 − γ̄. Since B is a strongly positive bounded linear
operator on H, we have

‖B‖ = sup{|〈Bx, x〉| : x ∈ H, ‖x‖ = 1}.

Observe that

〈((1− βn)I − αnB)x, x〉 = 1− βn − αn〈Bx, x〉 ≥ 1− βn − αn‖B‖ ≥ 0,

this shows that (1− βn)I − αnB is positive. It follows that

‖(1− βn)I − αnB‖ = sup
{∣∣〈((1− βn)I − αnB)x, x〉

∣∣ : x ∈ H, ‖x‖ = 1
}

= sup{1− βn − αn〈Bx, x〉 : x ∈ H, ‖x‖ = 1}
≤ 1− βn − αnγ̄.

Let p ∈ Ω, and let {Trn} be a sequence of mappings defined as in Lemma 2.1 and
un = Trn

xn. For any n ∈ N, we have

‖un − p‖ = ‖Trn
xn − Trn

p‖ ≤ ‖xn − p‖.

Since p ∈ I(A1,M1) and p ∈ I(A2,M2), we have p = JM1,τ (p−τA1p) = JM2,δ(p−δA2p).
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Because I − τA1, I − δA2, JM1,τ and JM2,δ are nonexpansive mappings, we obtain

‖vn − p‖ = ‖JM1,τ (yn − τA1zn)− JM1,τ (p− τA1p)‖
≤ ‖(I − τA1)yn − (I − τA1)p‖ ≤ ‖yn − p‖
= ‖JM2,δ(un − δA2un)− JM2,δ(p− δA2p)‖
≤ ‖(I − δA2)un − (I − δA2)p‖
≤ ‖un − p‖ ≤ ‖xn − p‖. (18)

It follows that

‖xn+1 − p‖ = ‖αnγf(xn) + βnxn + ((1− βn)I − αnB)Wnvn − p‖
= ‖αn(γf(xn)−Bp) + βn(xn − p) + ((1− βn)I − αnB)(Wnvn − p)‖
≤ αn‖γf(xn)−Bp‖+ βn‖xn − p‖+ (1− βn − αnγ̄)‖vn − p‖
≤ αn‖γf(xn)−Bp‖+ βn‖xn − p‖+ (1− βn − αnγ̄)‖xn − p‖
≤ αn‖γf(xn)− γf(p)‖+ αn‖γf(p)−Bp‖+ (1− αnγ̄)‖xn − p‖
≤ αnγα‖xn − p‖+ αn‖γf(p)−Bp‖+ (1− αnγ̄)‖xn − p‖

= (1− (γ̄ − γα)αn)‖xn − p‖+ (γ̄ − γα)αn
‖γf(p)−Bp‖

γ̄ − γα
(19)

for every n ∈ N. It follows by mathematical induction that

‖xn+1 − p‖ ≤ max
{
‖x1 − p‖,

‖γf(p)−Bp‖
γ̄ − γα

}
, n ≥ 1.

Therefore {xn} is bounded, so {yn}, {un}, {vn}, {f(xn)} and {Wnvn} are all bounded.
Next, we show that ‖xn+1 − xn‖ → 0 and ‖xn −Wnvn‖ → 0 as n → 0. Observing

that un = Trn
xn ∈ domϕ and un+1 = Trn+1xn+1 ∈ domϕ we get

F (un, y) + ϕ(y)− ϕ(un) +
1
rn
〈y − un, un − xn〉 ≥ 0 for all y ∈ C (20)

and

F (un+1, y) + ϕ(y)− ϕ(un+1) +
1

rn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0 for all y ∈ C. (21)

Take y = un+1 in (20) and y = un in (21), by using condition (A2), we obtain〈
un+1 − un,

un − xn
rn

− un+1 − xn+1

rn+1

〉
≥ 0.

