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Abstract. In this paper, we introduce two iterative schemes for finding a common element of

the set of a common fixed points of a countable family of nonexpansive mappings and the set

of solutions of the variational inequality problem for a monotone, Lipschitz-continuous mapping

in a Hilbert space by using the hybrid projection methods in the mathematical programming.

Then we prove strong convergence theorems by the hybrid projection methods for a monotone,

Lipschitz-continuous mapping and a countable family of nonexpansive mappings. Moreover, we

apply our result to the problem for finding a common fixed point of two mappings, such that

one of these mappings is nonexpansive and the other is taken from the more general class of

Lipschitz pseudocontractive mappings. Our results extend and improve the results of Nadezhkina

and Takahashi [SIAM J. Optim. 16 (2006), 1230–1241], Zeng and Yao [Taiwanese J. Math. 10

(2006), 1293–1303] and many authors.

1. Introduction. Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.
Let C be a nonempty closed convex subset of H and let PC be the metric projection of
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H onto C. A mapping S : C → C is said to be nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, (1)

for all x, y ∈ C. We denote by F (S) the set of fixed points of S. A mapping A of C into
H is called monotone if

〈Au−Av, u− v〉 ≥ 0, (2)

for all u, v ∈ C. A is called α-inverse-strongly-monotone if there exists a positive real
number α such that

〈Au−Av, u− v〉 ≥ α‖Au−Av‖2, (3)

for all u, v ∈ C. A is called k-Lipschitz-continuous if there exists a positive constant k
such that for all u, v ∈ C

‖Au−Av‖ ≤ k‖u− v‖. (4)

Obviously, it is easy to see that every α-inverse-strongly-monotone mapping A is mono-
tone and Lipschitz continuous.

The classical variational inequality problem is to find u ∈ C such that 〈v−u,Au〉 ≥ 0
for all v ∈ C. We denote by VI(A,C) the set of solutions of this variational inequality
problem. The variational inequality has been extensively studied in the literature. See,
e.g. [17, 18] and the references therein.

Construction of fixed points of nonexpansive mapping is an important subject in the
theory of nonexpansive mappings. However, the sequence {Snx}∞n=0 of iterates of the
mapping S at a point x ∈ C may not converge even in weak topology. More precisely,
Mann’s iterated procedure is a sequence {xn} which is generated in the following recursive
way:

xn+1 = αnxn + (1− αn)Sxn, n ≥ 0, (5)

where the initial guess x0 ∈ C is chosen arbitrary. However, we note that Mann’s itera-
tions have only weak convergence even in a Hilbert space [9].

For finding an element of F (S) ∩ VI(C,A) under the assumption that a set C ⊂ H

is closed and convex, a mapping S of C into itself is nonexpansive, and a mapping A

of C into H is α-inverse-strongly-monotone, Takahashi and Toyoda [16] introduced the
following iterative scheme:

x0 = x ∈ C,
xn+1 = αnxn + (1− αn)SPC(xn − λnAxn), (6)

for every n ≥ 0 where {αn} is a sequence in (0, 1) and {λn} is a sequence in (0, 2α). They
proved that if F (S) ∩ VI(C,A) 6= ∅, then the sequence {xn} generated by (6) converges
weakly to some z ∈ F (S) ∩VI(C,A).

In 2006, motivated by the idea of Korpelevich’s extragradient method [8], Nadezhkina
and Takahashi [11] introduced an iterative scheme for finding an element of F (S) ∩
VI(C,A). They proved the following weak convergence result.

Theorem 1.1 ([11, Theorem 3.1]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let A be a monotone and k-Lipschitz-continuous mapping of C into H.
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Let S be a nonexpansive mappings from C into itself such that F (S)∩VI(C,A) 6= ∅. Let
{xn} and {yn} be sequences in C defined as follows:

x0 = x ∈ C,
yn = PC(xn − λnAxn), (7)

xn+1 = αnxn + (1− αn)SPC(xn − λnAyn) ∀n ≥ 0,

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ (c, d) for some c, d ∈ (0, 1). Then
the sequences {xn} and {yn} converge weakly to the same point z ∈ F (S) ∩ VI(C,A),
where z = limn→∞ PF (S)∩VI(C,A)xn.

Recently, Zeng and Yao [20] proved the following strong convergence theorem:

x0 = x ∈ C,
yn = PC(xn − λnAxn),

xn+1 = αnx0 + (1− αn)SPC(xn − λnAyn) ∀n ≥ 0,

where {λn} and {αn} satisfy the following conditions:

(i) {λnk} ⊂ (0, 1− δ) for some δ ∈ (0, 1);
(ii) {αn} ⊂ (0, 1),

∑∞
n=1 αn =∞, limn→∞ αn = 0.

