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Abstract. In the present paper we consider a new class of sequences called GM(β, r), which
is the generalization of a class de�ned by Tikhonov in [15]. We obtain su�cient and necessary
conditions for uniform convergence of weighted trigonometric series with (β, r)-general monotone
coe�cients.

1. Introduction. Chaundy and Jolli�e [1] proved the following classical result (see

also [19]).

Theorem 1. Suppose that bn ≥ bn+1 and bn → 0. Then a necessary and su�cient

condition for the uniform convergence of the series

∞∑
n=1

bn sinnx (1.1)

is nbn → 0.

This result has been generalized by weakening the monotone conditions of the coe�-

cient sequences. Generally speaking, it has become an important topic how to generalize

monotonicity.

For r ∈ N and a sequence (cn), let

∆rcn = cn − cn+r and ∆cn = ∆1cn.
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Recently, Leindler [4] de�ned a new class of sequences named as sequences of rest

bounded variation, brie�y denoted by RBV S, i.e.,

RBV S =
{

(cn) :
∞∑
n=m

|∆cn| ≤ K(c)|cm| for all m ∈ N
}
,

where here and throughout the paper K(c) always denote a constant depending on indi-

cated parameters, not necessarily the same in each occurrence.

Denote by MS the class of monotone decreasing sequences and by CQMS the class

of classic quasimonotone decreasing sequences ( c ∈ CQMS means that cn ∈ R+ for all

n ∈ N and there exists an α > 0 such that (cn/nα) is decreasing). It is obvious that

MS ⊂ RBV S ∩ CQMS.

Leindler [5] proved that the classes CQMS and RBV S are not comparable. In [8] Leindler

considered the class

MRBV S =
{

(cn) : cn ∈ C for all n ∈ N

and

∞∑
n=m

|∆cn| ≤ K(c)
1
m

m∑
n≥m/2

|cn| for all m ∈ N
}

of mean rest bounded variation sequences. Further, the class of general monotone coe�-

cients, GM , is de�ned as follows (see [13]):

GM =
{

(cn) : cn ∈ C for all n ∈ N and

2m−1∑
n=m

|∆cn| ≤ K(c)|cm| for all m ∈ N
}
.

It is clear that

RBV S ⊂MRBV S and RBV S ∪ CQMS ⊂ GM.

Very recently, Le and Zhou [3] suggested the following new class of sequences which

includes GM :

GBV S =
{

(cn) : cn ∈ C for all n ∈ N

and

2m−1∑
n=m

|∆cn| ≤ K(c) max
m≤n≤N+m

|cn| for some integer N and all m ∈ N
}
.

The generalization of the Chaundy-Jolli�e criteria (Theorem 1) was studied in many

papers: [9] for CQMS, [4] for RBV S, [10] for MRBV S, [13] for GM and [3] for GBV S.

In [6, 13, 14, 15] the class of β-general monotone sequences was examined as follows:

Definition 1. Let β := (βn) be a nonnegative sequence. The sequence of complex

numbers c := (cn) is said to be β-general monotone , or c ∈ GM(β), if the relation
2m−1∑
n=m

|∆cn| ≤ K(c)βm

holds for all m.
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In [15] and [17] Theorem 1 was generalized to the class GM(β∗), with

β∗ := (β∗n), β∗n =
[cn]∑

k=[n/c]

|ck|
k

for some c > 1.

We can note that (see [15, Remark 2.1])

GBV S ⊂ GM(β∗).

The next generalization of Theorem 1 was proved by Tikhonov and Dyachenko in [2].

They considered a class GM(β#), with

β# := (β#
n ), β#

n =
1
n

max
k≥[n/c]

2k∑
s=k

|cs|

and showed that

GM(β∗) ⊂ GM(β#). (1.2)

Moreover, they proved the following theorem.

Theorem 2. (A) If
∞∑
k=n

|∆bk| = o(n−1)

as n→∞, then the series (1.1) converges uniformly.

(B) Let a nonnegative sequence (bn) satisfy

bn ≤ K ·
1
n

max
k≥[n/c]

2k∑
s=k

bs for some c > 1.

