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Abstract. The paper deals with local means and wavelet bases in function spaces of Besov and
Triebel-Lizorkin type with local Muckenhoupt weights.

1. Introduction. Both concepts, local means and wavelet characterization are widely
studied in the context of Besov and Triebel-Lizorkin spaces. We refer to books by Hans
Triebel for details and historical remarks, cf. [§], [9]. The close relation between the local
means and wavelets is described in an unweighted case by H. Triebel in [10]. Our aim is
to extend his results into function spaces with local Muckenhoupt weights A2¢.

Local Muckenhoupt weights and corresponding weighted function spaces were intro-
duced by V. Rychkov in 2001, cf. [6]. This class of weights is a generalization of the
classical class of Muckenhoupt weights A.,. Wavelet characterizations of function spaces
with so called admissible weights were given by Haroske and Triebel in [2]. Later Haroske
and Skrzypczak proved the characterization for spaces with Muckenhoupt weights, cf. [1].
Recently Izuki and Sawano have proved the result for function spaces with weights from
the class A%, cf. [5].

We follow the main idea of H. Triebel from [10], that Daubechies wavelets can serve
both as atoms and kernels of local means. So, first we recall the atomic decomposition
of function spaces with the local Muckenhoupt weights due to Izuki and Sawano, cf. [4],
also [5]. Then we introduce local means and prove characterizations of function spaces.
Our approach to wavelet decomposition is more direct than the one presented in [5] since
we avoid some density arguments.

2010 Mathematics Subject Classification: Primary 46E35; Secondary 41A58, 42C40.

Key words and phrases: local means, Muckenhoupt weights, wavelets, Besov spaces, Triebel-
Lizorkin spaces.

The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064 /bc92-0-28 [399] © Instytut Matematyczny PAN, 2011



400 A. WOJCIECHOWSKA

2. Classes of weights. Let w be a nonnegative and locally integrable function on R™.
These functions are called weights and for a measurable set E w(E) denotes [, w(z) dx.
Let Lyy(R™) be the space of p-integrable functions on R™ with the measure w dx.

2.1. Muckenhoupt weights. Let us recall the definition of Muckenhoupt weights.
A weight w belongs to A,, w € A,, 1 <p < oo, if

1 / p—1
Aw::sup—/wxdx/wazlfpdx < 00
pw) = swp o | wie)da( | wie)' ds)

and w € A, if

w(@) 4
A (w) == sup —= ||w < 00.
. ol I o
where supremum is taken over all cubes QQ C R".
As an example we can take
—n<a<n(p-—1), if 1 <p< oo,
w(z) =|z|* € A, for (p=1) _ P
—n<a<o, ifp=1

or weights with logarithmic part

o(@) = o] log (2 + |,
Then

eR d —n<a<0,
ve A if p an s
8>0 and a=0,
and
veA, l1<p<oo if —n<a<n(p-1), Bk

2.2. Local Muckenhoupt weights

DEFINITION 2.1 (Rychkov, 2001). We define a class of weights A¢ (1 < p < 00) to
consist of all nonnegative locally integrable functions w defined on R"™ for which

, —1

AloC(w) == sup 1 w(z) dx w(x)' P da ’ < 00
: i<t QI Jo Q

and w € AY°

< 00.

w
Alc(w) := sup w@) Hw_l}
Q<1 1@
It follows directly from definitions that A, C AP® and Al°(w) < Ap(w) for any
weA,1<p<oo.

i@

DEFINITION 2.2. We say that w € A if for any « € (0,1)

< w(Q))
sup sup — ] < 0,
1QI<1 \FcQ,|F[>al@] W(F)

where F' is taken over all measurable sets in R™.

REMARK. Any Muckenhoupt weight of the class A, belongs to the class .A;)OC. But local

Muckenhoupt weights cover also so called admissible weights and locally regular weights,
cf. 6], 2], [7]-
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As an example we can take
|| for |z|] <1,
w(z) =
exp(|z| — 1) for |x| > 1,
for n<a<n(p-1lifl<p<ooand -n<a<0ifp=1. ThenweA;)OC.

2.3. Properties of classes Alp"c. We would like to mention some important properties
of classes AL‘)C.

LeMMA 2.3 (Rychkov, 2001). Let 1 < p; < py < oo. Then Al® C Apc C ALC.
Conversely, if w € A%, then w € A;,OC for some p < cc.