They proved that the sequences {xn} and {yn} converge strongly to the same point
PF (S)∩VI(C,A)x0 provided that limn→∞ ‖xn+1 − xn‖ = 0.

On the other hand, motivated by the idea of Nakajo and Takahashi [12], Nadezhkina
and Takahashi [10] introduced the following iterative scheme for finding an element of
F (S)∩VI(C,A) and proved the following strong convergence theorem by using the CQ hy-
brid method. Recently, Takahashi, Takeuchi and Kubota [15] proved the following strong
convergence theorem by using the new hybrid method in mathematical programming.

Theorem 1.2 ([15, Theorem 3.3]). Let H be a Hilbert space and let C be a nonempty
closed convex subset of H. Let {Tn} be a sequence of nonexpansive mappings from C into
itself such that

⋂∞
n=1 F (Tn) 6= ∅ and let x0 ∈ H. For C1 = C and x1 = PC1x0, define a

sequence as follows:

yn = αnxn + (1− αn)Tnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖}, (8)

xn+1 = PCn+1x0, n ≥ 1,

where 0 ≤ αn < α < 1 for all n ≥ 1. Let T be a mapping of C into itself such that
F (T ) =

⋂∞
n=1 F (Tn). Suppose that for each bounded sequence {zn} ⊂ C, limn→∞ ‖zn+1−

Tnzn‖ = 0 implies that limn→∞ ‖zn − Tmzn‖ = 0 for each m ∈ N. Then {xn} converges
strongly to z0 = PF (T )x0.

Inspired and motivated by the previously mentioned results, the purpose of this paper
is to improve and generalize the processes (7) and (8) to the new general processes for
finding a common element of the set of common fixed points of a countable family of
nonexpansive mappings and the set of solutions of the variational inequality problem for
a monotone Lipschitz-continuous mapping. Let C be nonempty closed convex subset of a
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Hilbert space H, A be a monotone and k-Lipschitz-continuous mapping of C into H and
{Sn} be a sequence of nonexpansive mappings from C into itself such that

⋂∞
n=1 F (Sn)∩

VI(C,A) 6= ∅. Define {xn} in two ways:

x0 = x ∈ C,
yn = PC(xn − λnAxn),

zn = αnxn + (1− αn)SnPC(xn − λnAyn), (9)

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, n = 0, 1, 2, . . . ,

and

x0 ∈ H, C1 = C, x1 = PC1x0,

yn = PC(xn − λnAxn),

zn = αnxn + (1− αn)SnPC(xn − λnAyn), (10)

Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ≥ 1,

where 0 ≤ αn < c < 1 and 0 < a < λn < b < 1
k for all n = 1, 2, 3 . . ..

We shall prove that both iterations (9) and (10) converge strongly to a point z in⋂∞
n=1 F (Sn) ∩ VI(C,A). Our results extend and improve the corresponding ones an-

nounced by Nadezhkina and Takahashi [10] and Zeng and Yao [20].

2. Preliminaries. Let H be a real Hilbert space. Then

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉 (11)

and
‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2 (12)

for all x, y ∈ H and λ ∈ [0, 1]. It is also known that H satisfies the Opial condition [13],
that is, for any sequence {xn} with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ (13)

holds for every y ∈ H with y 6= x.
Let C be a closed convex subset of H. For every point x ∈ H, there exists a unique

nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a nonexpansive
mapping of H onto C and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 (14)

for every x, y ∈ H. Moreover, PCx is characterized by the following properties: PCx ∈ C
and

〈x− PCx, y − PCx〉 ≤ 0, (15)
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‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 (16)

for all x ∈ H, y ∈ C.
In the context of the variational inequality problem, this implies that

u ∈ VI(A,C)⇔ u = PC(u− λAu), for all λ > 0. (17)

A set valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx and
g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H is maximal if the
graph G(T ) of T is not properly contained in the graph of any other monotone mapping.
It known that a monotone mapping T is maximal if and only if for (x, f) ∈ H × H,
〈x − y, f − h〉 ≥ 0 for every (y, g) ∈ G(T ) implies f ∈ Tx. Let A be an inverse-strongly
monotone mapping of C into H and let NCv be the normal cone to C at v ∈ C, i.e.,

NCv = {w ∈ H : 〈v − u,w〉 ≥ 0 ∀u ∈ C},

and define

Tv =
{
Av +NCv, v ∈ C,
∅, v /∈ C. (18)

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ VI(C,A); see [14].
The following lemma will be useful for proving the convergence result of this paper.