Then the uniform convergence of the series (1.1) implies nbn = o(1) as n→∞.

In order to formulate our new results we de�ne another class of sequences (see [12]).

Definition 2. Let β := (βn) be a nonnegative sequence and r a natural number.

The sequence of complex numbers c := (cn) is said to be (β, r)-general monotone , or

c ∈ GM(β, r), if the relation
2m−1∑
n=m

|∆rcn| ≤ K(c)βm

holds for all m.

It is clear that GM(β, 1) ≡ GM(β). Moreover, the embedding relation between

GM(β, r) (r > 1) and GM(β, 1) can be deduced from the following remark:

Remark 1 ([12]). Let r be a natural number. If a nonnegative sequence β := (βn) is such
that

r−1∑
i=0

βn+i ≤ K · βn

for all n, then

GM(β, 1) ⊆ GM(β, r).
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In [12] it was also showed that

GM(β∗, 1) ⊆ GM(β∗, r) and GM(β#, 1) ⊆ GM(β#, r) (1.3)

for r ≥ 1.

2. Statement of the results. We formulate our results in two subsections.

2.1. Uniform convergence of weighted trigonometric series. Let r ∈ N and

α ∈ R. We de�ne an even 2π-periodic function ωα,r, given on the interval [0, π] by the

formula

ωα,r(x) :=



(
x− 2lπ

r

)α
for x ∈

(2lπ
r
,

(2l + 1)π
r

]
and l ∈ U1,(2(l + 1)π

r
− x
)α

for x ∈
( (2l + 1)π

r
,

2(l + 1)π
r

)
and l ∈ U2,

0 for x =
2lπ
r

and l ∈ U3,

where U1 = {0, 1, . . . , [r/2]} if r is an odd number and U1 = {0, 1, . . . , [r/2] − 1} if r is

even, U2 = {0, 1, . . . , [r/2]− 1} for r ≥ 2, and U3 = {0, 1, . . . , [r/2]} for r ≥ 1.

Theorem 3. Let r ∈ N and α ∈ (0; 1]. If
∞∑
k=n

|∆rbk| = o(nα−1) (2.1)

as n→∞, then the series
∞∑
k=1

bkωα,r(x) sin kx (2.2)

converges uniformly, and if
∞∑
k=n

|∆rak| = o(nα−1)

as n→∞, then the series
∞∑
k=1

akωα,r(x) cos kx (2.3)

is also uniformly convergent.

Theorem 4. Let r = 1 or 2 and α ∈ (−1; 0]. If (2.1) holds then the series (2.2) converges

uniformly.

Theorem 5. Let r ∈ N, α ∈ R and a nonnegative sequence (bn) satisfy

bn ≤ K
[cn]∑

k=[n/c]

bk
k

for some c > 1. (2.4)

Then the uniform convergence of the series (2.2) implies

n1−αbn = o(1) (2.5)

as n→∞.

Similarly we can show the following theorem.
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Theorem 5'. Let r ∈ N, α ∈ R and a nonnegative sequence (an) satisfy

an ≤ K
[cn]∑

k=[n/c]

ak
k

for some c > 1.

Then the uniform convergence of the series (2.3) implies

n1−αan = o(1) (2.6)

as n→∞.

Theorem 6. Let r ∈ N, α ≤ 0 and a nonnegative sequence (bn) satisfy

bn ≤ K ·
1
n

max
k≥[n/c]

2k∑
s=k

bs for some c > 1. (2.7)

Then the uniform convergence of the series (2.2) implies (2.5).

Proposition 1. (i) If a nonnegative sequence (cn) ∈ GM(β∗, r), where r ∈ N, α < 1 and

n1−αcn = o(1) as n→∞, then

n1−α
∞∑
k=n

|∆rck| = o(1) (2.8)

as n→∞.

(ii) If a nonnegative sequence (cn) ∈ GM(β#, r), where r ∈ N, α ≤ 0 and n1−αcn =
o(1) as n→∞, then (2.8) holds.

We conclude this subsection with a few remarks and corollary.

