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Abstract. We introduce function spaces Bp,λ with Morrey-Campanato norms, which unify

Bp,λ, CMOp,λ and Morrey-Campanato spaces, and prove the boundedness of the fractional

integral operator Iα on these spaces.

1. Introduction. Let Rn be the n-dimensional Euclidean space. It is known that the
fractional integral operator Iα (0 < α < n) is bounded from Lp(Rn) to Lq(Rn) for −n/p+
α = −n/q, from Ln/α(Rn) to BMO(Rn), from Lp(Rn) to Lipschitz space Lipα−n/p(Rn)
for 0 < α − n/p < 1, from BMO(Rn) to Lipα(Rn) for 0 < α < 1, and from Lipβ(Rn)
to Lipα+β(Rn) for 0 < β < α + β < 1. In this paper we introduce Bp,λ(Rn) with
Morrey-Campanato norms and extend the boundedness of Iα to these function spaces.

The space Bp(Rn) is introduced by Beurling [3] together with its predual Ap(Rn).
Feichtinger [5] gave an equivalent norm on Bp(Rn). The space Bp(Rn) is a special case of
Herz spaces Kα,r

p (Rn) introduced by Herz [8]. Lu and Yang [12] proved the boundedness
of Iα on Herz spaces. However, it does not cover the space Bp(Rn) which is an end point
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case. Chen and Lau [4] and Garćıa-Cuerva [7] introduced the central mean oscillation
space CMOp(Rn) with its predual. Lu and Yang [10, 11] also introduced the central
bounded mean oscillation space CBMOp(Rn) with its predual. As an extension of these
spaces, Alvarez, Guzmán-Partida and Lakey [2] introduced the spaces Bp,λ(Rn) and
CMOp,λ(Rn). Our spaces in this paper unify Bp,λ(Rn), CMOp,λ(Rn), Morrey spaces
Lp,λ(Rn) and Campanato spaces Lp,λ(Rn). Note that Bp,λ with Lipα-norms is considered
in Komori-Furuya and Matsuoka [9]. For Morrey-Campanato spaces and the boundedness
of Iα on them, see Peetre [22]. For Herz spaces, see for example Lu, Yang and Hu [13].

For x ∈ Rn and r > 0, let B(x, r) = {y ∈ Rn : |x− y| < r}. We denote B(0, r) by Br
and the characteristic function of Br by χr. For a function f ∈ L1

loc(Rn) and a ball B,
let

fB = −
∫
B

f(y) dy =
1
|B|

∫
B

f(y) dy,

where |B| is the Lebesgue measure of B.
For 1 ≤ p <∞, −∞ < λ <∞ and 0 < α ≤ 1, let Bp,λ(Rn), CMOp,λ(Rn), Ḃp,λ(Rn),

i.e. the homogeneous Bp,λ space, CBMOp,λ(Rn), Lp,λ(Rn), Lp,λ(Rn) and Lipα(Rn) be
the sets of all functions f such that the following functionals are finite, respectively:

‖f‖Bp,λ = sup
r≥1

1
rλ

(
−
∫
Br

|f(y)|p dy
)1/p

,

‖f‖CMOp,λ = sup
r≥1

1
rλ

(
−
∫
Br

|f(y)− fBr |p dy
)1/p

,

‖f‖Ḃp,λ = sup
r>0

1
rλ

(
−
∫
Br

|f(y)|p dy
)1/p

,

‖f‖CBMOp,λ = sup
r>0

1
rλ

(
−
∫
Br

|f(y)− fBr |p dy
)1/p

,

‖f‖Lp,λ = sup
x∈Rn, r>0

1
rλ

(
−
∫
B(x,r)

|f(y)|p dy
)1/p

,

‖f‖Lp,λ = sup
x∈Rn, r>0

1
rλ

(
−
∫
B(x,r)

|f(y)− fB(x,r)|p dy
)1/p

and

‖f‖Lipα = sup
x,y∈Rn, x 6=y

|f(x)− f(y)|
|x− y|α

.

We regard Lipα(Rn) as a space of functions defined at all x ∈ Rn, and the others as spaces
of functions modulo null-functions. Then Bp,λ(Rn), Ḃp,λ(Rn) and Lp,λ(Rn) are Banach
spaces equipped with the norm ‖f‖Bp,λ , ‖f‖Ḃp,λ and ‖f‖Lp,λ , respectively. Let C be the
space of all constant functions. Then CMOp,λ(Rn)/C, CBMOp,λ(Rn)/C, Lp,λ(Rn)/C and
Lipα(Rn)/C are Banach spaces equipped with the norm ‖f‖CMOp,λ , ‖f‖CBMOp,λ , ‖f‖Lp,λ
and ‖f‖Lipα , respectively. For the unit ball B1, ‖f‖CMOp,λ + |fB1 |, ‖f‖CBMOp,λ + |fB1 |,
‖f‖Lp,λ + |fB1 | and for the origin 0, ‖f‖Lipα + |f(0)| are norms and thereby CMOp,λ(Rn),
CBMOp,λ(Rn), Lp,λ(Rn) and Lipα(Rn) are Banach spaces, respectively. Note that, if
p = 1 and λ = 0, then Lp,λ(Rn) is the usual BMO(Rn).
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By the definition we have

Lp,λ(Rn) ⊂ Ḃp,λ(Rn) ⊂ Bp,λ(Rn), Lp,λ(Rn) ⊂ CBMOp,λ(Rn) ⊂ CMOp,λ(Rn),

and, for p < q,

Lq,λ(Rn) $ Lp,λ(Rn), Ḃq,λ(Rn) $ Ḃp,λ(Rn), Bq,λ(Rn) $ Bp,λ(Rn),

Lq,λ(Rn) $ Lp,λ(Rn), CBMOq,λ(Rn) $ CBMOp,λ(Rn), CMOq,λ(Rn) $ CMOp,λ(Rn).

Moreover,

Lp,λ(Rn) ⊂ Lp,λ(Rn) with ‖f‖Lp,λ + |fB1 | ≤ 3‖f‖Lp,λ ,

Bp,λ(Rn) ⊂ CMOp,λ(Rn) with ‖f‖CMOp,λ + |fB1 | ≤ 3‖f‖Bp,λ ,

Ḃp,λ(Rn) ⊂ CBMOp,λ(Rn) with ‖f‖CBMOp,λ + |fB1 | ≤ 3‖f‖Ḃp,λ .