Lemma 2.1 (Browder [2]). Let C be a non-empty closed convex subset of a uniformly
convex Banach space E, and suppose S : C → E is nonexpansive. Then the mapping
I − S is demiclosed at zero, i.e.,

xn ⇀ x, xn − Sxn → 0 implies x = Sx. (19)

Lemma 2.2 ([1], Lemma 3.2). Let C be a nonempty closed subset of a Banach space
and let {Tn} be a sequence of nonexpansive mappings of C into itself. Suppose that∑∞
n=1 sup{‖Tn+1z−Tnz‖ : z ∈ C} <∞. Then, for each y ∈ C, {Tny} converges strongly

to some point of C. Moreover, let T be a mapping of C into itself defined by

Ty = lim
n→∞

Tny for all y ∈ C.

Then limn→∞ sup{‖Tnz − Tz‖ : z ∈ C} = 0.

3. Main theorems. In this section, we prove strong convergence theorems by hybrid
methods for finding a common fixed points of k-Lipschitz-continuous monotone mappings
and a family of nonexpansive mappings in Hilbert spaces.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A
be monotone and k-Lipschitz-continuous mapping of C into H. Let {Sn} be a sequence of
nonexpansive mappings from C into itself such that

⋂∞
n=1 F (Sn)∩VI(C,A) is nonempty.

Let {xn}, {yn} and {zn} be sequences in C defined as follows:

x0 = x ∈ C,
yn = PC(xn − λnAxn),

zn = αnxn + (1− αn)SnPC(xn − λnAyn),

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
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Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, n = 0, 1, 2, . . . ,

where 0 ≤ αn < c < 1 and 0 < a < λn < b < 1
k for all n = 1, 2, 3 . . .. Let∑∞

n=1 sup{‖Sn+1z − Snz‖ : z ∈ B} < ∞ for any bounded subset B of C and S be a
mapping of C into itself defined by Sz = limn→∞ Snz for all z ∈ C and suppose that
F (S) =

⋂∞
n=1 F (Sn). Then {xn}, {yn} and {zn} converge strongly to PF (S)∩VI(C,A)x0.

Proof. We divide the proof into four steps.
Step 1. We claim that Cn and Qn are closed and convex for all n ≥ 0, and F (S) ∩
VI(C,A) ⊂ Cn ∩ Qn, for all n ≥ 0. From the definition of Cn and Qn, it is obvious
that Cn is closed and Qn is closed and convex for all n ≥ 0. Since Cn = {z ∈ C :
‖yn − xn‖2 + 2〈yn − xn, xn − z〉 ≤ 0}, we deduce that Cn is convex for all n ≥ 0.

Next, we show that

F (S) ∩VI(C,A) ⊂ Cn, ∀n ≥ 0. (20)

Put vn = PC(xn − λnAyn) for all n ≥ 0. Let u ∈ F (S) ∩ VI(C,A). Thus, we have
u = PC(u− λnAu). From (16) and the monotonicity of A, we have

‖vn − u‖2 ≤ ‖xn − λnAyn − u‖2 − ‖xn − λnAyn − vn‖2

= ‖xn − u‖2 − ‖xn − vn‖2 + 2λn〈Ayn, u− vn〉
= ‖xn − u‖2 − ‖xn − vn‖2

+ 2λn(〈Ayn −Au, u− yn〉+ 〈Au, u− yn〉) + 〈Ayn, yn − vn〉
≤ ‖xn − u‖2 − ‖xn − vn‖2 + 2λn〈Ayn, yn − vn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − 2〈xn − yn, yn − vn〉 − ‖yn − vn‖2

+ 2λn〈Ayn, yn − vn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − vn‖2

+ 2〈xn − λnAyn − yn, vn − yn〉.

Since yn = PC(xn − λnAxn) and A is k-Lipschitz-continuous, it follows that

〈xn − λnAyn − yn, vn − yn〉 = 〈xn − λnAxn − yn, vn − yn〉+ 〈λnAxn − λnAyn, vn − yn〉
≤ 〈λnAxn − λnAyn, vn − yn〉
≤ λnk‖xn − yn‖‖vn − yn‖.

