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Abstract. This note is motivated by [GGG], where an algorithm �nding functions close to
solutions of a given initial value-problem has been proposed (this algorithm has been recalled in
Theorem 2.2). In this paper we present a commonly used de�nition and basic facts concerning
B-spline functions and use them to improve the mentioned algorithm. This leads us to a better
estimate of the Cauchy problem solution under some additional assumption on f appearing in
the Cauchy problem. We also estimate the accuracy of the method (Theorem 2.6).

1. Introduction. In this note we will approximate solutions of the initial-value problem

by an algorithm proposed in [GGG], improved by applying B-spline functions instead of

usual Schauder basis in C([α, α+ β]).
The initial value problem is formulated in the following way:

Given α ∈ R, β > 0, l ≥ 1, x0 ∈ Rl, f ∈ C([α, α+β]×Rl, Rl), �nd x ∈ C1([α, α+β],Rl)
such that {

x′(t) = f(t, x(t)), t ∈ [α, α+ β],

x(α) = x0.
(1.1)

We additionally assume that there exists M ∈ R such that

∀t ∈ [α, α+ β] ∀x, y ∈ Rl ‖f(t, x)− f(t, y)‖∞ ≤M‖x− y‖∞

The equivalent reformulation of this problem in an integral way is to �nd the unique �xed
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point of the operator T : C([α, α+ β],Rl)→ C([α, α+ β],Rl) given by the equation

(Tx)(t) := x0 +
∫ t

α

f(s, x(s)) ds, t ∈ [α, α+ β], x ∈ C([α, α+ β],Rl),

where the norm in C([α, α+ β],Rl) is

‖x‖∞ := sup
t∈[α,α+β]

‖x(t)‖∞

Before we proceed, let us recall after [KC] the de�nition of B-spline functions of

order k.

Let us take an in�nite sequence of knots in R such that

. . . < t−2 < t−1 < t0 < t1 < t2 < . . . ,

where limi→−∞ ti = −∞ and limi→∞ ti =∞.

B-spline functions of order 0 are the functions B0
i , i ∈ Z, de�ned by

B0
i (x) :=

{
1, ti ≤ x < ti+1

0, x < ti or x ≥ ti+1,

B-splines function of order k > 0 are de�ned in the recursive way

Bki (x) :=
x− ti
ti+k − ti

Bk−1
i (x) +

ti+k+1 − x
ti+k+1 − ti+1

Bk−1
i+1 (x), k ≥ 1.

Let us recall after [KC] one basic fact concerning B-spline functions.

Theorem 1.1. If a real-valued function x(·) is de�ned on [α, α+β] = [t0, tn], k ≥ 2, and

g :=
∞∑

i=−∞
x(ti+2)Bki

(we assume that x(ti) = x(a) if i < 0, and x(ti) = x(b) if i > n), then

max
t∈[α,α+β]

|x(t)− g(t)| ≤ kω(x; δ),

where

δ := max
−k≤i≤n+1

(ti − ti−1),

and

ω(x; δ) := max
|s−t|≤δ

|x(s)− x(t)|.

The above ω is called the module of continuity of x.

2. Using B-spline functions in an algorithm �nding solutions of nonlinear

initial-value problems. Let us consider a continuous function x(·) : [α, α + β] → R.

Fix k, n ∈ N2 and choose {ti}ni=0 such that

α = t0 < t1 < . . . < tn = α+ β.

Let

δ := max
i=1,...,n

(ti − ti−1). (2.1)



APPROXIMATION OF SOLUTIONS OF INITIAL-VALUE PROBLEMS 393

Additionally let us take

t−i := t0 − i · δ, i = 1, 2, . . .

and

tn+i := tn + i · δ, i = 1, 2, . . . .

We de�ne these points in order to be able to de�ne B-spline functions Bki for each i ∈ Z,
especially for i = −k, . . . , n− 1.

Having n and {ti}∞i=−∞, let us de�ne an operator

Qn : C([α, α+ β]) 3 x 7→ Qn(x) ∈ C([α, α+ β])

by the formula

Qn(x) :=
n−1∑
i=−k

x(ti+2)Bki . (2.2)

where C([α, α+ β]) is endowed with the sup-norm.

Remark 2.1. Using the above notation, we have

max
t∈[α,α+β]

|x(t)−Qn(x)(t)| ≤ kω(x; δ).