Remark 2. If we take r = 1 and α = 0 in Theorems 4 and 6, then we obtain the result

of M. Dyachenko and S. Tikhonov (Theorem 2).

Combining the above results we derive the following corollary.

Corollary 1. (i) Let r ∈ N, α ∈ (0; 1) and a nonnegative sequence (bn) ∈ GM(β∗, r).
Then the series (2.2) converges uniformly if and only if (2.5) holds.

(ii) Let r ∈ N, α ∈ (0; 1) and a nonnegative sequence (an) ∈ GM(β∗, r). Then the

series (2.3) converges uniformly if and only if (2.6) holds.

(iii) Let r = 1 or 2, α ∈ (−1; 0] and a nonnegative sequence (bn) ∈ GM(β#, r). Then
the series (2.2) converges uniformly if and only if (2.5) holds.

Remark 3. If we take r = 1 and α = 0 in Corollary 1 (iii), then the result of M. Dyachenko

and S. Tikhonov [2, Corollary 5.3] follows from our Corollary 1 (iii).

2.2. The weighted best approximation. Let γ ∈ C. Denote by En(ϕ, γ) the best

approximation of a function ϕ, where γ · ϕ ∈ C, by trigonometric polynomials of degree

at most n in the weighted C-norm, that is,

En(ϕ, γ) := inf
Pn∈Πn

‖γ(ϕ− Pn)‖ (En(ϕ) := En(ϕ, 1)),

where Πn denotes the set of all trigonometric polynomials of degree at most n.

Write

f(x) =
∞∑
k=1

ak cos kx, g(x) =
∞∑
k=1

bk sin kx
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for those x where the series converge. Denote by φ either f or g and let λn be its associated

coe�cients, i.e., λn is either an or bn.

Theorem 7. Let r ∈ N, α ∈ (0; 1]. If
∞∑
k=n

|∆rλk| = o(nα−1)

as n→∞, then

En(φ, ωα,r) ≤ K max
v≥n

(
v1−α

∞∑
k=v

|∆rλk|
)
.

Analyzing the proofs of Theorem 4 and 7 we get the following corollary.

Corollary 2. If
∞∑
k=n

|∆2bk| = o(n−1)

as n→∞, then

En(g) ≤ K max
v≥n

(
v
∞∑
k=v

|∆2λk|
)
.

Using Proposition 1, Theorem 7 and Corollary 2 we can derive the next corollary.

Corollary 3. (i) Let r ∈ N, α ∈ (0; 1) and a nonnegative sequence (λn) ∈ GM(β∗, r).
If n1−αλn = o(1) as n→∞ then

En(φ, ωα,r) ≤ K max
v≥n

(v1−αλv).

(ii) If a nonnegative sequence (bn) ∈ GM(β#, 2) and nbn = o(1) as n→∞, then

En(g) ≤ K max
v≥n

(vbv).

Finally, we have the following remark.

Remark 4. By the embedding relations (1.2) and (1.3) we can observe that the result of

S. Tikhonov [15] follows from our Corollary 3 (ii).

3. Auxiliary results. Denote, for r ∈ Z, by

Dk,r(x) =
sin(k + r

2 )x
2 sin rx

2

and

D̃k,r(x) =
cos(k + r

2 )x
2 sin rx

2

the Dirichlet type kernels.

Lemma 1 ([11]). Let r ∈ N, l ∈ Z and (cn) be a sequence of complex numbers. If x 6= 2lπ
r ,

then for all m ≥ n
m∑
k=n

ck cos kx =
m∑
k=n

∆rckDk,r(x)−
m+r∑

k=m+1

ckDk,−r(x) +
n+r−1∑
k=n

ckDk,−r(x) (3.1)
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and

m∑
k=n

ck sin kx = −
m∑
k=n

∆rckD̃k,r(x) +
m+r∑

k=m+1

ckD̃k,−r(x)−
n+r−1∑
k=n

ckD̃k,−r(x). (3.2)

4. Proofs of the main results

4.1. Proof of Theorem 3. We prove the theorem for sine series, only. In the case of

cosine series we can argue analogously.