If λ < 0, then

Bp,λ(Rn) ∼= CMOp,λ(Rn)/C, Ḃp,λ(Rn) ∼= CBMOp,λ(Rn)/C, Lp,λ(Rn) ∼= Lp,λ(Rn)/C,

where A ∼= B means that there exists a bijective and bicontinuous map from A to B, and

Ḃp,λ(Rn) = Bp,λ(Rn) = Lp,λ(Rn) = Lp(Rn) for λ = −n/p,

Ḃp,λ(Rn) = Bp,λ(Rn) = Lp,λ(Rn) = {0} for λ < −n/p.

However, for λ ≥ 0, Bp,λ(Rn), Ḃp,λ(Rn), CMOp,λ(Rn) and CBMOp,λ(Rn) are quite differ-
ent from Lp,λ(Rn) and Lp,λ(Rn). For λ = 0, we denote Bp,λ(Rn), CMOp,λ(Rn), Ḃp,λ(Rn)
and CBMOp,λ(Rn) by Bp(Rn), CMOp(Rn), Ḃp(Rn) and CBMOp(Rn), respectively. Then

L∞(Rn) $
⋂
p≥1

Ḃp(Rn) $
⋂
p≥1

Bp(Rn),

BMO(Rn) $
⋂
p≥1

CBMOp(Rn) $
⋂
p≥1

CMOp(Rn).

On the other hand, for every p ≥ 1,

Lp,0(Rn) = L∞(Rn), Lp,0(Rn) = BMO(Rn).

The first equality follows from the Lebesgue differentiation theorem and the second
follows from the John-Nirenberg theorem and Hölder’s inequality. Moreover, if λ > 0,
then Lp,λ(Rn) = {0}, while Bp,λ(Rn) is a larger space than Bp(Rn). It is known that
Lp,λ(Rn) = Lipα(Rn) modulo null-functions for 0 < λ = α ≤ 1, and Lp,λ(Rn) = C for
λ > 1, while CMOp,λ(Rn) is a larger space than CMOp,1(Rn).

In the next section we introduce Bp,λ with Morrey-Campanato norms which unify
Bp,λ(Rn), CMOp,λ(Rn), Lp,λ(Rn) and Lp,λ(Rn) and state our main results. To prove the
results we state several properties of functions in Morrey-Campanato spaces on balls and
the whole space Rn in Section 3. We give proofs of the main results in Section 4.

2. Definitions and main results. First we define Morrey-Campanato spaces on balls.
For 1 ≤ p < ∞, −∞ < λ < ∞, 0 < α ≤ 1 and the ball Br, let Lp,λ(Br), Lp,λ(Br),
Lipα(Br) and WLp(Br) be the sets of all functions f such that the following functionals
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are finite, respectively:

‖f‖Lp,λ(Br) = sup
B(x,s)⊂Br

1
sλ

(
−
∫
B(x,s)

|f(y)|p dy
)1/p

,

‖f‖Lp,λ(Br) = sup
B(x,s)⊂Br

1
sλ

(
−
∫
B(x,s)

|f(y)− fB(x,s)|p dy
)1/p

,

‖f‖Lipα(Br) = sup
x,y∈Br, x 6=y

|f(x)− f(y)|
|x− y|α

and

‖f‖WLp(Br) = sup
t>0

tm(Br, f, t)1/p = sup
t>0

t
∣∣{x ∈ Br : |f(x)| > t}

∣∣1/p.
Note that for any ball B,

inf
c

(
−
∫
B

|f(y)− c|p dy
)1/p

≤
(
−
∫
B

|f(y)− fB |p dy
)1/p

≤ 2 inf
c

(
−
∫
B

|f(y)− c|p dy
)1/p

. (2.1)

Now we introduce the spaces Bp,λ with Morrey-Campanato norms.

Definition 2.1. For 1 ≤ p < ∞, −∞ < λ < ∞ and 0 ≤ σ < ∞, let Bσ(Lp,λ)(Rn),
Bσ(Lp,λ)(Rn), Ḃσ(Lp,λ)(Rn) and Ḃσ(Lp,λ)(Rn) be the sets of all functions f such that
the following functionals are finite, respectively:

‖f‖Bσ(Lp,λ) = sup
r≥1

1
rσ
‖f‖Lp,λ(Br),

‖f‖Bσ(Lp,λ) = sup
r≥1

1
rσ
‖f‖Lp,λ(Br),

‖f‖Ḃσ(Lp,λ) = sup
r>0

1
rσ
‖f‖Lp,λ(Br)

and

‖f‖Ḃσ(Lp,λ) = sup
r>0

1
rσ
‖f‖Lp,λ(Br).

In the same way we define Bσ(Lp)(Rn), Bσ(WLp)(Rn), Bσ(BMO)(Rn), Bσ(Lipα)(Rn),
and Ḃσ(Lp)(Rn), Ḃσ(WLp)(Rn), Ḃσ(BMO)(Rn), Ḃσ(Lipα)(Rn).

Then Bσ(Lp,λ)(Rn), Bσ(Lp,λ)(Rn)/C and Bσ(Lp,λ)(Rn), are Banach spaces equipped
with the norm ‖f‖Bσ(Lp,λ), ‖f‖Bσ(Lp,λ) and ‖f‖Bσ(Lp,λ) + |fB1 |. The same thing can be
said about Ḃσ(Lp,λ)(Rn), Ḃσ(Lp,λ)(Rn)/C and Ḃσ(Lp,λ)(Rn).

In the definition, we have equivalent norms if we replace balls Br by cubes Qr centered
at the origin and of side-length r.