Proof. Because of the properties of the B-spline functions of order k we have

Bki (t) = 0, t /∈ (ti, ti+k+1)

It gives us that if t ∈ [α, α+ β], then

Bki (t) = 0 for i ∈ {. . . ,−k − 2,−k − 1} ∪ {n, n+ 1, n+ 2, . . .},

and so

g(t) =
∞∑

i=−∞
x(ti+2) ·Bki (t) =

n−1∑
i=−k

x(ti+2) ·Bki (t) = Qn(x)(t) for t ∈ [α, α+ β].

On the other hand, for our chosen points ti, we have that

max
i=−k,...,n+1

(ti − ti−1) = max
i=1,...,n

(ti − ti−1).

Applying Theorem 1.1 we get the desired conclusion.

At this point we would like to recall after [GGG] the result which inspired our research.

In this theorem it is assumed that Q̂n : C([α, α+β])→ C([α, α+β]) is a projection de�ned

by

Q̃n(x) =
n∑
i=1

λi · Γi, (2.3)

where {Γi}i≥1 is the Schauder basis associated with a dense sequence of distinct points

{si}i≥1 in [α, α+ β] such that s1 = α, s2 = α+ β and {λi}i≥1 is the unique sequence of

scalars such that x =
∑∞
i=0 λi · Γi.

Theorem 2.2. Let l ≥ 1, f = (fq)q=1,...,l ∈ C([α, α + β] × Rl,Rl), x0 ∈ Rl. Let T :
C([α, α+ β],Rl)→ C([α, α+ β],Rl) be the integral operator

Tx(t) = x0 +
∫ t

α

f(s, x(s)) ds.
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Let x : [α, α+ β]→ R
l be a continuous function. Let m ≥ 1 and n1, n2, . . . , nm ≥ 1.

Let us consider the functions

y0(t) := x(t), t ∈ [α, α+ β],

Lr−1(t) := f(t, yr−1(t)), t ∈ [α, α+ β], r = 1, . . . ,m,

and

yr(t) := x0 +
(∫ t

α

Q̂nr (Lr−1(s))q ds
)
q=1,...,l

.

If u is the solution of the Cauchy problem, then

‖u− ym‖ ≤
(Mβ)m

m!
eMβ‖Tx− x‖+

m∑
r=1

‖Tyr−1 − yr‖
(Mβ)m−r

(m− r)!

Remark 2.3. The claim of the above theorem is true for Qn (de�ned by (2.2)) used

instead of Q̂n.

Observe that at no point of the proof of Theorem 2.2 given in [GGG] the authors

have used the fact that Q̂n is a projection. The key fact was that ‖Q̂n‖ = 1, which for

Qn de�ned by (2.2) will be shown in the proof of Lemma 2.4. However, application of

Qn instead of Q̂n will signi�cantly improve the estimate of ‖Tyr−1 − yr‖, which will be

shown in Theorem 2.6.

From now on (particularly in the lemma below) we will be considering the algorithm

de�ned in Theorem 2.2 with Qn given by formula (2.2) instead of Q̂n given by the formula

(2.3).

Lemma 2.4. If f is a C1 function such that ∂
∂tf(t, x) and ∂

∂xf(t, x) satisfy global Lipschitz

condition with respect to the second variable, then the sequence of the derivatives {L′r}r≥1

is uniformly bounded.

Proof. Notice that for x ∈ C([α, α+ β])

‖Qj(x)‖ =
∥∥∥ n−1∑
i=−k

x(ti+2)Bki
∥∥∥ ≤ ‖x‖ ∞∑

i=−∞
Bki = ‖x‖,

since
∑∞
i=−∞Bki = 1, and so ‖Qj‖ ≤ 1. On the other hand, taking x ≡ 1 we have ‖x‖ = 1

and ‖Qj(x)‖ = 1, and what follows, ‖Qj‖ = 1. The rest of the proof follows the proof of
Lemma 3 in [GGG].

At this point we will use

Theorem 2.5 (see [KC, p. 360]). Let p be a natural number such that p < k < n,

x ∈ Cp([α, α+ β]). Then for δ given by (2.1) we have

dist(x, Skn) ≤ kpδp‖x(p)‖,

where Skn is the subspace of (C([α, α+β]), ‖·‖∞) generated by {Bki |[t0, tn] : −k ≤ i ≤ n−1}.

Now we will prove the main result of this note.