So, we obtain

‖vn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − vn‖2

+ 2λnk‖xn − yn‖‖vn − yn‖
≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − vn‖2

+ λnk(‖xn − yn‖2 − ‖vn − yn‖2)

= ‖xn − u‖2 + (λnk − 1)‖xn − yn‖2 − (1 + λnk)‖yn − vn‖2 (21)

≤ ‖xn − u‖2.
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Therefore, from (21), zn = αnxn − (1− αn)Snvn and u = Snu, we have

‖zn − u‖2 = ‖αn(xn − u) + (1− αn)(Snvn − u)‖2

≤ αn‖xn − u‖2 + (1− αn)‖Snvn − u‖2

≤ αn‖xn − u‖2 + (1− αn)‖vn − u‖2

≤ αn‖xn − u‖2 + (1− αn)(‖xn − u‖2 + (λnk − 1)‖xn − yn‖2)

≤ ‖xn − u‖2 + (1− αn)(λnk − 1)‖xn − yn‖2 (22)

≤ ‖xn − u‖2

for all n ≥ 0 and hence u ∈ Cn. So F (S) ∩VI(C,A) ⊂ Cn, for all n ≥ 0.
Next, we show that

F (S) ∩VI(C,A) ⊂ Qn for all n ≥ 0. (23)

We prove this by induction. For n = 0, we have F (S) ∩ VI(C,A) ⊂ CQ0. Suppose that
F (S) ∩ VI(C,A) ⊂ Qn. Then ∅ 6= F (S) ∩ VI(C,A) ⊂ Cn ∩Qn and there exists a unique
element xn+1 ∈ Cn ∩Qn such that xn+1 = PCn∩Qnx0. Then

〈xn+1 − z, x0 − xn+1〉 ≥ 0

for each z ∈ Cn ∩Qn. In particular,

〈xn+1 − p, x0 − xn+1〉 ≥ 0

for each p ∈ F (S) ∩ VI(C,A). It follows that F (S) ∩ VI(C,A) ⊂ Qn+1 and hence (23)
holds. Therefore

F (S) ∩VI(C,A) ⊂ Cn ∩Qn for all n ≥ 0.

This implies that {xn} is well-defined.
Step 2. We claim that the following statements hold:

1. {xn} is bounded;
2. ‖xn+1 − xn‖ → 0.

It follows from the definition of Qn that xn = PQnx0. Therefore

‖xn − x0‖ ≤ ‖z − x0‖ for all z ∈ Qn and all n ≥ 0.

Let z ∈ F (S) ∩VI(C,A). Then

‖xn − x0‖ ≤ ‖z − x0‖ for all n ≥ 0.

On the other hand, from xn+1 = PCn∩Qnx0 ∈ Qn, we have

‖xn − x0‖ ≤ ‖xn+1 − x0‖ for all n ≥ 0.

Therefore {‖xn − x0‖} is nondecreasing and bounded. So limn→∞ ‖xn − x0‖ exists. This
implies that {xn} is bounded. From (21) and (22), we also obtain that {zn} and {vn} are
bounded.

Since xn+1 = PCn∩Qnx0 ∈ Qn, we have 〈xn−xn+1, x0−xn〉 ≥ 0. It follows from (11)
that

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉
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≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2

for all n = 0, 1, 2 . . .. This implies that

lim
n→∞

‖xn+1 − xn‖ = 0. (24)

Step 3. We claim that the following statements hold:

1. limn→∞ ‖xn − zn‖ = 0 and limn→∞ ‖xn − yn‖ = 0;
2. limn→∞ ‖Sxn − xn‖ = 0 and limn→∞ ‖Snxn − xn‖ = 0.

Since xn+1 ∈ Cn, we have ‖zn − xn+1‖ ≤ ‖xn + xn+1‖. This implies that

‖xn − Snvn‖ =
1

1− αn
‖zn − xn‖

≤ 1
1− αn

(‖zn − xn+1‖+ ‖xn − xn+1‖)

≤ 2
1− αn

‖xn − xn+1‖

for all n ≥ 0. From (24) and 0 ≤ αn < c < 1, we get

lim
n→∞

‖xn − Snvn‖ = 0. (25)

Since ‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖ ≤ 2‖xn − xn+1‖, ∀n ≥ 0, it follows that

lim
n→∞

‖xn − zn‖ = 0. (26)

For each u ∈ F (S) ∩VI(C,A), from (22), we obtain

‖zn − u‖2 ≤ ‖xn − u‖2 + (1− αn)(λnk − 1)‖xn − yn‖2.

Thus, we have

‖xn − yn‖2 ≤
1

(1− αn)(λnk)
(‖xn − u‖2 − ‖zn − u‖2)

≤ 1
(1− αn)(λnk)

(‖xn − u‖+ ‖zn − u‖)‖xn − zn‖

Since ‖xn−zn‖ → 0 and the sequences {xn}, {zn} are bounded, we obtain ‖xn−yn‖ → 0.
As A is k-Lipschitz-continuous, we have

‖yn − vn‖ = ‖PC(xn − λnAxn)− PC(xn − λnAyn)‖
≤ λn‖Axn −Ayn‖
≤ λnk‖xn − yn‖ → 0 as n→∞.