By the John-Nirenberg theorem, for each 1 ≤ p <∞,

Bσ(Lp,0)(Rn) = Bσ(BMO)(Rn), Ḃσ(Lp,0)(Rn) = Ḃσ(BMO)(Rn)

with equivalent norms. By Theorem 3.2 below, if 0 < λ = α ≤ 1, then, for each
1 ≤ p <∞,

Bσ(Lp,λ)(Rn) = Bσ(Lipα)(Rn), Ḃσ(Lp,λ)(Rn) = Ḃσ(Lipα)(Rn)
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with equivalent norms. We note that Bσ(Lp,λ)(Rn) unifies Lp,λ(Rn) and Bp,λ(Rn) and
that Bσ(Lp,λ)(Rn) unifies Lp,λ(Rn) and CMOp,λ(Rn). Actually, we have the following
relations:

B0(Lp,λ)(Rn) = Lp,λ(Rn), B0(Lp,λ)(Rn) = Lp,λ(Rn),

Bλ+n/p(Lp,−n/p)(Rn) = Bp,λ(Rn), Bλ+n/p(Lp,−n/p)(Rn) = CMOp,λ(Rn). (2.2)

In the above, the last equality follows from Theorem 3.3 below. We also have the same
properties for the function spaces Ḃσ(Lp,λ)(Rn) and Ḃσ(Lp,λ)(Rn).

Next we consider the fractional integral operator Iα (0 < α < n) defined by

Iαf(x) =
∫
Rn

f(y)
|x− y|n−α

dy.

It is known that Iα is bounded from Lp,λ(Br) to Lq,µ(Br) with appropriate indices.
However, we cannot use directly this boundedness to prove the boundedness on our
function spaces, since Iαf 6= Iα(fχr) on Br in general.

In general, Iαf is not necessarily well defined for functions f in our spaces. Actually,
Iα|f | 6≡ ∞ is equivalent to ∫

Rn

|f(y)|
(1 + |y|)n−α

dy <∞

(see [16]). Therefore we define the modified version of Iα as follows;

Ĩαf(x) =
∫
Rn

f(y)
( 1
|x− y|n−α

− 1− χ1(y)
|y|n−α

)
dy.

If Iαf is well defined, then Ĩαf is also well defined and Iαf − Ĩαf is a constant function.

Remark 2.1. For the constant function 1, Iα1 ≡ ∞, while Ĩα1 is well defined and also
a constant function. Actually,

Ĩα1(x) =
∫
Rn

( 1
|x− y|n−α

− 1− χ1(y)
|y|n−α

)
dy

=
∫
Rn

( 1
|x− y|n−α

− 1
|y|n−α

)
dy +

∫
B1

1
|y|n−α

dy

=
∫
B1

1
|y|n−α

dy = C,

since
1

|x− y|n−α
− 1
|y|n−α

with 0 < α < n

is integrable as a function with respect to y and the value of its integral is zero independent
of x. This property is important to define operators on function spaces modulo constants.

Our main results are the following.

Theorem 2.1. Let 0 < α < n, 1 < p < ∞, −n/p + α ≤ λ + α = µ < 0 and 0 ≤ σ <

−λ−α. If 1 ≤ q ≤ (λ/µ)p, then Iα is bounded from Bσ(Lp,λ)(Rn) to Bσ(Lq,µ)(Rn), that
is, there exists a positive constant C such that

‖Iαf‖Bσ(Lq,µ) ≤ C‖f‖Bσ(Lp,λ), f ∈ Bσ(Lp,λ)(Rn).

The same conclusion holds for the boundedness from Ḃσ(Lp,λ)(Rn) to Ḃσ(Lq,µ)(Rn).
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In the theorem above, if σ = 0, then Iα is bounded from Lp,λ(Rn) to Lq,µ(Rn). This
is the result of Adams [1] (see Theorem 3.6 in the next section).

If λ = −n/p, then λ/µ = n/(n− pα) in the theorem above. Hence, by (2.2), we have
the following (Fu, Lin and Lu [6, Proposition 1.1]).

Corollary 2.2 ([6]). Let 0 < α < n, 1 < p < ∞ and −n/p ≤ λ < −α. If 1 ≤ q ≤
pn/(n−pα) and λ+α = µ, then Iα is bounded from Bp,λ(Rn) to Bq,µ(Rn), that is, there
exists a positive constant C such that

‖Iαf‖Bq,µ ≤ C‖f‖Bp,λ , f ∈ Bp,λ(Rn).

The same conclusion holds for the boundedness from Ḃp,λ(Rn) to Ḃq,µ(Rn).

Theorem 2.3. Let 0 < α < n, 1 ≤ p < ∞, −n/p + α ≤ λ + α = µ < 1 and 0 ≤ σ <

−λ− α+ 1. Assume that p and q satisfy one of the following conditions:

(i) p = 1 and 1 ≤ q < n/(n− α);
(ii) 1 < p < n/α and 1 ≤ q ≤ pn/(n− pα);
(iii) n/α ≤ p <∞ and 1 ≤ q <∞ (in this case, 0 ≤ µ < 1).

Then Ĩα is bounded from Bσ(Lp,λ)(Rn) to Bσ(Lq,µ)(Rn), that is, there exists a positive
constant C such that

‖Ĩαf‖Bσ(Lq,µ) + |(Ĩαf)B1 | ≤ C‖f‖Bσ(Lp,λ), f ∈ Bσ(Lp,λ)(Rn).

The same conclusion holds for the boundedness from Ḃσ(Lp,λ)(Rn) to Ḃσ(Lq,µ)(Rn).

By (2.2) we have the following (cf. Komori-Furuya and Matsuoka [9]).

Corollary 2.4. Let 0 < α < n, 1 < p < ∞ and −n/p ≤ λ < −α + 1. If 1 ≤ q ≤
pn/(n− pα) and λ+ α = µ, then Ĩα is bounded from Bp,λ(Rn) to CMOq,µ(Rn), that is,
there exists a positive constant C such that

‖Ĩαf‖CMOq,µ + |(Ĩαf)B1 | ≤ C‖f‖Bp,λ , f ∈ Bp,λ(Rn).

The same conclusion holds for the boundedness from Ḃp,λ(Rn) to CBMOq,µ(Rn).

By Theorem 3.4 below we have the following.