Thus 〈un+1 − un, un − un+1 + xn+1 − xn + (1− rn

rn+1
)(un+1 − xn+1)〉 ≥ 0. Without loss

of generality, let us assume that there exists a real number c such that rn > c, for n ≥ 1.
Then we have

‖un+1 − un‖2 ≤ ‖un+1 − un‖
{
‖xn+1 − xn‖+

∣∣∣1− rn
rn+1

∣∣∣‖un+1 − xn+1‖
}

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖+
1

rn+1
|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖+
1
c
|rn+1 − rn|M1, (22)
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where M1 = sup{‖un − xn‖ : n ∈ N}. On the other hand, again since I − τA1, I − δA2,
JM1,τ and JM2,δ are nonexpansive, we obtain

‖vn+1 − vn‖ = ‖JM1,τ (yn+1 − τA1yn+1)− JM1,τ (yn − τA1yn)‖
≤ ‖(yn+1 − τA1yn+1)− (yn − τA1yn)‖ ≤ ‖yn+1 − yn‖
= ‖JM2,δ(un+1 − δA2un+1)− JM2,δ(un − δA2un)‖
≤ ‖(un+1 − δA2un+1)− (un − δB2un)‖ ≤ ‖un+1 − un‖

≤ ‖xn+1 − xn‖+
1
c
|rn+1 − rn|M1. (23)

Since Ti and Un,i are nonexpansive, we have

‖Wn+1vn −Wnvn‖ = ‖µ1T1Un+1,2vn − µ1T1Un,2vn‖
≤ µ1‖Un+1,2vn − Un,2vn‖
= µ1‖µ2T2Un+1,3vn − µ2T2Un,3vn‖
≤ µ1µ2‖Un+1,3vn − Un,3vn‖
...

≤ µ1µ2 · · ·µn‖Un+1,n+1vn − Un,n+1vn‖

≤M2

n∏
i=1

µi, (24)

where M2 ≥ 0 is a constant such that ‖Un+1,n+1vn − Un,n+1vn‖ ≤ M2 for all n ≥ 0. It
follows from (23) and (24) that

‖Wn+1vn+1 −Wnvn‖ ≤ ‖Wn+1vn+1 −Wn+1vn‖+ ‖Wn+1vn −Wnvn‖

≤ ‖vn+1 − vn‖+M2

n∏
i=1

µi

≤ ‖xn+1 − xn‖+
1
c
|rn+1 − rn|M1 +M2

n∏
i=1

µi. (25)

Define the sequence {zn} by xn+1 = (1 − βn)zn + βnxn, for each n ≥ 1. Then, observe
that

zn =
xn+1 − βnxn

1− βn

=
αnγf(xn) + βnxn + ((1− βn)I − αnB)Wnvn − βnxn

1− βn

=
αnγf(xn) + ((1− βn)I − αnB)Wnvn

1− βn
and hence

zn+1 − zn =
αn+1γf(xn+1) + ((1− βn+1)I − αn+1B)Wn+1vn+1

1− βn+1

− αnγf(xn) + ((1− βn)I − αnB)Wnvn
1− βn
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=
αn+1γf(xn+1)

1− βn+1
+

(1− βn+1)Wn+1vn+1

1− βn+1
− αn+1BWn+1vn+1

1− βn+1

− αnγf(xn)
1− βn

− (1− βn)Wnvn
1− βn

+
αnBWnvn

1− βn
=

αn+1

1− βn+1
(γf(xn+1)−BWn+1vn+1) +

αn
1− βn

(BWnvn − γf(xn))

+Wn+1vn+1 −Wnvn. (26)

Combining this with (25), we obtain

‖zn+1 − zn‖ ≤
αn+1

1− βn+1

(
‖γf(xn+1)‖+ ‖BWn+1vn+1‖

)
+

αn
1− βn

(
‖BWnvn‖+ ‖γf(xn)‖

)
+ ‖Wn+1vn+1 −Wnvn‖

≤ αn+1

1− βn+1

(
‖γf(xn+1)‖+ ‖BWn+1vn+1‖

)
+

αn
1− βn

(
‖BWnvn‖+ ‖γf(xn)‖

)
+ ‖xn+1 − xn‖+

1
c
|rn+1 − rn|M1 +M2

n∏
i=1

µi.

Observe that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤
αn+1

1− βn+1

(
‖γf(xn+1)‖+ ‖BWn+1vn+1‖

)
+

αn
1− βn

(
‖BWnvn‖+ ‖γf(xn)‖

)
+

1
c
|rn+1 − rn|M1 +M2

n∏
i=1

µi.