This implies that
lim
n→∞

‖yn − vn‖ = 0. (27)

Moreover, we note that

‖Snxn − xn‖ ≤ ‖Snxn − Snyn‖+ ‖Snyn − Snvn‖+ ‖Snvn − xn‖
≤ ‖xn − yn‖+ ‖yn − vn‖+ ‖Snvn − xn‖.

From (25), (26) and (27), we obtain

lim
n→∞

‖Snxn − xn‖ = 0. (28)
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Since
∑∞
n=1 sup{‖Sz − Snz‖ : z ∈ {xn}} <∞, and

‖Sxn − xn‖ ≤ ‖Sxn − Snxn‖+ ‖Snxn − xn‖
≤ sup{‖Sz − Snz‖ : z ∈ {xn}}+ ‖Snxn − xn‖,

it follows that
lim
n→∞

‖Sxn − xn‖ = 0. (29)

Step 4. We claim that {xn} converge strongly to z0, where z0 = PF (S)∩VI(C,A)x0. Since
{xn} is bounded, there exists a subsequence {xnk} of {xn} which converges weakly to z.
By [11, Theorem 3.1 pp. 197–198], we can show that z ∈ VI(C,A). Next, we show that
z ∈ F (S). Let {xnk} be another subsequence of {xn} which converges weakly to z. Since
I − S is demiclosed, it follows by Lemma 2.1 that z ∈ F (S). Hence z ∈ F (S)∩VI(C,A).

Since xn = PQnx0 and z0 ∈ F (S) ∩VI(C,A) ⊂ Qn, we have

‖xn − x0‖ ≤ ‖z0 − x0‖.

It follows from z0 = PF (S)∩VI(C,A)x0 and the lower semicontinuity of the norm that

‖z0 − x0‖ ≤ ‖z − x0‖ ≤ lim inf
k→∞

‖xnk − x0‖ ≤ lim sup
k→∞

‖xnk − x0‖ ≤ ‖z0 − x0‖.

Thus, we obtain that limk→∞ ‖xnk − x0‖ = ‖z − x0‖ = ‖z0 − x0‖.
Using the Kadec-Klee property of H, we obtain that

lim
k→∞

xnk = z = z0.

Since {xnk} is an arbitrary subsequence of {xn}, we can conclude that {xn} converges
strongly to z0, where z0 = PF (S)∩VI(C,A)x0. So, from ‖xn − yn‖ → 0 and ‖xn − zn‖ → 0,
we infer that both {yn} and {zn} converge to z0 ∈ PF (T )∩VI(C,A)x0.

Setting Sn ≡ S in Theorem 3.1, we have the following result.

Theorem 3.2 (Nadezhkina and Takahashi [10, Theorem 3.1]). Let C be a nonempty
closed convex subset of a real Hilbert space H. Let A be monotone and k-Lipschitz-
continuous mapping of C into H. Let S be a nonexpansive mapping from C into itself
such that F (S) ∩ VI(C,A) 6= ∅. Let {xn}, {yn} and {zn} be sequences in C defined as
follows:

x0 = x ∈ C,
yn = PC(xn − λnAxn),

zn = αnxn + (1− αn)SPC(xn − λnAyn),

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, n = 0, 1, 2, . . . , (30)

where 0 ≤ αn < c < 1 and 0 < a < λn < b < 1
k for all n = 1, 2, 3 . . .. Then {xn}, {yn}

and {zn} converge strongly to PF (S)∩VI(C,A)x0.

Setting PC(I − λnA) = I in Theorem 3.2, we have the following theorem.
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Theorem 3.3 (Nakajo and Takahashi [12]). Let C be a nonempty closed convex subset
of a real Hilbert space H and let S be a nonexpansive mapping from C into itself such
that F (S) ∩A−10 6= ∅. Suppose x1 = x ∈ C and {xn} is given by

yn = αnxn + (1− αn)Sxn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, n = 0, 1, 2, . . . , (31)

where 0 ≤ αn < c < 1. Then {xn} converges strongly to PF (S)x.

Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A be monotone and k-Lipschitz-continuous mapping of C into H. Let {Sn} be a sequence
of nonexpansive mappings from C into itself such that

⋂∞
n=1 F (Sn) ∩ VI(C,A) 6= ∅ and

let x0 ∈ H. For C1 = C and x1 = PC1x0, define a sequence {xn} of C as follows:

yn = PC(xn − λnAxn),

zn = αnxn + (1− αn)SnPC(xn − λnAyn),

Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n = 1, 2, 3 . . . ,

where 0 ≤ αn < c < 1 and 0 < a < λn < b < 2α for all n = 1, 2, 3 . . .. Let∑∞
n=1 sup{‖Sn+1z − Snz‖ : z ∈ B} < ∞ for any bounded subset B of C and S be a

mapping of C into itself defined by Sz = limn→∞ Snz for all z ∈ C and suppose that
F (S) =

⋂∞
n=1 F (Sn). Then {xn} converges strongly to w = PF (S)∩VI(C,A)x0.