Corollary 2.5. Let 0 < α < n, 1 < p < ∞, 0 ≤ −n/p + α = β < 1 and 0 ≤ σ <

n/p− α+ 1. If β = 0, then Ĩα is bounded from Bσ(WLp)(Rn) to Bσ(BMO)(Rn), and if
β > 0, then Ĩα is bounded from Bσ(WLp)(Rn) to Bσ(Lipβ)(Rn), that is, there exists a
positive constant C such that

‖Ĩαf‖Bσ(BMO) + |(Ĩαf)B1 | ≤ C‖f‖Bσ(WLp), f ∈ Bσ(WLp)(Rn), if β = 0,

and

‖Ĩαf‖Bσ(Lipβ) + |(Ĩαf)B1 | ≤ C‖f‖Bσ(WLp), f ∈ Bσ(WLp)(Rn), if β > 0,

respectively. The same conclusion holds for the boundedness from Ḃσ(WLp)(Rn) to
Ḃσ(BMO)(Rn) and to Ḃσ(Lipβ)(Rn).

Theorem 2.6. Let 0 < α < 1, 1 ≤ p < ∞, −n/p + α ≤ λ + α = µ < 1 and 0 ≤ σ <

−λ− α+ 1. Assume that p and q satisfy one of the following conditions:

(i) p = 1 and 1 ≤ q < n/(n− α);
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(ii) 1 < p < n/α and 1 ≤ q ≤ pn/(n− pα);
(iii) n/α ≤ p <∞ and 1 ≤ q <∞ (in this case, 0 ≤ µ < 1).

Then Ĩα is bounded from Bσ(Lp,λ)(Rn)/C to Bσ(Lq,µ)(Rn)/C and from Bσ(Lp,λ)(Rn) to
Bσ(Lq,µ)(Rn), that is, there exist positive constants C1 and C2 such that

‖Ĩαf‖Bσ(Lq,µ) ≤ C1‖f‖Bσ(Lp,λ), f ∈ Bσ(Lp,λ)(Rn)/C,

and

‖Ĩαf‖Bσ(Lq,µ) + |(Ĩαf)B1 | ≤ C2

(
‖f‖Bσ(Lp,λ) + |fB1 |

)
, f ∈ Bσ(Lp,λ)(Rn),

respectively. The same conclusion holds for the boundedness from Ḃσ(Lp,λ)(Rn)/C to
Ḃσ(Lq,µ)(Rn)/C and from Ḃσ(Lp,λ)(Rn) to Ḃσ(Lq,µ)(Rn).

By (2.2) we have the following.

Corollary 2.7. Let 0 < α < 1, 1 < p < ∞ and −n/p ≤ λ < −α + 1. If 1 ≤ q ≤
pn/(n− pα) and λ+ α = µ, then Ĩα is bounded from CMOp,λ(Rn)/C to CMOq,µ(Rn)/C
and from CMOp,λ(Rn) to CMOq,µ(Rn), that is, there exist positive constants C1 and C2

such that
‖Ĩαf‖CMOq,µ ≤ C1‖f‖CMOp,λ , f ∈ CMOp,λ(Rn)/C,

and

‖Ĩαf‖CMOq,µ + |(Ĩαf)B1 | ≤ C2 (‖f‖CMOp,λ + |fB1 |) , f ∈ CMOp,λ(Rn),

respectively. The same conclusion holds for the boundedness from CBMOp,λ(Rn)/C to
CBMOq,µ(Rn)/C and from CBMOp,λ(Rn) to CBMOq,µ(Rn).

By Theorem 3.2 below we have the following.

Corollary 2.8. Let 0 < β < β+α = γ < 1 and 0 ≤ σ < −β−α+1. Then Ĩα is bounded
from Bσ(Lipβ)(Rn)/C to Bσ(Lipγ)(Rn)/C and from Bσ(Lipβ)(Rn) to Bσ(Lipγ)(Rn), that
is, there exist positive constants C1 and C2 such that

‖Ĩαf‖Bσ(Lipγ) ≤ C1‖f‖Bσ(Lipβ) f ∈ Bσ(Lipβ)(Rn)/C,

and

‖Ĩαf‖Bσ(Lipγ) + |(Ĩαf)B1 | ≤ C2

(
‖f‖Bσ(Lipβ) + |fB1 |

)
, f ∈ Bσ(Lipβ)(Rn),

respectively. The same conclusion holds for the boundedness from Ḃσ(Lipβ)(Rn)/C to
Ḃσ(Lipγ)(Rn)/C and from Ḃσ(Lipβ)(Rn) to Ḃσ(Lipγ)(Rn).

3. Morrey-Campanato spaces on balls and Rn. First we state a lemma. See [21, 23]
for the proof.

Lemma 3.1. Let 1 ≤ p < ∞, −n/p ≤ λ ≤ 1 and r > 0. Then there exists a positive
constant Cn,λ, dependent only on n and λ, such that, for B(x, s) ⊂ B(z, t) ⊂ Br and
f ∈ Lp,λ(Br),

|fB(x,s) − fB(z,t)| ≤ Cn,λ
∫ 2t

s

uλ−1 du ‖f‖Lp,λ(Br).
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The lemma follows from an elementary inequality

|fB − fB′ | ≤
|B′|
|B|
−
∫
B′
|f(y)− fB′ | dy, B ⊂ B′. (3.1)

By the lemma above we can prove the next two theorems. For the proofs, see [14, 23]
and [15, 19], respectively.

Theorem 3.2. If 1 ≤ p < ∞, 0 < λ = α ≤ 1 and r > 0, then Lp,λ(Br) = Lipα(Br)
modulo null-functions and there exists a positive constant C, dependent only on n and λ,
such that

C−1‖f‖Lp,λ(Br) ≤ ‖f‖Lipα(Br) ≤ C‖f‖Lp,λ(Br).

Theorem 3.3. If 1 ≤ p < ∞, −n/p ≤ λ < 0 and r > 0, then Lp,λ(Br)/C ∼= Lp,λ(Br)
and there exists a positive constant C, dependent only on n and λ, such that

C−1‖f‖Lp,λ(Br) ≤ ‖f − fBr‖Lp,λ(Br) ≤ C‖f‖Lp,λ(Br).

Remark 3.1. Theorems 3.2 and 3.3 are valid for Morrey-Campanato spaces on Rn.

For the following theorem, see also [18, Theorem 3.4] which deals with Orlicz spaces
on Rn.

Theorem 3.4. If 1 < p < ∞, −n/p = λ and r > 0, then WLp(Br) ⊂ L1,λ(Br) and
there exists a positive constant C, dependent only on n and p, such that

‖f‖L1,λ(Br) ≤ C‖f‖WLp(Br), f ∈WLp(Br).