Assumptions (i)–(iii) imply that

lim sup
n→∞

(
‖zn+1 − zn‖ − ‖xn+1 − xn‖

)
≤ 0.

Hence, by Lemma 2.7, we have

lim
n→∞

‖zn − xn‖ = 0.

Consequently,
lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖zn − xn‖ = 0. (27)

From (ii), (23) and (27), we have ‖un+1−un‖ → 0, ‖yn+1−yn‖ → 0 and ‖vn+1−vn‖ → 0
as n→∞. We note that

xn+1 − xn = αnγf(xn) + βnxn +
(
(1− βn)I − αnB

)
Wnvn − xn

= αnγf(xn)− αnBxn + αnBxn + βnxn +
(
(1− βn)I − αnB

)
Wnvn

−
(
(1− βn)I − αnB

)
xn +

(
(1− βn)I − αnB

)
xn − xn

= αn(γf(xn)−Bxn) +
(
(1− βn)I − αnB

)
(Wnvn − xn),

hence

(1− βn − αnγ̄)‖xn −Wnvn‖ ≤ αn‖γf(xn)−Bxn‖+ ‖xn − xn+1‖.
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From (i)–(iii) and (27) we obtain

lim
n→∞

‖Wnvn − xn‖ = 0. (28)

Next, we shall show that limn→∞ ‖un − xn‖ = 0. For any p ∈ Ω and Trn
is firmly

nonexpansive, and we have

‖un − p‖2 = ‖Trnxn − Trnp‖2 ≤ 〈Trnxn − Trnp, xn − p〉 = 〈un − p, xn − p〉

=
1
2

(‖un − p‖2 + ‖xn − p‖2 − ‖un − xn‖2).

It follows that
‖un − p‖2 ≤ ‖xn − p‖2 − ‖un − xn‖2.

Therefore, we have

‖xn+1 − p‖2 ≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2 + (1− βn − αnγ̄)‖Wnvn − p‖2

≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2 + (1− βn − αnγ̄)‖vn − p‖2

≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2 + (1− βn − αnγ̄)‖un − p‖2

≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2

+ (1− βn − αnγ̄)(‖xn − p‖2 − ‖un − xn‖2)

= αn‖γf(xn)−Bp‖2 + (1− αnγ̄)‖xn − p‖2

− (1− βn − αnγ̄)‖un − xn‖2. (29)

It follows that

(1− βn − αnγ̄)‖un − xn‖2 ≤ αn‖γf(xn)−Bp‖2 + (1− αnγ̄)‖xn − p‖2 − ‖xn+1 − p‖2

≤ αn‖γf(xn)−Bp‖2 + ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖).

Assumptions (i)–(iii) and formula (27) imply that

lim
n→∞

‖xn − un‖ = 0, (30)

and by (ii) we have

lim
n→∞

∥∥∥xn − un
rn

∥∥∥ = lim
n→∞

1
rn
‖xn − un‖ = 0.

We note that, by (29), nonexpansiveness of JM1,τ , JM2,δ and the inverse-strong mono-
tonicity of A1, A2 imply that

‖xn+1 − p‖2 ≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2 + (1− βn − αnγ̄)‖vn − p‖2

= αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2

+ (1− βn − αnγ̄)
∥∥JM1,τ (yn − τA1yn)− JM1,τ (p− τA1p)

∥∥2

≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2

+ (1− βn − αnγ̄)
∥∥(I − τA1)yn − (I − τA1)p

∥∥2

≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2

+ (1− βn − αnγ̄)
{
‖yn − p‖2 + τ(τ − 2σ1)‖A1yn −A1p‖2

}
≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2 + (1− βn − αnγ̄)‖xn − p‖2

+ (1− βn − αnγ̄)τ(τ − 2σ1)‖A1yn −A1p‖2
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≤ αn‖γf(xn)−Bp‖2 + ‖xn − p‖2

+ (1− βn − αnγ̄)τ(τ − 2σ1)‖A1yn −A1p‖2

and

‖xn+1 − p‖2 ≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2 + (1− βn − αnγ̄)‖yn − p‖2

= αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2

+ (1− βn − αnγ̄)
∥∥JM2,δ(un − δA2un)− JM2,δ(p− δA2p)