Proof. We first show by induction that F (S) ∩ VI(C,A) ⊂ Cn for all n = 1, 2, 3 . . .. It
is obvious that F (S) ∩ VI(C,A) ⊂ C = C1. Suppose that F (S) ∩ VI(C,A) ⊂ Ck for
each k = 1, 2, 3 . . .. Hence, for u ∈ F (S) ∩ VI(C,A) ⊂ Ck we have u = PC(u− λk+1Au).
Putting vn = PC(xn−λnAyn) for all n ≥ 0, as in the proof of Theorem 3.1, we can show
that

‖vn − u‖2 ≤ ‖xn − u‖2 + (λnk − 1)‖xn − yn‖2 ≤ ‖xn − u‖2

and

‖zn − u‖2 ≤ ‖xn − u‖2 + (1− αn)(λnk − 1)‖xn − yn‖2 ≤ ‖xn − u‖2

for all n ≥ 0. Thus u ∈ Cn, n ≥ 0 and hence F (S) ∩VI(C,A) ⊂ Cn, for all n ≥ 0.
Next, we prove that Cn is closed and convex for all n = 1, 2, 3 . . .. It is obvious that

C1 = C is closed and convex. Suppose that Ck is closed and convex for some k = 1, 2, 3 . . ..
For z ∈ Ck, we know that ‖zk − z‖ ≤ ‖xk − z‖ is equivalent to

‖zk − xk‖2 + 2〈zk − xk, xk − z〉 ≥ 0.

So, Ck+1 is closed and convex. Then, for any n = 1, 2, 3 . . ., Cn is closed and convex. This
implies that {xn} is well-defined. From xn = PCnx0, we have

〈x0 − xn, xn − y〉 ≥ 0



CONVERGENCE THEOREMS BY HYBRID PROJECTION METHODS 293

for each y ∈ Cn. Using F (S) ∩VI(C,A) ⊂ Cn, we also have

〈x0 − xn, xn − u〉 ≥ 0 for each u ∈ F (S) ∩VI(C,A) and n = 1, 2, 3 . . . .

So, for u ∈ F (S) ∩VI(C,A), we have

0 ≤ 〈x0 − xn, xn − u〉
= 〈x0 − xn, xn − x0 + x0 − u〉
= −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − u‖.

This implies that

‖x0 − xn‖ ≤ ‖x0 − u‖ for all u ∈ F (S) ∩VI(C,A) and n = 1, 2, 3 . . . .

By the same as in the proof of [15, Theorem 3.3], we can show that 〈x0−xn, xn−xn+1〉 ≥ 0
and hence limn→∞ ‖xn+1 − xn‖ = 0.

On the other hand, from xn+1 ∈ Cn+1 ⊂ C, we have

‖zn − xn+1‖ ≤ ‖xn − xn+1‖. (32)

Further, we have

‖zn − xn‖ = ‖αnxn + (1− αn)Snvn − xn‖
= (1− αn)‖Snvn − xn‖.

As in the proof of Theorem 3.1 (Step 3), we obtain

lim
n→∞

‖xn − Snvn‖ = 0 and lim
n→∞

‖xn − Sxn‖ = 0, (33)

since {xn} is bounded. Let {xni} be a subsequence of {xn} such that xni ⇀ z0. By
the same argument as in the proof of [6, Theorem 3.1, pp. 346–347], we can show that
z0 ∈ VI(C,A). Since I −S is demiclosed, it follows by Lemma 2.1 that z0 ∈ F (S). Hence
z0 ∈ F (S) ∩VI(C,A).

Finally, we show that xn → w, where w = PF (S)∩VI(C,A)x0. Since {xn} is bounded,
there exists a subsequence {xnk} of {xn} such that xnk ⇀ w′. Since {xnk} ⊂ C and C is
closed and convex, we obtain w′ ∈ C.

Since xn = PCnx0 and w ∈ F (S) ∩VI(C,A) ⊂ Cn, we have

‖xn − x0‖ ≤ ‖w − x0‖.

It follows from w = PF (S)∩VI(C,A)x0 and the lower semicontinuity of the norm that

‖w − x0‖ ≤ ‖w′ − x0‖ ≤ lim inf
k→∞

‖xnk − x0‖ ≤ lim sup
k→∞

‖xnk − x0‖ ≤ ‖w − x0‖.

Thus, we obtain that limk→∞ ‖xnk −x0‖ = ‖w′−x0‖ = ‖w−x0‖. Using the Kadec-Klee
property of H, we obtain that

lim
k→∞

xnk = w′ = w.