Theorem 2.6. If the assumptions of Theorem 2.2 are satis�ed and, moreover,

f ∈ Cp([α, α+β]×Rl,Rl) for some p ∈ N such that p < k < n, and the partial derivatives
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of f up to the order p satisfy the global Lipschitz condition with the constant M > 0 with

respect to the second variable, then

m∑
r=1

‖Tyr−1 − yr‖
(Mβ)m−r

(m− r)!
≤ βkpδp max

r=1,...,m
‖L(p)

r−1‖eMβ (2.4)

and the sequence of the derivatives {L(p)
r }∞r=1 is uniformly bounded.

Proof. Let us notice �rst that Lr−1 ∈ Cp([α, α + β]) for r ≥ 2. Indeed, L(p)
r−1 consists

of sums and products of partial derivatives of f up to the order p and derivatives of

yd (d = 1, . . . , r − 1) up to the order p. By our assumption, all the derivatives of f up

to the order p are continuous. Notice that y′r−1(t) = Qnr−1(f(t, yr−2(t))) and�because

of the derivative properties of B-spline functions�Qnr−1(f(t, yr−2(t))) has continuous

derivatives up to the order k − 1 and so it has continuous derivatives up to the order p,

since p ≤ k − 1.
Now, let us notice that

‖Tyr−1 − yr‖ ≤ β‖Lr−1 − (Qnr (Lr−1)q)q=1,...,l‖.

Due to Theorem 2.5

‖Lr−1 − (Qnr (Lr−1)q)q=1,...,l‖ ≤ kpδp‖L(p)
r−1‖.

Hence
m∑
r=1

‖Tyr−1 − yr‖
(Mβ)m−r

(m− r)!
≤

m∑
r=1

βkpδp‖L(p)
r−1‖

(Mβ)m−r

(m− r)!

≤ βkpδp max
r=1,...,m

‖L(p)
r−1‖

m∑
r=1

(Mβ)m−r

(m− r)!

≤ βkpδp max
r=1,...,m

‖L(p)
r−1‖eMβ .

Now we will prove the uniform boundedness of the sequence {L(p)
r }∞r=1. For p = 1 it

follows from Lemma 2.4. Notice that L
(p)
r , despite of its complicated formula, consists

only on �nite number of sums and products of

y
(a)
r−1 and

∂i+jf

∂ti∂xj
(t, yr−1(t)) for 1 ≤ a ≤ p, 1 ≤ i, j ≤ p, i+ j ≤ p.

Since f ∈ Cp([α, α+β]×Rl,Rl), we have ‖ ∂
i+jf

∂ti∂xj (t, 0)‖ ≤ K for some K > 0. Notice that
by the global Lipschitz condition∥∥∥ ∂i+jf

∂ti∂xj
(t, yr−1(t))

∥∥∥ ≤ ∥∥∥ ∂i+jf
∂ti∂xj

(t, yr−1(t))− ∂i+jf

∂ti∂xj
(t, 0)

∥∥∥+
∥∥∥ ∂i+jf
∂ti∂xj

(t, 0)
∥∥∥

≤M‖yr−1(t)‖+K.

We get the same estimate for f , taking f instead of ∂i+jf
∂ti∂xj (t, yr−1(t)) in the above

calculations.

On the other hand, since

yr(t) = x0 +
(∫ t

α

Qnr (Lr−1(s))q ds
)
q=1,...,l

,
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we have

y′r(t) =
(
Qnr (Lr−1(t))q

)
q=1,...,l

=
(
Qnr (f(t, yr−1(t)))q

)
q=1,...,l

=
n−1∑
i=−k

f(ti+2, yr−1(ti+2)) ·Bki (t)

and for p > 1

y(p)
r (t) =

n−1∑
i=−k

f(ti+2, yr−1(ti+2)) · (Bki )(p−1)(t).

It is a well known fact for B-spline functions (see [KC, p. 347]) that Bki ∈ Ck−1(R). Since
p < k, (Bki )(p−1) are continuous on R for all −k ≤ i ≤ n− 1 and so they are bounded on

[α, α+ β].
Keeping in mind that

‖f(t, yr−1(t))‖ ≤M‖yr−1(t)‖+K

we get

‖y(p)
r ‖ ≤

n−1∑
i=−k

(M‖yr−1‖+K) · (Bki )(p−1)(t) = (M‖yr−1‖+K) ·D

where D is an upper bound of
∑n−1
i=−k(Bki )(p−1)(t) on [α, α+ β].