∥∥2

≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2

+ (1− βn − αnγ̄)
∥∥(I − δA2)un − (I − δA2)p

∥∥2

≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2

+ (1− βn − αnγ̄)
{
‖un − p‖2 + δ(δ − 2σ2)‖A2un −A2p‖2

}
≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2

+ (1− βn − αnγ̄)‖xn − p‖2 + (1− βn − αnγ̄)δ(δ − 2σ2)‖A2un −A2p‖2

≤ αn‖γf(xn)−Bp‖2 + ‖xn − p‖2

+ (1− βn − αnγ̄)δ(δ − 2σ2)‖A2un −A2p‖2

which imply that

0 ≤ (1− βn − αnγ̄)τ(2σ1 − τ)‖A1yn −A1p‖2

≤ αn‖γf(xn)−Bp‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

≤ αn‖γf(xn)−Bp‖2 + ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖)

and

0 ≤ (1− βn − αnγ̄)δ(2σ2 − δ)‖A2un −A2p‖2

≤ αn‖γf(xn)−Bp‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

≤ αn‖γf(xn)−Bp‖2 + ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖).

It follows from (i), (iii) and (27) that

lim
n→∞

‖A1yn −A1p‖ = 0 (31)

and

lim
n→∞

‖A2un −A2p‖ = 0. (32)

On the other hand, since JM1,τ is firmly nonexpansive, we have

‖vn − p‖2 =
∥∥JM1,τ (yn − τA1yn)− JM1,τ (p− τA1p)

∥∥2

≤ 〈(yn − τA1yn)− (p− τA1p), vn − p〉

=
1
2
{
‖(yn − τA1yn)− (p− τA1p)‖2 + ‖vn − p‖2

− ‖(yn − τA1yn)− (p− τA1p)− (vn − p)‖2
}

≤ 1
2
{
‖yn − p‖2 + ‖vn − p‖2 − ‖(yn − vn)− τ(A1yn −A1p)‖2

}
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=
1
2
{
‖yn − p‖2 + ‖vn − p‖2

− ‖yn − vn‖2 + 2τ〈yn − vn, A1yn −A1p〉 − τ2‖A1yn −A1p‖2
}

≤ 1
2
{
‖yn − p‖2 + ‖vn − p‖2

− ‖yn − vn‖2 + 2τ‖yn − vn‖‖A1yn −A1p‖ − τ2‖A1yn −A1p‖2
}

≤ 1
2
{
‖xn − p‖2 + ‖vn − p‖2 − ‖yn − vn‖2 + 2τ‖yn − vn‖‖A1yn −A1p‖

}
,

which yields that

‖vn − p‖2 ≤ ‖xn − p‖2 − ‖yn − vn‖2 + 2τ‖yn − vn‖‖A1yn −A1p‖. (33)

Similarly, since JM2,δ is firmly nonexpansive, we also have

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖un − yn‖2 + 2δ‖un − yn‖‖A2un −A2p‖. (34)

Substituting (33) into (29), we have

‖xn+1 − p‖2 ≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2 + (1− βn − αnγ̄)‖Wnvn − p‖2

≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2 + (1− βn − αnγ̄)‖vn − p‖2

≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2

+ (1− βn − αnγ̄)
(
‖xn − p‖2 − ‖yn − vn‖2 + 2τ‖yn − vn‖‖A1yn −A1p‖

)
≤ αn‖γf(xn)−Bp‖2 + ‖xn − p‖2 − (1− βn − αnγ̄)‖yn − vn‖2

+ 2τ(1− βn − αnγ̄)‖yn − vn‖‖A1yn −A1p‖ (35)

and substituting (34) into (29), we get

‖xn+1 − p‖2 ≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2 + (1− βn − αnγ̄)‖Wnvn − p‖2

≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2 + (1− βn − αnγ̄)‖vn − p‖2

≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2 + (1− βn − αnγ̄)‖yn − p‖2

≤ αn‖γf(xn)−Bp‖2 + βn‖xn − p‖2

+ (1− βn − αnγ̄)
(
‖xn − p‖2 − ‖un − yn‖2 + 2δ‖un − yn‖‖A2un −A2p‖

)
≤ αn‖γf(xn)−Bp‖2 + ‖xn − p‖2 − (1− βn − αnγ̄)‖un − yn‖2

+ 2δ(1− βn − αnγ̄)‖un − yn‖‖A2un −A2p‖. (36)