The last lemma implies that A% = Ule ALOC. In consequence we can define for
w € Al a positive number

rw:inf{l §p<oo:w€./4;°c}.
The next lemma shows us an important relation between A, and AP weights.

LeEMMA 2.4 (Rychkov, 2001). Let1 < p < oo, w € Ag’c and I be a unit cube, i.e., |I| = 1.
Then there exists a w € Ay, such that @ =w on I and

Ap(@) < cApe(w),
where constant ¢ is independent of 1.
An example of a weight, which is in A}?C N A, but not in Ay:
|| for |z| <1,
w(zx) =
|z|8 for |z| > 1,
for a,3 > —n. For a < (p — 1)n we have w € AP® and r,, = % +1, for o, <

max (0,

(p1 — 1)n we have w € A,, and 7, = 0 B) 4. Taking 8 big enough we get that w

is in A;°° N Aso, but not in A,.
DEFINITION 2.5. Let f be locally integrable. The operator
1
M f@) =sup o [ 15wl
Q3z Q| Q
where supremum is taken over all cubes in R™ for which |@Q] < 1, is called a local mazimal

function.

The Fefferman-Stein maximal inequality holds for the operator M!°¢ and local
Muckenhoupt weights.

LeEMMA 2.6 (Rychkov, 2001). Let 1 < p < oo, 1 < ¢ < oo and w € A}?C. Then for any
sequence of measurable functions {f’} we have

[{a'e FYLY (L) || < e {7 HE ()]
LEMMA 2.7 (Rychkov, 2001). Let w € AP® and 1 < p < co. Then
w(tQ) < explc,)w(Q) t>1, ||Q =1,

where ¢, > 0 is a constant depending on n and A)¢(w).
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It follows from the above lemma that classes .A;,OC are independent of the upper bound
for the cube size used in their definition, i.e. for any C' > 0 we could have replaced |Q| <1
by |Q] < C in Definition 2.1.

3. Weighted function spaces. Following Rychkov we define Besov spaces with local
Muckenhoupt weights, [6]. Because the class of tempered distributions &’ is too narrow
for this purpose, we introduce a class S, which is a topological dual to the following
space:
Se :={Y € C°[R") : qn(¢)) < oo for all N € N},
where the semi-norms ¢y are given by
qan (V) == sup (sup eN‘””‘|D°‘1/)(1’)|).
a€Ng |a|<N \zeR®
We can identify the class S, with the set of those distributions f € D’ for which the
estimate

[(f, )| < Asup {|DYY(z)|exp(N|z|) : € R",|a] < N} for all ¢ € C5°(R"),

is valid with some constants A, N depending on f. Such a distribution f can be extended
to a continuous functional on S,.

We take a function ¢o € D such that [;,@o(z)dz # 0 and [g, 2Ppg(z)dz = 0
for some 3 € Ng, 0 < [3] < B. We put p(x) = po(z) — 2 "po(5) and ¢;(z) =
20=Dnp(20-1g) for j = 1,2,.... Then [, ¢;(z)z’dx = 0 if [3| < B. We will write
B = —1 if no vanishing moment conditions hold.

DEFINITION 3.1 (Rychkov, 2001). Let 0 < p < 00, 0 < ¢ < 00, s € R and w € A, Let
the function ¢ € D(R™) satisfy
| oo 20

/;L'Bgoo(x)d:c:(), 0< |8 < B,

where B > [s]. We define a weighted Besov space B3, (R™) to be a set of all f € S| for
which the quasi-norm

Hf|Bsw Rn <Z 9Jsq ||99] *f|Lw|| )

(with the usual modification if ¢ = oo) is finite, and a weighied Triebel-Lizorkin space
' (R™) to be a set of all f € S; for which the quasi-norm

(S22, + 1) LR

=0

and

1/q

17 @), = |

(with the usual modification if ¢ = co) is finite.

REMARK. The definition of the above spaces is independent of a choice of the function
0, up to the equivalence of quasi-norms. The spaces are quasi-Banach and Banach spaces
ifp>1andq>1.
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REMARK. To simplify the notation we write A5, (R"™) instead of By, (R™) and Fj;;" (R™),
when both scales of spaces are meant simultaneously in some context.