Proof. Let f ∈WLp(Br). We may assume that ‖f‖WLp(Br) = 1. Then m(Br, f, t) ≤ t−p.
For any ball B(z, s) ⊂ Br, let η = sλ = s−n/p and

f = fη + fη, fη(x) =

{
f(x), |f(x)| > η,

0, |f(x)| ≤ η.
Then

1
sλ
−
∫
B(z,s)

|fη(x)| dx ≤ 1
vnsλ+n

∫ ∞
0

m(Br, fη, t) dt

≤ 1
vnsλ+n

(∫ η

0

m(Br, f, η) dt+
∫ ∞
η

t−p dt
)

≤ 1
vnsλ+n

p

p− 1
η1−p =

p

vn(p− 1)
,

where vn is the volume of the unit ball in Rn. By Hölder’s inequality we have
1
sλ
−
∫
B(z,s)

|fη(x)| dx ≤ 1
sλ

(
−
∫
B(z,s)

|fη(x)|2p dx
)1/(2p)

=
1

v
1/(2p)
n sλ+n/(2p)

(∫ η

0

m(Br, f, t)(2p)t2p−1 dt
)1/(2p)

≤ 1

v
1/(2p)
n sλ+n/(2p)

(2ηp)1/(2p) = (2/vn)1/(2p).

So we get the conclusion.

Next we prove the following lemma (see also [17, Lemma 4.2] for the first part).
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Lemma 3.5. Let 1 ≤ p <∞. For r > 0, let χr be the characteristic function of Br and

hr(x) = h(x/r), h(x) =

{
1, |x| ≤ 1,

0, |x| ≥ 2,
‖h‖Lip1(Rn) ≤ 1. (3.2)

(i) If λ < 0, then
‖fχr‖Lp,λ ≤ ‖f‖Lp,λ(B3r)

for all f ∈ Lploc(Rn) with ‖f‖Lp,λ(B3r) <∞.
(ii) If 0 ≤ λ ≤ 1, then there exists a positive constant C, dependent only on n and λ,

such that
‖(f − fB2r )hr‖Lp,λ ≤ C‖f‖Lp,λ(B3r)

for all f ∈ Lploc(Rn) with ‖f‖Lp,λ(B3r) <∞.

Proof. (i) We show that, for all balls B(x, s) ⊂ Rn,

1
spλ
−
∫
B(x,s)

|f(y)χr(y)|p dy ≤ ‖f‖pLp,λ(B3r). (3.3)

We may assume that Br ∩ B(x, s) 6= ∅. If s < r, then B(x, s) ⊂ B3r and (3.3) holds. If
s ≥ r, then

1
spλ
−
∫
B(x,s)

|f(y)χr(y)|p dy ≤ rpλ

spλ
|Br|
|B(x, s)|

1
rpλ
−
∫
Br

|f(y)|p dy ≤ ‖f‖pLp,λ(B3r).

(ii) Let f̃ = f − fB2r . We may assume that B2r ∩B(x, s) 6= ∅, since supphr ⊂ B2r. If
s < r/2, then B(x, s) ⊂ B3r. By (2.1) it is enough to show(
−
∫
B(x,s)

|f̃(y)hr(y)− f̃B(x,s)(hr)B(x,s)|p dy
)1/p

≤
(
−
∫
B(x,s)

|(f̃(y)− f̃B(x,s))hr(y)|p dy
)1/p

+
(
−
∫
B(x,s)

|f̃B(x,s)(hr(y)− (hr)B(x,s))|p dy
)1/p

≡ I1 + I2 ≤ Csλ‖f‖Lp,λ(B3r).

From 0 ≤ h ≤ 1 it follows that I1 ≤ sλ‖f‖Lp,λ(B3r). By Lemma 3.1 we get

|f̃B(x,s)| = |fB(x,s) − fB2r | ≤ |fB(x,s) − fB3r |+ |fB2r − fB3r |
≤ 2Cn,λ((6r)λ/λ)‖f‖Lp,λ(B3r).

From ‖hr‖Lip1(Rn) ≤ 1/r it follows that

|hr(y)− (hr)B(x,s)| ≤ −
∫
B(x,s)

|hr(y)− hr(z)| dz ≤ 2s/r ≤ 2(s/r)λ.

Then I2 ≤ 4Cn,λ(6λ/λ)sλ‖f‖Lp,λ(B3r). If s ≥ r/2, then

1
sλ

(
−
∫
B(x,s)

|f̃(y)hr(y)|p dy
)1/p

≤ (2r)λ

sλ
1

(2r)λ
( |B2r|
|B(x, s)|

−
∫
B2r

|f̃(y)|p dy
)1/p

≤ 4n+λ‖f‖Lp,λ(B3r).

By (2.1) we get the conclusion.
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At the end of this section we recall the results on boundedness of Iα on Morrey-
Campanato spaces.

Theorem 3.6 ([1]). Let 0 < α < n, 1 < p < ∞ and −n/p + α ≤ λ + α = µ < 0. If
q = (λ/µ)p, then Iα is bounded from Lp,λ(Rn) to Lq,µ(Rn), that is, there exists a positive
constant C such that

‖Iαf‖Lq,µ ≤ C‖f‖Lp,λ , f ∈ Lp,λ(Rn).

Remark 3.2. If q1 < q2, then Lq1,µ(Rn) ⊃ Lq2,µ(Rn) and ‖f‖Lq1,µ ≤ ‖f‖Lq2,µ . Therefore,
if 1 ≤ q ≤ (λ/µ)p, then Iα is bounded from Lp,λ(Rn) to Lq,µ(Rn).

Theorem 3.7 ([20]). Let 0 < α < n, 1 ≤ p <∞ and −n/p+α ≤ λ+α = µ < 1. Assume
that p and q satisfy one of the following conditions:

(i) p = 1 and 1 ≤ q < n/(n− α);
(ii) 1 < p < n/α and 1 ≤ q ≤ pn/(n− pα);
(iii) n/α ≤ p <∞ and 1 ≤ q <∞ (in this case, 0 ≤ µ < 1).