Therefore {xn} converges strongly to w, where w = PF (T )∩VI(C,A)x0.

Setting Sn ≡ S in Theorem 3.4, we have the following result.

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A
be a monotone and k-Lipschitz-continous mapping of C into H. Let S be a nonexpansive
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mappings from C into itself such that F (S) ∩VI(C,A) 6= ∅ and let x0 ∈ H. For C1 = C

and x1 = PC1x0, define a sequence {xn} of C as follows:

yn = PC(xn − λnAxn),

zn = αnxn + (1− αn)SPC(xn − λnAyn),

Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n = 1, 2, 3 . . . , (34)

where 0 ≤ αn < c < 1 and 0 < a < λn < b < 2α for all n = 1, 2, 3 . . .. Then {xn}
converges strongly to z0 = PF (S)∩VI(C,A)x0.

Setting PC(I − λnA) = I in Theorem 3.4, we obtain Theorem 1.2.

4. Applications

4.1. Monotone operator. In this section, we consider the problem of finding a zero of
a monotone operator. A multivalued operator T : H → 2H with domain D(T ) = {z ∈
H : Tz 6= ∅} and range R(T ) = {Tz : z ∈ D(T )} is said to be monotone if for each
xi ∈ D(T ) and yi ∈ Txi, i = 1, 2, we have 〈x1−x2, y1− y2〉 ≥ 0. A monotone operator T
is said to be maximal if its graph G(T ) = {(x, y) : y ∈ Tx} is not properly contained in
the graph of any other monotone operator. Let I denote the identity operator on H and
let T : H → 2H be a maximal monotone operator. Then we can define, for each r > 0,
a nonexpansive single valued mapping Jr : H → H by Jr = (I + rT )−1. It is called the
resolvent (or the proximal mapping) of T . We also define the Yosida approximation Ar
by Ar = (I − Jr)/r. We know that Arx ∈ TJrx and ‖Arx‖ ≤ inf{‖y‖ : y ∈ Tx} for all
x ∈ H. We also know that T−10 = F (Jr) for all r > 0; see, for instance, Rockafellar [14].

Lemma 4.1 (the resolvent identity). For λ, µ > 0, there holds the identity

Jλx = Jµ

(µ
λ

+
(

1− µ

λ

)
Jλx

)
, x ∈ H.

By using Theorem 3.1 and Lemma 4.1 we may obtain the following improvement.

Lemma 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T ⊂ H×H be a maximal monotone operator such that D(T ) ⊂ C ⊂

⋂
r>0R(I+ rT ) and

let Jr be the resolvent of T and {rn} be a sequence in (0,∞). If inf{rn : n = 1, 2, 3 . . .} > 0,
and

∑∞
n=1 |rn+1 − rn| <∞, then

(i)
∑∞
n=1 sup{‖Jrn+1z − Jrnz‖ : z ∈ B} <∞ for any bounded subset B of H,

(ii) Jrx = limn→∞ Jrnx for all x ∈ C and F (Jr) =
⋂∞
n=1 F (Jrn), where limn→∞ rn = r.

Proof. We first prove (i). Let B be a bounded subset of H. Since {Jrnz : z ∈ B, n =
1, 2, 3 . . .} is bounded, from Lemma 4.1, using the resolvent identity

Jrn+1z = Jrn

( rn
rn+1

z +
(

1− rn
rn+1

)
Jrn+1z

)
, z ∈ H,

we obtain

‖Jrn+1z − Jrnz‖ ≤
|rn+1 − rn|

rn+1
‖Jrn+1z − z‖

≤M |rn+1 − rn|
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for each z ∈ B and n = 1, 2, 3 . . . where M =
sup{‖Jrn+1z−z‖:z∈B,n=1,2,3...}

inf{rn:n=1,2,3...} . Hence we get

∞∑
n=1

sup{‖Jrn+1z − Jrnz‖ : z ∈ B} ≤M
∞∑
n=1

|rn+1 − rn| <∞.

Next, we prove (ii). By the assumption for {rn}, we know that rn → r for some r > 0.
Since ‖Jrz − Jrnz‖ ≤

|r−rn|
r ‖z − Jrz‖, we obtain that limn→∞ Jrnz = Jrz for all z ∈ H.

Then Jrx = limn→∞ Jrnx for all x ∈ C and hence F (Jr) =
⋂∞
n=1 F (Jrn) = T−10.

By Lemmas 4.2 and Theorem 3.1, we have the following theorem.