4., Atomic decomposition. An important tool we will use to prove our main result
is an atomic decomposition for weighted Besov and Triebel-Lizorkin spaces proved by
M. Izuki and Y. Sawano in [4].

DEFINITION 4.1. Let s € R, 0 < p < oo, K,L € Ny and d > 1. Then C¥-functions
@jm : R" — C with j € Ng, m € Z", are called (s, p)-atoms if

sSupp jm C dQjm, Jj €Ny, meZ",
and there exist all (classical) derivatives D®a;,, € C(R™) with |o| < K such that
| D% ()| < 273C=/PIHlel 0| < K, j € Ny, m € 27, (1)
and
/ tPajm(x)de =0, |B|<L,jeEN, meZ" (2)
REMARK. Note that the last condition is omitted if j = 0.

DEFINITION 4.2. Let 0 < p < 00, 0 < ¢ < 0o and w € AL, Then by, is the collection of
all sequences

)\:{)\ijC:jGNO,mEZ”} (3)
such that

[IAtea | = H{ > N} () ] < o0,
mezn 7€No
and let 0 < p <00, 0 < g <o0orp=gqg=oc then f’ is the collection of all sequences

A according to (3) such that

N F ] = H{ > NmXi ) LE ()| < oo,
mezZn J&No
where Xy;)l = 2in/p XQ,m- Once more we use the notation ay,.

Izuki and Sawano proved in [4] that functions from By, and Fj;* admit atomic
decompositions, cf. also [3].
For w € A let us define

r'u}
Up(w) = n(m — 1) + ('r'u) — l)n,
n
Og = —/————~ —
7" min(1,q)

and
Opq(w) = max(op(w), og).

THEOREM 4.3 (Izuki, Sawano). Let 0 < p < 00, 0 < ¢ < 00, s € R and w € A%°. Let
K, L € Z satisfy

K>1+]s])+ and L >max(—1,[o,(w)—s])
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when A‘;;Z“’ denotes By and
K>1+s])+ and L >max(—1,[op(w)— s])

when ApY denotes Fipi. Let f € Ap?(R™). Then there exists a sequence of (s,p)-atoms
{ajm}jene,mezn and X € ay, such that

o0
=3 S At and [N < A5 @)
j=0mezZn"
with convergence in S,. Conversely, let {a;m} be a sequence of (s, p)-atoms and

A€ a . Then the series

J€ENg,meZ"

f:Z Z )\jmajm

j=0 mezn
converges in S, and belongs to A3 ' (R"™) and

17145° R < e[ Mag |

5. Characterization by local means. Following Triebel in [10] we can define local
means in Besov spaces with local Muckenhoupt weights.

DEFINITION 5.1. Let A, B € Ny and C > 0. Then C“-functions kj,, : R® — C with
j € Ng, m € Z"™, are called kernels if

suppkjm C CQjm, JjE€Ng, meZ",
there exist all (classical) derivatives D“kj,, € C(R") with || < A such that
|Dkjm ()| < 27"H101 o] < A, j € No, m e Z", (4)

and
/ Phm(z)de =0, |8 <B, j€EN, mez" 5)

Since the kernels have finite smoothness we will work with distributions of finite order.

Let us consider a set C2(R™) of functions ¢ in C™(R"™) such that supp ¢ C K, where
K C R™ is compact and a set CJ"(R™) consists of functions of order m with compact
support.

DEFINITION 5.2. A distribution f € D'(R"™) is of order m if for every compact K C R"
there exists a constant c¢ such that

lf(p)] <ec Z sug |DYp(z)|  for every ¢ € Cg°(R™).

la|<m *
The set of all distributions of order m is denoted by D7 (R").

THEOREM 5.3. If f € D, (R™) then f can be extended to a continuous linear functional
on Cy*(R™), moreover (C5*(R™))" = D! (R™).