Let

εn := sup
v≥n

(
v1−α

∞∑
k=v

|∆rbk|
)

and

Rn(x) :=
∞∑
k=n

bkωα,r(x) sin kx.

In view of the assumptions, we see that εn → 0 as n→∞. Further, we shall show that

|Rn(x)| ≤ Kεn (4.1)

for all x ∈ R. Since Rn( 2lπ
r ) = 0, where l ∈ Z, it su�ces to prove (4.1) for x ∈

( 2lπ
r ; 2(l+1)π

r ), where l = 0, 1, . . . , [r/2] − 1 if r is even, and l = 0, 1, . . . , [r/2] if r is

odd.

First, we show that (4.1) is valid for x ∈ ( 2lπ
r ; 2lπ

r + π
r ]. Let N := N(x) be the natural

number such that

2lπ
r

+
π

N + 1
< x ≤ 2lπ

r
+
π

N
. (4.2)

Then

Rn(x) =
n+N−1∑
k=n

bkωα,r(x) sin kx+
∞∑

k=n+N

bkωα,r(x) sin kx = R(1)
n (x) +R(2)

n (x). (4.3)

Further, by (4.2) we obtain that for α ∈ (0; 1]

∣∣R(1)
n (x)

∣∣ ≤ (x− 2lπ
r

)α n+N−1∑
k=n

bk ≤ KN−α
n+N−1∑
k=n

∞∑
v=k

|∆rbv|

≤ KεnN−α
n+N−1∑
k=n

kα−1 ≤ KεnN−α
(
(n+N)α − nα

)
≤ Kεn. (4.4)

Using Lemma 1, the inequality

r

π
x− 2l ≤

∣∣∣sin rx
2

∣∣∣ for x ∈
[2lπ
r
,

2lπ
r

+
π

r

]
(4.5)
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and (4.2) we get for α ≤ 1

∣∣R(1)
n (x)

∣∣ =
(
x− 2lπ

r

)α∣∣∣∣n+N+r−1∑
k=n+N

bkD̃k,−r(x) +
∞∑

k=n+N

∆rbkD̃k,r(x)
∣∣∣∣

≤ K
(x− 2lπ

r )α

2| sin rx
2 |

{ ∞∑
k=n+N

|∆rbk|+
n+N+r−1∑
k=n+N

bk

}
≤ K

(
x− 2lπ

r

)α−1 ∞∑
k=n+N

|∆rbk|

≤ KN1−α
∞∑

k=n+N

|∆rbk| ≤ Kεn
( N

n+N

)1−α
≤ Kεn. (4.6)

Now, we prove that (4.1) is valid for x ∈ [ 2lπ
r + η

r ; 2(l+1)π
r ). Let M := M(x) ≥ r be

the natural number such that

2(l + 1)π
r

− π

M
≤ x < 2(l + 1)π

r
− π

M + 1
. (4.7)

Then

Rn(x) =
n+M−1∑
k=n

bkωα,r(x) sin kx+
∞∑

k=n+M

bkωα,r(x) sin kx = R(3)
n (x) +R(4)

n (x). (4.8)

Using (4.2) we obtain that for α ∈ (0; 1]

∣∣R(4)
n (x)

∣∣ ≤ (2(l + 1)π
r

− x
)α n+M−1∑

k=n

bk ≤ KM−α
n+M−1∑
k=n

∞∑
v=k

|∆rbv|

≤ KεnM−α
n+M−1∑
k=n

kα−1 ≤ Kεn. (4.9)

Applying Lemma 1, the inequality

2(l + 1)− r

π
x ≤

∣∣∣sin rx
2

∣∣∣ for x ∈
[2lπ
r

+
π

r
,

2(l + 1)π
r

]
(4.10)

and (4.2) we get for α ≤ 1

∣∣R(4)
n (x)