Then Ĩα is bounded from Lp,λ(Rn) to Lq,µ(Rn), that is, there exists a positive constant
C such that

‖Ĩαf‖Lq,µ + |(Ĩαf)B1 | ≤ C‖f‖Lp,λ , f ∈ Lp,λ(Rn).

Theorem 3.8 ([20]). Let 0 < α < 1, 1 ≤ p <∞ and −n/p+α ≤ λ+α = µ < 1. Assume
that p and q satisfy one of the following conditions:

(i) p = 1 and 1 ≤ q < n/(n− α);
(ii) 1 < p < n/α and 1 ≤ q ≤ pn/(n− pα);
(iii) n/α ≤ p <∞ and 1 ≤ q <∞ (in this case, 0 ≤ µ < 1).

Then Ĩα is bounded from Lp,λ(Rn)/C to Lq,µ(Rn)/C and from Lp,λ(Rn) to Lq,µ(Rn), that
is, there exist positive constants C1 and C2 such that

‖Ĩαf‖Lq,µ ≤ C1‖f‖Lp,λ , f ∈ Lp,λ(Rn)/C,

and
‖Ĩαf‖Lq,µ + |(Ĩαf)B1 | ≤ C2

(
‖f‖Lp,λ + |fB1 |

)
, f ∈ Lp,λ(Rn),

respectively.

4. Proofs. In this section, we use the symbol A . B to denote that there exists a
positive constant C such that A ≤ CB. If A . B and B . A, we then write A ∼ B.
First, we state two lemmas to prove Theorems 2.1, 2.3 and 2.6.

Lemma 4.1. Let 1 ≤ p <∞ and β, λ, σ ∈ R. If β+λ+σ < 0, then there exists a positive
constant C such that∫

Rn\Br

|f(y)|
|y|n−β

dy ≤ Crβ+λ+σ‖f‖Bσ(Lp,λ) for all f ∈ Bσ(Lp,λ)(Rn) and r ≥ 1,

and ∫
Rn\Br

|f(y)|
|y|n−β

dy ≤ Crβ+λ+σ‖f‖Ḃσ(Lp,λ) for all f ∈ Ḃσ(Lp,λ)(Rn) and r > 0.
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Proof. We prove only the case f ∈ Bσ(Lp,λ)(Rn) and r ≥ 1.∫
Rn\Br

|f(y)|
|y|n−β

dy =
∞∑
j=0

∫
B2j+1r\B2jr

|f(y)|
|y|n−β

dy

.
∞∑
j=0

1
(2jr)n−β

∫
B2j+1r\B2jr

|f(y)| dy

. rβ
∞∑
j=0

(2β)j −
∫
B2j+1r

|f(y)| dy

≤ rβ
∞∑
j=0

(2β)j
(
−
∫
B2j+1r

|f(y)|p dy
)1/p

. rβ+λ
∞∑
j=0

(2β+λ)j‖f‖Lp,λ(B2j+1r)

. rβ+λ+σ
∞∑
j=0

(2β+λ+σ)j‖f‖Bσ(Lp,λ)

∼ rβ+λ+σ‖f‖Bσ(Lp,λ).

The proof for f ∈ Ḃσ(Lp,λ)(Rn) and r > 0 is the same as above.

Lemma 4.2. Let 1 ≤ p <∞ and λ, σ ∈ R. If β < 0 and β + λ+ σ < 0, then there exists
a positive constant C such that∫
Rn\Br

|f(y)− fB2r |
|y|n−β

dy ≤ Crβ+λ+σ‖f‖Bσ(Lp,λ) for all f ∈ Bσ(Lp,λ)(Rn) and r ≥ 1,

and∫
Rn\Br

|f(y)− fB2r |
|y|n−β

dy ≤ Crβ+λ+σ‖f‖Ḃσ(Lp,λ) for all f ∈ Ḃσ(Lp,λ)(Rn) and r > 0.

Proof. We prove only the case f ∈ Bσ(Lp,λ)(Rn) and r ≥ 1.∫
Rn\Br

|f(y)− fB2r |
|y|n−β

dy =
∞∑
j=0

∫
B2j+1r\B2jr

|f(y)− fB2r |
|y|n−β

dy

.
∞∑
j=0

1
(2jr)n−β

∫
B2j+1r\B2jr

|f(y)− fB2r | dy

. rβ
∞∑
j=0

(2β)j −
∫
B2j+1r

|f(y)− fB2r | dy

≤ rβ
∞∑
j=0

(2β)j
(
−
∫
B2j+1r

|f(y)− fB2j+1r
| dy +

j∑
k=1

|fB2k+1r
− fB2kr

|
)

. rβ+λ
∞∑
j=0

(2β)j
(

(2λ)j+1‖f‖Lp,λ(B2j+1r) +
j∑

k=1

(2λ)k+1‖f‖Lp,λ(B2k+1r)

)
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. rβ+λ+σ
∞∑
j=0

(2β)j
j+1∑
k=1

(2λ+σ)k‖f‖Bσ(Lp,λ)

= rβ+λ+σ
∞∑
k=1

(2λ+σ)k
∞∑

j=k−1

(2β)j‖f‖Bσ(Lp,λ)

. rβ+λ+σ
∞∑
k=1

(2β+λ+σ)k‖f‖Bσ(Lp,λ)

∼ rβ+λ+σ‖f‖Bσ(Lp,λ).

The proof for f ∈ Ḃσ(Lp,λ)(Rn) and r > 0 is the same as above.

Now we prove the theorems.

Proof of Theorem 2.1. Let f ∈ Bσ(Lp,λ)(Rn). We prove that Iαf is well defined and that

‖Iαf‖Lq,µ(Br) . r
σ‖f‖Bσ(Lp,λ)

for any ball Br with r ≥ 1.
For x ∈ Br, let

Iαf(x) = Iα(fχ2r)(x) + Iα(f(1− χ2r))(x).

Then Iα(fχ2r) is well defined, since fχ2r is in Lp(Rn). We show later that
Iα(f(1 − χ2r))(x) is well defined for all x ∈ Br. Moreover, if 0 < s < r, then, for
x ∈ Bs,

Iα(fχ2s)(x) + Iα(f(1− χ2s))(x) = Iα(fχ2r)(x) + Iα(f(1− χ2r))(x).