Therefore, by (35) and (36), we have

(1− βn − αnγ̄)‖yn − vn‖2 ≤ αn‖γf(xn)−Bp‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2τ(1− βn − αnγ̄)‖yn − vn‖‖A1yn −A1p‖
≤ αn‖γf(xn)−Bp‖2 + ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖)

+ 2τ(1− βn − αnγ̄)‖yn − vn‖‖A1yn −A1p‖ (37)
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and

(1− βn − αnγ̄)‖un − yn‖2 ≤ αn‖γf(xn)−Bp‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2δ(1− βn − αnγ̄)‖un − yn‖‖A2un −A2p‖
≤ αn‖γf(xn)−Bp‖2 + ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖)

+ 2δ(1− βn − αnγ̄)‖un − yn‖‖A2un −A2p‖. (38)

It follows from (i), (iii) and (27) that

lim
n→∞

‖yn − vn‖ = 0 (39)

and
lim
n→∞

‖un − yn‖ = 0. (40)

From (28), (30), (39) and (40), we have

‖Wnvn−vn‖ ≤ ‖Wnvn−xn‖+‖xn−un‖+‖un−yn‖+‖yn−vn‖ → 0 as n→∞ (41)

and also

‖vn − xn‖ ≤ ‖vn − yn‖+ ‖yn − un‖+ ‖un − xn‖ → 0 as n→∞. (42)

Observe that PΩ(I − B + γf) is a contraction of H into itself. Indeed, for all x, y ∈ H,
we have∥∥PΩ(I −B + γf)(x)− PΩ(I −B + γf)(y)

∥∥ ≤ ‖(I −B + γf)(x)− (I −B + γf)(y)‖
≤ ‖I −B‖‖x− y‖+ γ‖f(x)− f(y)‖
≤ (1− γ̄)‖x− y‖+ γα‖x− y‖
= (1− (γ̄ − γα))‖x− y‖.

Since H is complete, there exists a unique fixed point z ∈ H such that

z = PΩ(I −B + γf)(z).

Next, we show that

lim sup
n→∞

〈(B − γf)z, z − xn〉 ≤ 0.

Indeed, we can choose a subsequence {vni
} of {vn} such that

lim
i→∞
〈(B − γf)z, z − vni〉 = lim sup

n→∞
〈(B − γf)z, z − vn〉.

Since {vni
} is bounded, there exists a subsequence {vnij

} of {vni
} which converges weakly

to v ∈ C. Without loss of generality, we can assume that vni
⇀ v. From ‖Wnvn−vn‖ → 0,

we obtain Wnvni
⇀ v. Let us show that v ∈MEP (F,ϕ). Since un = Trn

xn ∈ domϕ, we
have

F (un, y) + ϕ(y)− ϕ(un) +
1
rn
〈y − un, un − xn〉 ≥ 0 ∀y ∈ C.

From (A2) we also have

ϕ(y)− ϕ(un) +
1
rn
〈y − un, un − xn〉 ≥ F (y, un) ∀y ∈ C,

and hence
ϕ(y)− ϕ(un) +

〈
y − uni ,

uni
− xni

rni

〉
≥ F (y, uni) ∀y ∈ C.
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From ‖un − xn‖ → 0, ‖xn −Wnvn‖ → 0, and ‖Wnvn − vn‖ → 0, we get uni ⇀ v. Since
(uni

− xni
)/rni

→ 0, it follows by (A4) and the weak lower semicontinuity of ϕ that

F (y, v) + ϕ(v)− ϕ(y) ≤ 0 ∀y ∈ C.
For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1− t)v. Since y ∈ C and v ∈ C, we have
yt ∈ C and hence F (yt, v) + ϕ(v) − ϕ(yt) ≤ 0. So, from (A1), (A4) and the convexity
of ϕ, we have

0 = F (yt, yt) + ϕ(yt)− ϕ(yt)

≤ tF (yt, y) + (1− t)F (yt, v) + tϕ(y) + (1− t)ϕ(v)− ϕ(yt)

≤ t(F (yt, y) + ϕ(y)− ϕ(yt)).