∣∣ =
(2(l + 1)π

r
− x
)α ∣∣∣∣n+M+r−1∑

k=n+M

bkD̃k,−r(x) +
∞∑

k=n+M

∆rbkD̃k,r(x)
∣∣∣∣

≤ K
( 2(l+1)π

r − x)α

2| sin rx
2 |

{ ∞∑
k=n+M

|∆rbk|+
n+M+r−1∑
k=n+M

bk

}
≤ K

(2(l + 1)π
r

− x
)α−1 ∞∑

k=n+M

|∆rbk|

≤ KM1−α
∞∑

k=n+M

|∆rbk| ≤ Kεn
( M

n+M

)1−α
≤ Kεn. (4.11)

From the estimations (4.3), (4.4), (4.6), (4.8), (4.9), and (4.11) the uniform conver-

gence of the series (2.2) follows and thus the proof is complete.
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4.2. Proof of Theorem 4. The proof of Theorem 4 goes analogously as the proof of

Theorem 3. The only di�erence is that instead of (4.4) (for r = 1, 2) and (4.9) (for r = 2)
we have to use the following considerations.

Applying the inequalities |sin kx| ≤ kx for x ∈ (0, π), |sin kx| ≤ k(π−x) for x ∈ (0, π)
we obtain that for α ∈ (−1; 0]

∣∣R(1)
n (x)

∣∣ ≤ xα+1
n+N−1∑
k=n

kbk ≤ KN−α−1
n+N−1∑
k=n

∞∑
v=k

|∆rbv|

≤ KεnN−α−1
n+N−1∑
k=n

kα ≤ KεnN−α−1
(
(n+N)α+1 − nα+1

)
≤ Kεn

and

∣∣R(4)
n (x)

∣∣ ≤ (π − x)α+1
n+M−1∑
k=n

kbk ≤ KM−α−1
n+M−1∑
k=n

∞∑
v=k

|∆rbv|

≤ KεnM−α−1
n+M−1∑
k=n

kα−1 ≤ Kεn.

These estimates complete the proof.

4.3. Proof of Theorem 5. Suppose that the series (2.2) converges uniformly. Setting

x = π
4cm , where c > 1, 4cm ≥ r and r ∈ N, we get

[cm]∑
n=[m/c]

bnωα,r(x) sinnx =
( π

4cm

)α [cm]∑
n=[m/c]

bn sin
nπ

4cm
≥ Km−α

[cm]∑
n=[m/c]

bn.

Hence

m−α
[cm]∑

n=[m/c]

bn = o(1) as m→∞.

If (bn) satis�es (2.4) then

n1−αbn ≤ Kn1−α
[cn]∑

k=[n/c]

bk
k
≤ Kn−α

[cn]∑
k=[n/c]

bk
k

and n1−αbn = o(1) as n→∞. This �nishes the proof.

4.4. Proof of Theorem 6. Suppose that the series (2.2) converges uniformly. Setting

x = π
4m , where 4m ≥ r and r ∈ N, we get

2m∑
n=m

bnωα,r(x) sinnx =
( π

4m

)α 2m∑
n=m

bn sin
nπ

4m
≥
(π

4

)α
sin

π

4
m−α

2m∑
n=m

bn.

Hence

m−α
2m∑
n=m

bn = o(1) as m→∞.
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If (bn) satis�es (2.7), then for c > 1 and α ≤ 0

n1−αbn ≤ Kn−α max
k≥[n/c]

( 2k∑
s=k

bs

)
≤ K max

k≥[n/c]

(
k−α

2k∑
s=k

bs

)
.

Therefore n1−αbn = o(1) as n→∞ and it completes the proof.

4.5. Proof of Proposition 1. (i) Let n1−αcn = o(1) as n→∞. Then

n−α
[cn]∑

k=[n/c]

ck ≤ K
[cn]∑

k=[n/c]

k−αck ≤ K sup
k≥[n/c]

(k1−αck)
[cn]∑

k=[n/c]

1
k
≤ K sup

k≥[n/c]

(k1−αck).

Hence

n−α
[cn]∑

k=[n/c]

ck = o(1) as n→∞.