The proof of the above theorem can be found in [3].
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DEFINITION 5.4. Let f € D) (R™) N S.(R™). Let kj,,, be kernels according to Definition
5.1 (with the same constant A). Then

(9 = (k) = [ b)) dy. G €Fo. me ", (6)
are called local means. Furthermore, we put
k(f) = {kjm(f) : j € No,m € Z"}. (7)

DEFINITION 5.5. Let s € R, 0 < p < 00, 0 < ¢ < oo and w € A%, Then Ef,;]“’ is the
collection of all sequences A according to (3) such that

/) (p) p Q/p 1/(]
|)\|b H — Zgj(s n/p q(/ Z )\jmxjm(x)‘ w(x) dx)
" mezn
and f5 is the collection of all sequences \ according to (3) such that
1= (55 5 2 i) 15z <
p,q imXjim :

j=0mezn

LEMMA 5.6. Let s € R, 0 < p < oo and w € AR Then B (R™) C Dj(R"™) for any
I > max(0, [-s + v — 2] +1).

Proof. Let f € B,;"(R"). From the atomic decomposition we have
f=2 Xmm
J,m
and Aj, € bY

o> With convergence in D'(R™). It means that we can approximate f by
functions f = ngmm\gk AjmGim, 1.e. f =limg_o fir in D'(R™), that is
flp) = lim fi(p)
for all ¢ € C§°(R™).
For p > 1 from the Hélder’s inequality we have

| (e ‘ Z Ajm@m (s ’ < ‘)‘me/ ajm(z da:‘
Jrm|<k Jrlm|<k
L
P\ ¢
< < Z 27|\ jm [P ( ng) ( Z 9—inp /pw p/p’/ ajm(z)p(z) da )
Jilm|<k 4,lm|<k "
Since A € by, we have
Z Z 2j"|)\jm|pw(Qjm) < 0. (8)
j=0 meznr

From |aj,, (z)] < 277677/P) we get

[ am@ota)da]” < @’ 2790 sup (o)
n x

< 279 qup [ () [P
xr
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Let supp ¢ C K, where K is a compact subset in R". If Q;,, C Qo then
w(Qjm)—p'/p < cw(QO!l)—p'/p gj‘nuz//p7 (9)
since w € Afc for some 7, < u < 00. So

S w(@u) T ST Qo) (1)

m:Qim NK#0, [m|<k 1:Qo,1NK#D
Now we can keep on estimating

Z 9—inp /pw p/p‘/ W (T dx‘

J,im|<k
<e Y 27 sup ()P w(Qjm) P/

B
jilm|<k ok

Se o DT by sup o) w(@Qo) P
<k, :Qo NK 0 ver

< Ck sup lo(z |p Z 9—i(s=nu/p+n/p)p’
J€No

Fors>%—%wehave

|fr(@)] < Ck sup |o(x)|,
zeK

where C'ic depends only on K. Hence

[f ()] < Cr sup [p(2)].

reK
So f is a distribution of order 0 if s > % — %. Now let s < % —% and [ > —s+ %“ — %.
Using the Taylor expansion of ¢ and the moment conditions if j > 0 we get
’/ ajm(x dx —c‘/ ajm(z Z D%p(zg + O(x — o)) (x — 2)* dz
< c2‘J(l+s‘"/”+”) > sup [D(x)].
| =1 rER®

Summing over j, |m| < k, we get from (11) and (9)
S ’ P’

S 2 (@) | [ gt da

g.m !

. ’ p
< cx Z 2—J(l+s—nu/p+n/p)p (Z sup |D"go(9c)|) )

JENy =1 €K

Incorporating the term with j =0 we get

[fe(p)l < ek Y sup |DVp()].

laj<t €K
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For 0 < p <1 we have an estimate

@ =] X Amaim(9)

Jim|<k
p\ 1/P
§< | Ajm ‘/ ajm (@ dx’)
Jrim|<k
QjmNKF#D
, N\ U/p
(X PP ulQun) s o) Qi (@) 2
Jilm|<k
QimNK#D
) ) 1/p
<sup ()] sup 2790 FTMu(Qn) TP Y 2J”|/\jm|pw(Qjm)) ‘
zeK 7,m|<k 4, lm|<k
QjmNK#0D QimNEK#0

Using the fact that A € b, we get

| ()] < C sup |p(z) sup 2790 p(Q o) TP
vEK 4.Im|<k,QjmNK#0

In the same manner as in (9) we can see that
(@) < Csup ()] sup 279 FWIm Pay(Qq ) TP
2eK 31,QouNK#0

< C(K) sup |p(x)| sup 277 (smnu/vtm),
zeK J€ENg

For s > %—nwehave
| fr(p)| < C sup |p(z)] .
xeK

For s < % —nandl > —s+ % —n using the above estimations and the same inequalities
as in (11) we get