Dividing by t, we get F (yt, y)+ϕ(y)−ϕ(yt) ≥ 0. From (A3) and the weak lower semicon-
tinuity of ϕ, we have F (v, y) + ϕ(y)− ϕ(v) ≥ 0 for all y ∈ C and hence v ∈MEP (F,ϕ).

Next, we show that v ∈ F (W ) =
⋂∞
n=1 F (Wn), where F (Wn) =

⋂n
i=1 F (Ti) for

every n ≥ 1, and F (Wn+1) ⊂ F (Wn). Assume that v /∈ F (W ), then there exists a
positive integer m such that v /∈ F (Tm) and so v /∈

⋂m
i=1 F (Ti). Hence for any n ≥ m,

v /∈
⋂n
i=1 F (Ti) = F (Wn), i.e., v 6= Wnv. It follows from Opial’s condition that

lim inf
i→∞

‖vni
− v‖ < lim inf

i→∞
‖vni

−Wnv‖

≤ lim inf
i→∞

(‖vni
−Wnvni

‖+ ‖Wnvni
−Wnv‖)

≤ lim inf
i→∞

‖vni − v‖,

which is a contradiction. Thus, we obtain v ∈ F (W ).
Next, we show that v ∈ I(A1,M1) and v ∈ I(A2,M2). The fact that A1 is a σ1-

inverse-strongly monotone mapping implies that A1 is a 1
σ1

-Lipschitz continuous mono-
tone mapping and the domain of A1 equals H. It follows from Lemma 2.10 that M1 +A1

is maximal monotone. Let (y, g) ∈ G(M1 + A1), that is, g − A1y ∈ M1(y). Since
vni

= JM1,τ (yni
− τA1yni

), we have yni
− τA1yni

∈ (I + τM1)(vni
), that is,

1
τ

(yni
− vni

− τA1yni
) ∈M1(vni

). (43)

Since M1 +A1 is maximal monotone, we have〈
y − vni

, g −A1y −
1
λ

(yni
− vni

− τA1yni
)
〉
≥ 0, (44)

and so

〈y − vni
, g〉 ≥

〈
y − vni

, A1y +
1
τ

(yni
− vni

− τA1yni
)
〉

=
〈
y − vni

, A1y −A1vni
+A1vni

−A1yni
+

1
τ

(yni
− vni

)
〉

≥ 0 + 〈y − vni , A1vni −A1yni〉+
〈
y − vni ,

1
τ

(yni − vni)
〉

(45)

It follows from (39) and vni
⇀ v that

lim
i→∞
〈y − vni

, g〉 = 〈y − v, g〉 ≥ 0. (46)

It follows from the maximal monotonicity of M1 + A1 that θ ∈ (M1 + A1)(v), that is,
v ∈ I(A1,M1). By the same way, from (40) and yni

⇀ v, we obtain v ∈ I(A2,M2). Hence
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v ∈ Ω is proved.
Since z = PΩ(I −B + γf)(z), it follows that

lim sup
n→∞

〈(B − γf)z, z − xn〉 = lim sup
n→∞

〈(B − γf)z, z − vn〉

= lim
i→∞
〈(B − γf)z, z − vni

〉 = 〈(B − γf)z, z − v〉 ≤ 0. (47)

By (41), (42) and the last inequality, we conclude that

lim sup
n→∞

〈γfz −Bz,Wnvn − z〉 ≤ 0. (48)

Finally, we show that {xn} converges strongly to z. Indeed, from (16) we have

‖xn+1 − z‖2

=
∥∥αnγf(xn) + βnxn + ((1− βn)I − αnB)Wnvn − z

∥∥2

=
∥∥αn(γf(xn)−Bz) + βn(xn − z) + ((1− βn)I − αnB)(Wnvn − z)

∥∥2

= α2
n‖γf(xn)−Bz‖2 +

∥∥βn(xn − z) + ((1− βn)I − αnB)(Wnvn − z)
∥∥2

+ 2
〈
βn(xn − z) + ((1− βn)I − αnB)(Wnvn − z), αn(γf(xn)−Bz)