Therefore, Iαf is well defined on Rn.
Now, by the boundedness of Iα from Lp,λ(Rn) to Lq,µ(Rn) (Theorem 3.6) and (i) of

Lemma 3.5, we have

‖Iα(fχ2r)‖Lq,µ(Br) ≤ ‖Iα(fχ2r)‖Lq,µ . ‖fχ2r‖Lp,λ
≤ ‖f‖Lp,λ(B6r) . r

σ‖f‖Bσ(Lp,λ). (4.1)

Since

|Iα(f(1− χ2r))(x)| .
∫
Rn\B2r

|f(y)|
|y|n−α

dy

for x ∈ Br, using Lemma 4.1, we have

|Iα(f(1− χ2r))(x)| . rα+λ+σ‖f‖Bσ(Lp,λ) = rµ+σ‖f‖Bσ(Lp,λ).

Then Iα(f(1− χ2r))(x) is well defined for all x ∈ Br and

‖Iα(f(1− χ2r))‖Lq,µ(Br) ≤ r−µ‖Iα(f(1− χ2r))‖L∞(Br) . r
σ‖f‖Bσ(Lp,λ),

since µ < 0. Therefore, we have

‖Iαf‖Lq,µ(Br) . r
σ‖f‖Bσ(Lp,λ)

for any ball Br. This shows the conclusion.
The proof of the boundedness from Ḃσ(Lp,λ)(Rn) to Ḃσ(Lq,µ)(Rn) is the same as

above.
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Proof of Theorem 2.3. Let f ∈ Bσ(Lp,λ)(Rn). We first prove that Ĩαf is well defined and
that

‖Ĩαf‖Lq,µ(Br) . r
σ‖f‖Bσ(Lp,λ)

for any ball Br with r ≥ 1. Next we prove that |(Ĩαf)B1 | . ‖f‖Bσ(Lp,λ).
For x ∈ Br, let

Ĩαf(x) = Iα(fχ2r)(x) + Jα(f(1− χ2r))(x) + Cα(f(χ1 − χ2r)),

where

Jαf(x) =
∫
Rn

f(y)
( 1
|x− y|n−α

− 1
|y|n−α

)
dy (4.2)

and

Cαf =
∫
Rn

f(y)
|y|n−α

dy. (4.3)

In the above, Iα(fχ2r) is well defined, since fχ2r is in Lp(Rn). Cα(f(χ1−χ2r)) is also well
defined, since (χ1 − χ2r)/| · |n−α is in Lp

′
(Rn). Note that Cα(f(χ1 − χ2r)) is a constant.

Moreover, if r = 1, then

|Cα(f(χ1 − χ2))| ≤
∥∥∥∥χ1 − χ2

| · |n−α

∥∥∥∥
Lp′
‖f‖Lp(B2) . ‖f‖Lp(B2) . ‖f‖Bσ(Lp,λ). (4.4)

We show later that Jα(f(1 − χ2r))(x) is well defined for all x ∈ Br. Then Ĩαf is well
defined on Rn by the same reason as in the proof of Theorem 2.1.

Now, in the same way as (4.1), by the boundedness of Ĩα from Lp,λ(Rn) to Lq,µ(Rn)
(Theorem 3.7) and (i) of Lemma 3.5, we have

‖Iα(fχ2r)‖Lq,µ(Br) + |(Iα(fχ2r))B1 | . rσ‖f‖Bσ(Lp,λ). (4.5)

Using the inequality ∣∣∣∣ 1
|x− y|n−α

− 1
|y|n−α

∣∣∣∣ . |x|
|y|n−α+1

≤ r

|y|n−α+1

for x ∈ Br and y ∈ Rn \B2r, we have

|Jα(f(1− χ2r))(x)| ≤ r
∫
Rn\B2r

|f(y)|
|y|n−α+1

dy.

By Lemma 4.1 we have

|Jα(f(1− χ2r))(x)| . rα+λ+σ‖f‖Bσ(Lp,λ) = rµ+σ‖f‖Bσ(Lp,λ). (4.6)

Then Jα(f(1− χ2r))(x) is well defined for all x ∈ Br. If µ ≤ 0, then we have

‖Jα(f(1− χ2r))‖Lq,µ(Br) . ‖Jα(f(1− χ2r))‖Lq,µ(Br)

≤ r−µ‖Jα(f(1− χ2r))‖L∞(Br) . r
σ‖f‖Bσ(Lp,λ).

If µ > 0, then, for any x, z ∈ Br, we have by Lemma 4.1

|Jα(f(1− χ2r))(x)− Jα(f(1− χ2r))(z)|

=
∣∣∣∣∫
Rn\B2r

f(y)
( 1
|x− y|n−α

− 1
|z − y|n−α

)
dy

∣∣∣∣
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. |x− z|
∫
Rn\B2r

|f(y)|
|y|n−α+1

dy

. |x− z| rα−1+λ+σ‖f‖Bσ(Lp,λ) = |x− z| rµ−1+σ‖f‖Bσ(Lp,λ)

and
|Jα(f(1− χ2r))(x)− Jα(f(1− χ2r))(z)|

|x− z|µ
.
( |x− z|

r

)1−µ
rσ‖f‖Bσ(Lp,λ)

. rσ‖f‖Bσ(Lp,λ).

By Theorem 3.2 we have

‖Jα(f(1− χ2r))‖Lq,µ(Br) ∼ ‖Jα(f(1− χ2r))‖Lipµ(Br) . r
σ‖f‖Bσ(Lp,λ).

Therefore,

‖Ĩαf‖Lq,µ(Br) = ‖Iα(fχ2r) + Jα(f(1− χ2r)) + Cα(f(χ1 − χ2r))‖Lq,µ(Br)

. rσ‖f‖Bσ(Lp,λ)

for any ball Br, that is,
‖Ĩαf‖Bσ(Lq,µ) . ‖f‖Bσ(Lp,λ).

Finally, by (4.4), (4.5) and (4.6) with r = 1, we have

|(Ĩαf)B1 | ≤ |(Iα(fχ2))B1 |+ |(Jα(f(1− χ2)))B1 |+ |Cα(f(χ1 − χ2))|
. ‖f‖Bσ(Lp,λ).