Theorem 4.3. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T ⊂ H × H be a maximal monotone operator such that T−10 6= ∅ and D(T ) ⊂
C ⊂

⋂
r>0R(I + rT ) and let Jr be the resolvent of T . Let α > 0 and let A be an

α-inverse-strongly monotone mapping of C into H. Let {xn} be a sequence in C defined
as follows:

x0 ∈ C is arbitrary,

yn = αnxn + (1− αn)Jrn(xn − λnA(xn − λnAxn)),

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, n = 0, 1, 2, . . . ,

where 0 ≤ αn < a < 1 for all n = 1, 2, 3 . . . , {λn} ⊂ (a, b) ⊂ (0, 2α) and {rn} is a
sequence in (0,∞). If inf{rn : n = 1, 2, 3 . . .} > 0 and

∑∞
n=1 |rn+1 − rn| <∞, then {xn}

converges strongly to z, where z = PT−10∩VI(C,A)x0.

Proof. Since H is a Hilbert space, C = D(T ) is closed and convex and F (Jr) = T−10 for
all r > 0. By Lemma 4.2, we have the following

F (Jrx) =
∞⋂
n=1

F (Jrn) = T−10 6= ∅.

We note that F (T ) = VI(A,C). Therefore, by Theorem 3.1, we obtain {xn} converges
strongly to z = PT−10∩VI(C,A)x0.

4.2. Strictly pseudocontractive mappings. A mapping T : C → C is called strictly
pseudocontractive on C if there exists k with 0 ≤ k < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x+ (I − T )y‖2, for all x, y ∈ C.

If k = 0, then T is nonexpansive. Put A = I − T , where T : C → C is a strictly
pseudocontractive mapping with k. We know that A is 1−k

2 -inverse strongly monotone
and A−10 = F (T ) (see [6] and [19]).

Using Theorem 3.1, we have the following theorem.

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let {Sn} be a sequence of nonexpansive mappings from C into itself. Let T be a strictly
pseudocontractive mapping with constant k of C into itself and let {xn} be a sequence
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generated by

x0 ∈ C is arbitrary,

yn = αnxn + (1− αn)SnPC((1− λn)xn + λnT (xn − λnAxn)),

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, n = 0, 1, 2 . . . ,

where 0 ≤ αn < a < 1 for all n = 1, 2, 3 . . . and {λn} ⊂ (a, b) ⊂ (0, 2α).
Let

∑∞
n=1 sup{‖Sn+1z − Snz‖ : z ∈ B} < ∞ for any bounded subset B of C and S be

a mapping of C into itself defined by Sz = limn→∞ Snz for all z ∈ C and suppose that
F (S) =

⋂∞
n=1 F (Sn). Then {xn} converges strongly to PF (S)∩F (T )x0.

Proof. Put A = I − T . Then A is 1−k
2 -inverse-strongly monotone. We have that F (T ) is

the solution set of VI(A,C) i.e., F (T ) = VI(A,C) and

PC(xn − λnA(xn − λnAxn)) = (1− λn)xn + λnT (xn − λnAxn).

Therefore, by Theorem 3.2, {xn} converges strongly to z = PF (S)∩F (T )x0.
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lems, Ékonom. i Mat. Metody 12 (1976), 747–756.

[9] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.

[10] N. Nadezhkina, W. Takahashi, Strong convergence theorem by a hybrid method for non-

expansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16

(2006), 1230–1241.



CONVERGENCE THEOREMS BY HYBRID PROJECTION METHODS 297

[11] N. Nadezhkina, W. Takahashi, Weak convergence theorem by an extragradient method

for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006),

191–201.

[12] K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and

nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372–379.

[13] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive

mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.

[14] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control

Optim. 14 (1976), 877–898.

[15] W. Takahashi, Y. Takeuchi, R. Kubota, Strong convergence theorems by hybrid methods

for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008),

276–286.

[16] W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive mappings and

monotone mappings, J. Optim. Theory Appl. 118 (2003), 417–428.

[17] J.-C. Yao, O. Chadli, Pseudomonotone complementarity problems and variational inequali-

ties, in: Handbook of Generalized Convexity and Generalized Monotonicity, Springer, New

York, 2005, 501–558.

[18] L. C. Zeng, S. Schaible, J. C. Yao, Iterative algorithm for generalized set-valued strongly

nonlinear mixed variational-like inequalities, J. Optim. Theory Appl. 124 (2005), 725–738.

[19] L. C. Zeng, N. C. Wong, J. C. Yao, Strong convergence theorems for strictly pseudocon-

tractive mappings of Browder–Petryshyn type, Taiwanese J. Math. 10 (2006), 837–850.

[20] L. C. Zeng, J. C. Yao, Strong convergence theorem by an extragradient method for fixed

point problems and variational inequality problems, Taiwanese J. Math. 10 (2006), 1293–

1303.