〉
≤ α2

n‖γf(xn)−Bz‖2 +
(
βn‖xn − z‖+ (1− βn − αnγ̄)‖vn − z‖

)2
+ 2αnβn〈xn − z, γf(xn)−Bz〉
+ 2αn(1− βn − αnγ̄)〈Wnvn − z, γf(xn)−Bz〉

≤ α2
n‖γf(xn)−Bz‖2 +

(
βn‖xn − z‖+ (1− βn − αnγ̄)‖xn − z‖

)2
+ 2αnβn〈xn − z, γf(xn)− γf(z)〉+ 2αnβn〈xn − z, γf(z)−Bz〉
+ 2αn(1− βn − αnγ̄)〈Wnvn − z, γf(xn)− γf(z)〉
+ 2αn(1− βn − αnγ̄)〈Wnvn − z, γf(z)−Bz〉

≤ α2
n‖γf(xn)−Bz‖2 + (1− αnγ̄)2‖xn − z‖2

+ 2αnβnγ‖xn − z‖‖f(xn)− f(z)‖+ 2αnβn〈xn − z, γf(z)−Bz〉
+ 2αn(1− βn − αnγ̄)γ‖Wnvn − z‖‖f(xn)− f(z)‖
+ 2αn(1− βn − αnγ̄)〈Wnvn − z, γf(z)−Bz〉

≤ α2
n‖γf(xn)−Bz‖2 + (1− αnγ̄)2‖xn − z‖2

+ 2αnβnγα‖xn − z‖2 + 2αnβn〈xn − z, γf(z)−Bz〉
+ 2αn(1− βn − αnγ̄)γα‖xn − z‖2

+ 2αn(1− βn − αnγ̄)〈Wnvn − z, γf(z)−Bz〉
= α2

n‖γf(xn)−Bz‖2 + (1− 2αnγ̄ + α2
nγ̄

2 − 2α2
nγ̄γα)‖xn − z‖2

+ 2αnβn〈xn − z, γf(z)−Bz〉+ 2αn(1− βn − αnγ̄)〈Wnvn − z, γf(z)−Bz〉
≤ (1− αn(2γ̄ + αnγ̄

2))‖xn − z‖2 + 2αnσn (49)

where σn = αn‖γf(xn) − Bz‖2 + 2βn〈xn − z, γf(z) − Bz〉 + 2(1 − βn − αnγ̄) ×
〈Wnvn − z, γf(z) − Bz〉. By (48), we get lim supn→∞ σn ≤ 0. Hence by Lemma 2.5
applied to (49), we conclude that xn → z. This completes the proof.

Using Theorem 3.1, we obtain the following corollaries.
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Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F be a bifunction of C ×C into real numbers R satisfying (A1)–(A5), f be a contraction
of H into itself with coefficient α ∈ (0, 1) and B be a strongly bounded linear operator
on H with coefficient γ̄ > 0 and 0 < γ < γ̄

α . Let M : H → 2H be a maximal monotone
mapping and A : H → H a σ-inverse-strongly monotone mapping. Let {Vi : C → C}∞i=1

be a countable family of uniformly k-strict pseudo-contractions, {Ti : C → C}∞i=1 be the
countable family of nonexpansive mappings defined by Tix = tx+ (1− t)Vix, for x ∈ C,
i ≥ 1, t ∈ [k, 1). Let Wn be the W -mapping defined by (14) and W be a mapping defined
by (15) with F (W ) 6= ∅. Assume that Ω :=

⋂N
n=1 F (Ti) ∩ I(A,M) ∩ EP (F ) 6= ∅. Let

{xn}, {yn}, {zn} and {un} be sequences generated by x1 ∈ H and
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0 ∀y ∈ C,

yn = JM,τ (un − τAun),

vn = JM,τ (yn − τAyn),

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnB)Wnvn,

(50)

for every n ≥ 1, where {αn}, {βn} ⊂ (0, 1), {rn} ⊂ (0,∞) and τ ∈ (0, 2σ) satisfy
conditions (i)–(iii) in Theorem 3.1. Then {xn} converges strongly to z ∈ Ω which is the
unique solution of the variational inequality

〈(B − γf)z, z − x〉 ≤ 0, x ∈ Ω.