In order to complete the proof, we only need to show that {yr}r is a uniformly bounded

sequence.

We will show that for r ≥ 2

‖yr(t)‖ ≤ ‖x0‖+
(
‖y0‖+

K

M

) (M(t− α))r

r!
+
r−1∑
j=1

(
‖x0‖+

K

M

) (M(t− α))j

j!
(2.5)

leading us to the conclusion that

‖yr‖ ≤ ‖x0‖+
(
‖y0‖+

K

M

) (Mβ)r

r!
+
r−1∑
j=1

(
‖x0‖+

K

M

) (Mβ)j

j!
,

which proves the uniform boundedness of {yr}r.
Applying again the fact that ‖f(t, yr−1(t))‖ ≤M‖yr−1(t)‖+K, let us notice that

‖yr(t)‖ ≤ ‖x0‖+
∫ t

α

(M‖yr−1(s)‖+K) ds (2.6)

which gives us the estimate

‖y1(t)‖ ≤ ‖x0‖+ (M‖y0‖+K)(t− α)

≤ ‖x0‖+ (M‖y0‖+K)β.

It is easy to check that

‖y2(t)‖ ≤ ‖x0‖+ (‖y0‖+
K

M
)
(M(t− α))2

2!
+ (‖x0‖+

K

M
)
(M(t− α))

1!
.

Assuming that the inequality (2.5) is true for r, we will show that it remains true for

r + 1.
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By the inequality (2.6), we get

‖yr+1(t)‖ ≤ ‖x0‖+
∫ t

α

(M‖yr(s)‖+K) ds

≤ ‖x0‖+
∫ t

α

(
M
[
‖x0‖+

(
‖y0‖+

K

M

) (M(s− α))r

r!

+
r−1∑
j=1

(
‖x0‖+

K

M

) (M(s− α))j

j!

]
+K

)
ds

= ‖x0‖+M
(
‖y0‖+

K

M

)Mr(t− α)r+1

r!(r + 1)
+M(‖x0‖+K)(t− α)

+M
r−1∑
j=1

(
‖x0‖+

K

M

)M j(s− α)j+1

j!(j + 1)

= ‖x0‖+
(
‖y0‖+

K

M

) (M(t− α))r+1

(r + 1)!
+

r∑
j=1

(
‖x0‖+

K

M

) (M(t− α))j

j!
.

This completes the proof of the theorem.

Corollary 2.7. With the assumptions of Theorem 2.6, if u is the solution of the initial-

value problem de�ned by (1.1), then

‖u− ym‖ ≤
(Mβ)m

m!
eMβ‖Tx− x‖+ βkpδp max

r=1,...,m
‖L(p)

r−1‖eMβ . (2.7)

It is worth mentioning that using the operator Qn de�ned by (2.2) in the algorithm

proposed in Theorem 2.2 instead of the operator Q̃n de�ned by (2.3), we can obtain a

better estimate of the left-hand side of inequality (2.7) (compare with the inequality

‖u− ym‖ ≤
(Mβ)m

m!
eMβ‖Tx− x‖+ 2βδ max

r=1,...,m
‖L′r−1‖eMβ

achieved in [GGG]), which enables us to better estimate the solutions of Cauchy problem

(1.1), if f is a function of higher regularity, whose derivatives satisfy global Lipschitz

condition with respect to the second variable.

I have focused on B-spline functions to improve estimate of the solutions of the Cauchy

problem, because of their simple recursive formula and nice calculation properties, very

useful in numerical analysis.

Observe that the proof of Theorem 2.6 is valid not only for operators Qn de�ned

by formula (2.2). Instead of Qn we can use any sequence of operators Pn : C([α, α +
β]) → C([α, α + β]) such that the norm of {Pn} is uniformly bounded and the image of

{Pn} is regular enough. For example {Pn} can be taken as the Bernstein operators, the

Fejér operators and their various modi�cations. Also projections associated with other

Schauder bases can be considered in Theorem 2.6. More information about Schauder

bases in Banach spaces can be found in [BFGG, M, S].

Theorem 2.2, [GGG], as well as Theorem 2.6 provide us with a new numerical method,

which does not need to solve systems of algebraic equations�collocation methods�or to

use quadrature formulas, especially useful for l > 1.
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