Further, if (cn) ∈ GM(β∗, r), then for α < 1

n1−α
∞∑
k=n

|∆rck| = n1−α
∞∑
s=0

2s+1n−1∑
k=2sn

|∆rck| ≤ Kn1−α
∞∑
s=0

[c2sn]∑
k=[2sn/c]

ck
k

≤ Kn1−α
∞∑
s=0

1
(2sn)1−α sup

m≥2sn

(
m−α

[cm]∑
k=[m/c]

ck

)

≤ K sup
m≥n

(
m−α

[cm]∑
k=[m/c]

ck

) ∞∑
s=0

( 1
21−α

)s
≤ K sup

m≥n

(
m−α

[cm]∑
k=[m/c]

ck

)
and (2.8) holds.

(ii) Suppose n1−αcn = o(1) as n→∞. Then

n−α
2n∑
k=n

ck ≤ K sup
k≥n

(k1−αck)
2n∑
k=n

1
k
≤ K sup

k≥n
(k1−αck).

Hence

n−α
2n∑
k=n

ck = o(1) as n→∞.

If (cn) ∈ GM(β#, r), then for α ≤ 0 we get

n1−α
∞∑
k=n

|∆rck| = n1−α
∞∑
s=0

2s+1n−1∑
k=2sn

|∆rck| ≤ Kn1−α
∞∑
s=0

1
2sn

max
k≥[2sn/c]

( 2k∑
s=k

cs

)
≤ Kn−α max

k≥[n/c]

( 2k∑
s=k

cs

) ∞∑
s=0

1
2s
≤ K max

k≥[n/c]

(
k−α

2k∑
s=k

cs

)
.

Thus (2.8) is also valid.



CONVERGENCE OF WEIGHTED TRIGONOMETRIC SERIES 349

4.6. Proof of Theorem 7. We prove the theorem for the case when φ(x) = g(x), only.
The case when φ(x) = f(x) can be proved similarly.

First, using the usual argument

En(φ, ωα,r) = inf
Pn∈Πn

‖ωα,r(φ− Pn)‖ ≤ ‖ωα,r(φ− Sn)‖ = ‖Rn+1‖,

where Pn is a trigonometric polynomial of degree n,

Sn =
n∑
k=1

bk sin kx

and

Rn+1(x) =
∞∑

k=n+1

bkωα,r(x) sin kx.

Further, we will show that

‖Rn+1‖ ≤ K max
v≥n

(
v1−α

∞∑
k=v

|∆rbk|
)
. (4.12)

Since Rn+1( 2lπ
r ) = 0, where l ∈ Z, it su�ces to prove (4.1) for x ∈ ( 2lπ

r ; 2(l+1)π
r ), where

l = 0, 1, . . . , [r/2]− 1 if r is an even number, and l = 0, 1, . . . , [r/2] if r is an odd number.

First, we show that (4.12) is valid for x ∈ ( 2lπ
r ; 2lπ

r + π
r ]. Let x ∈ ( 2lπ

r ; 2lπ
r + π

r ] and
j := [π/(x − 2lπ

r )]. Then, using Lemma 1 and the inequality (4.5), we obtain that for

α ∈ (0; 1]

|Rn+1(x)| ≤ K
(
j−α

n+j−1∑
k=n

bk + j1−α
∞∑

k=n+j

|∆rbk|
)

≤ K
(

max
n≤k≤n+j

(k1−αbk) +
( j

n+ j

)1−α
max
v≥n+j

(
v1−α

∞∑
k=v

|∆rbk|
))

≤ K max
v≥n

(
v1−α

∞∑
k=v

|∆rbk|
)
.

Now, we prove that (4.12) is valid for x ∈ [ 2lπ
r + π

r ; 2(l+1)π
r ).

Let x ∈ [ 2lπ
r + π

r ; 2(l+1)π
r ) and i = [π/( 2(l+1)π

r − x)]. Applying Lemma 1 and the

inequality (4.10) we get, for α ∈ (0; 1],

|Rn+1(x)| ≤ K
(
i−α

n+i−1∑
k=n

bk + i1−α
∞∑

k=n+i

|∆rbk|
)
≤ K max

v≥n

(
v1−α

∞∑
k=v

|∆rbk|
)
.

Collecting the above estimates, we arrive at (4.12). The proof is now complete.
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