Equivalently, we have z = PΩ(I −B + γf)(z).

Proof. Taking ϕ ≡ 0, M1 = M2 = M , A1 = A2 = A and τ = δ in Theorem 3.1, we
obtain the desired conclusion easily. This completes the proof.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let F be a bifunction of C×C into real numbers R satisfying (A1)–(A5) and let ϕ : C →
R∪{+∞} be a proper lower semicontinuous and convex function. Let f be a contraction
of H into itself with coefficient α ∈ (0, 1) and let B be a strongly bounded linear operator
on H with coefficient γ̄ > 0 and 0 < γ < γ̄

α . Let A1, A2 : H → H be σ1, σ2-inverse-strongly
monotone mappings, respectively. Let {Vi : C → C}∞i=1 be a countable family of uniformly
k-strict pseudo-contractions, {Ti : C → C}∞i=1 be the countable family of nonexpansive
mappings defined by Tix = tx + (1 − t)Vix, for x ∈ C, i ≥ 1, t ∈ [k, 1). Let Wn be
the W -mapping defined by (14) and W be a mapping defined by (15) with F (W ) 6= ∅.
Assume that either (B1) or (B2) holds and Ω :=

⋂N
n=1 F (Ti) ∩ V I(C,A1) ∩ V I(C,A2) ∩

MEP (F,ϕ) 6= ∅. Let {xn}, {yn}, {zn} and {un} be sequences generated by x1 ∈ H and
F (un, y) + ϕ(y)− ϕ(un) + 1

rn
〈y − un, un − xn〉 ≥ 0 ∀y ∈ C,

yn = PC(un − δA2un),

vn = PC(yn − τA1yn),

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnB)Wnvn,

(51)

for every n ≥ 1, where {αn}, {βn} ⊂ (0, 1), {rn} ⊂ (0,∞), τ ∈ (0, 2σ1) and δ ∈ (0, 2σ2)
satisfy conditions (i)–(iii) in Theorem 3.1. Then {xn} converges strongly to z ∈ Ω which
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is the unique solution of the variational inequality

〈(B − γf)z, z − x〉 ≤ 0, x ∈ Ω.

Equivalently, we have z = PΩ(I −B + γf)(z).

Proof. In Theorem 3.1 put M1 = M2 = ∂δC , then JM1,τ = JM2,δ = PC . The conclusion
can be obtained immediately.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let f be a contraction of H into itself with coefficient α ∈ (0, 1) and let B be a strongly
bounded linear operator on H with coefficient γ̄ > 0 and 0 < γ < γ̄

α . Let M1,M2 : H → 2H

be maximal monotone mappings and A1, A2 : H → H be σ1, σ2-inverse-strongly monotone
mappings, respectively. Let {Vi : C → C}∞i=1 be a countable family of uniformly k-strict
pseudo-contractions, {Ti : C → C}∞i=1 be the countable family of nonexpansive mappings
defined by Tix = tx + (1 − t)Vix for x ∈ C, i ≥ 1, t ∈ [k, 1). Let Wn be the W -
mapping defined by (14) and W be a mapping defined by (15) with F (W ) 6= ∅. Assume
that Ω :=

⋂N
n=1 F (Ti) ∩ I(A1,M1) ∩ I(A2,M2) 6= ∅. Let {xn}, {yn}, {zn} and {un} be

sequences generated by x1 ∈ H and
yn = JM2,δ(xn − δA2xn),

vn = JM1,τ (yn − τA1yn),

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnB)Wnvn,

(52)

for every n ≥ 1, where {αn}, {βn} ⊂ (0, 1), τ ∈ (0, 2σ1) and δ ∈ (0, 2σ2) satisfy conditions
(i),(iii) in Theorem 3.1. Then {xn} converges strongly to z ∈ Ω which is the unique
solution of the variational inequality

〈(B − γf)z, z − x〉 ≤ 0, x ∈ Ω.

Equivalently, we have z = PΩ(I −B + γf)(z).

Proof. Putting in Theorem 3.1 ϕ ≡ 0 and F (x, y) = 0 for all x, y ∈ C, we deduce that
un = PCxn = xn. Thus the desired conclusion follows easily. This completes the proof.
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