The proof of the boundedness from Ḃσ(Lp,λ)(Rn) to Ḃσ(Lq,µ)(Rn) is the same as
above.

Proof of Theorem 2.6. Let f ∈ Bσ(Lp,λ)(Rn). We first prove that Ĩαf is well defined and
that

‖Ĩαf‖Lq,µ(Br) . r
σ‖f‖Bσ(Lp,λ)

for any ball Br with r ≥ 1. Next we prove that |(Ĩαf)B1 | . ‖f‖Bσ(Lp,λ) + |fB1 |.
Let h be defined by (3.2). For x ∈ Br, let f̃ = f − fB4r and

Ĩαf(x) = Ĩαf̃(x) + Ĩα(fB4r )(x)

= Iα(f̃h2r)(x) + Jα(f̃(1− h2r))(x) + Cα(f̃(χ1 − h2r)) + fB4r (Ĩα1)(x),

where Jα and Cα are defined by (4.2) and (4.3), respectively. By Remark 2.1, Ĩα1 is a
constant function. By the same observation as in the proof of Theorem 2.3, we see that
Iα(f̃h2r) and Cα(f̃(χ1 − h2r)) are well defined and, if r = 1, then by (2.1),∣∣Cα(f̃(χ1 − h2))

∣∣ ≤ ∥∥∥χ1 − h2

| · |n−α
∥∥∥
Lp′
‖f̃‖Lp(B2) . ‖f̃‖Lp(B2) . ‖f‖Bσ(Lp,λ). (4.7)

We show later that Jα(f̃(1 − h2r))(x) is well defined for all x ∈ Br. Then Ĩαf is well
defined on Rn by the same reason as the proof of Theorem 2.1.

Now, by the boundedness of Ĩα from Lp,λ(Rn)/C to Lq,µ(Rn)/C (Theorem 3.8) and
(ii) of Lemma 3.5, we have

‖Iα(f̃h2r)‖Lq,µ(Br) ≤ ‖Iα(f̃h2r)‖Lq,µ . ‖f̃h2r‖Lp,λ
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. ‖f̃‖Lp,λ(B6r) = ‖f‖Lp,λ(B6r) . r
σ‖f‖Bσ(Lp,λ). (4.8)

In the same way, by the boundedness of Ĩα from Lp,λ(Rn) to Lq,µ(Rn) and Lemma 3.5,
we have

‖Iα(f̃h2r)‖Lq,µ(Br) + |(Iα(f̃h2r))B1 | ≤ ‖Iα(f̃h2r)‖Lq,µ + |(Iα(f̃h2r))B1 |

. ‖f̃h2r‖Lp,λ + |(f̃h2r)B1 | . rσ‖f‖Bσ(Lp,λ) + |(f̃h2r)B1 |. (4.9)

By Lemma 4.2 we have∣∣Jα(f̃(1− h2r))(x)
∣∣ ≤ r ∫

Rn\B2r

|f(y)− fB4r |
|y|n−α+1

dy

. rα+λ+σ‖f‖Bσ(Lp,λ) = rµ+σ‖f‖Bσ(Lp,λ). (4.10)

Then Jα(f̃(1−h2r))(x) is well defined for all x ∈ Br. For each case µ ≤ 0 or µ > 0, using
the same way as in the proof of Theorem 2.3, we have

‖Jα(f̃(1− h2r))‖Lq,µ(Br) . r
σ‖f‖Bσ(Lp,λ).

Therefore,

‖Ĩαf‖Lq,µ(Br) = ‖Iα(f̃h2r) + Jα(f̃(1− h2r)) + Cα(f̃(χ1 − h2r)) + fB4r (Ĩα1)‖Lq,µ(Br)

. rσ‖f‖Bσ(Lp,λ)

for any ball Br, and
‖Ĩαf‖Bσ(Lq,µ) . ‖f‖Bσ(Lp,λ).

Finally, we estimate each term of the right hand side in the following:

|(Ĩαf)B1 | ≤ |(Iα(f̃h2))B1 |+ |(Jα(f̃(1− h2)))B1 |+ |Cα(f̃(χ1 − h2))|+ |fB4(Ĩα1)|.
Taking r = 1 in (4.9) and (4.10), we have

|(Iα(f̃h2))B1 | . ‖f‖Bσ(Lp,λ) + |(f̃h2)B1 | = ‖f‖Bσ(Lp,λ) + |fB1 − fB4 |
and

|(Jα(f̃(1− h2)))B1 | ≤ ‖f‖Bσ(Lp,λ),

respectively. By (3.1) we have |fB1 − fB4 | . ‖f‖Lp,λ(B4) . ‖f‖Bσ(Lp,λ). Using these
estimates and (4.7), we obtain

|(Ĩαf)B1 | . ‖f‖Bσ(Lp,λ) + |fB1 |.
Then we have the conclusion.

The proof of the boundedness from Ḃσ(Lp,λ)(Rn)/C to Ḃσ(Lq,µ)(Rn)/C and from
Ḃσ(Lp,λ)(Rn) to Ḃσ(Lq,µ)(Rn) is the same as above.
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[7] J. Garćıa-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. (2) 39 (1989),

499–513.

[8] C. S. Herz, Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier

transforms, J. Math. Mech. 18 (1968), 283–323.

[9] Y. Komori-Furuya, K. Matsuoka, Strong and weak estimates for fractional integral oper-

ators on some Herz-type function spaces, Rend. Circ. Mat. Palermo (2) Suppl. 82 (2010),

375–385.

[10] S. Z. Lu, D. Yang, The Littlewood-Paley function and φ-transform characterizations of a

new Hardy space HK2 associated with the Herz space, Studia Math. 101 (1992), 285–298.

[11] S. Z. Lu, D. Yang, The central BMO spaces and Littlewood-Paley operators, Approx.

Theory Appl. (N.S.) 11 (1995), 72–94.

[12] S. Z. Lu, D. Yang, Hardy-Littlewood-Sobolev theorems of fractional integration on Herz-

type spaces and its applications, Canad. J. Math. 48 (1996), 363–380.

[13] S. Z. Lu, D. Yang, G. Hu, Herz Type Spaces and their Applications, Science Press, Beijing,

2008. ISBN 978-7-03-020909-2 (Beijing)

[14] N. G. Meyers, Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc.
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