[fe@)] < ( M| [ agm(e)eto dof )W

7, m|<k
< Z sup | D%p(x)] sup Q—j(l+8+n)w(Qjm)—1/p
zeK JIm|<k,KNQjm#D

o=t

<cg Z sup |D%p(x)| sup 9—J(I+stn—nu/p)
o1 7K jE€Ng

So f is a distribution of order [ for any | > max(0,[-s+*» — 2] +1). =

COROLLARY 5.7. Let a weight w belong to the class A%C. The spaces F5*(R™) and
By P (R™) consist of distributions of finite order [ for any | > max(0,[—s + e — %] +1).

Proof. Let us choose s’ < s such that | > max(0,[—s"+ “}» — 2] + 1). Then by the
elementary embeddings and Lemma 5.6 we have

F3"(R™) C B;“(R™) C Dj(R").

A similar argument works for Besov spaces. m
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By the next theorem we have the characterization of Besov and Triebel-Lizorkin spaces
with A!%¢ weights by local means.

THEOREM 5.8. Let 0 < p < 00, 0 < ¢ < 00, s € R. Assume that w € A°. Let kjm be
kernels according to Definition 5.1, where A, B € Ny with

A= max((), [—S + Jp(w)]v [mTw - % - S] + 1)7 B> max((), [8] + 1)7

s, w S, w
when qu denotes By, and

A =z max(0, [opg(w) — 8], [*5= — & —s] +1), B =max(0,[s] +1),

when Aj° denotes Fo.. Let C > 0 be fized. Let k(f) be as in (6) and (7). Then for
some ¢ > 0 and all f € A5 Y(R"),

[e(H)lags || < ell £1A55 ®™)]]-
Proof. We prove the theorem for Besov spaces. The proof in Fj;* case can be rewritten
similarly to the unweighted case by using Lemma 2.6.
Let
(oo}
F@)=>"3" Auan(x), fe By R"Y), (12)
r=0 l€Zn

be an atomic decomposition according to Theorem 4.3 where

K =B >max(0,[s]+1) and L =A>max(0,[—s+ op(w)], [t —

0 —sl+1).

3

For j € N we split (12) into

F=H+P =) Xuan+ D> D Auan

r=0 l€Zn r=j+1 lezn

and get
/n kjm(y) f(y) dy = /n kjm (y) £3(y) dy + /Rn kjm(y) f (y) dy.
Let r < j and [ € 4 (m) where
1(m) = {1 : CQym N DQu # 0},

where C, D € R are positive constants independent of j, r.

By the Taylor expansion of a,; and properties of atoms (1) and local means (5) we
have

2]'(5*"/1’) ’/ kjm(y)arl (y) dy‘

< 9 (s=n/p) z sup ‘Dwarl(xﬂ/ \kjm(y)Hy _9-im B dy = c9li—r)(s—n/p—B)
Rn,

x
Iv|=B

Thus for any ¢ > 0 we have

J
Qj(sfn/p)pmjm(fj”p < CZ Z |)W|p2(j*T)(S*n/p*B+5)p.
=0 1ell(m)



LOCAL MEANS AND WAVELETS IN FUNCTION SPACES 409

Summing over m € Z" we get

(=n/oe 3 Yl ()17 w(Qjm)

mezn |Q] m |
<CZQ<J Mle-n/p-Biap 3 Z g (@)
mezn lelJ |Q m|

(13)

ey )

LEZ™ 1. lel.} (m)

Sczz(jﬂ« s—B+e)p Z Al |Qer
r=0 rl

lezn

where the last inequality is a consequence of the estimate cardl/(m) ~ 1, which follows
from the assumption r < j.

Now let » > j. Using the Taylor expansion of k;, and moment conditions of atoms
(2) and (4) we have

[ Famwyent)dy

< i(s=n/p) Z sup | Dk (2)| ‘arl(y)Hy _or4 dy = ¢20-)(s—n/ptn+A)
=4 * e

9i(s—n/p)

Thus for any € > 0 we get

. P . p
Bim () (v) dy| 3c22<f—”<5—"/P+"+A—€>P( > |Arl|) .

93 (s— n/p)p‘
r>j leld (m)

Rn

From the Holder’s inequality and the estimates card 17 (m) ~ 27("=7)

, , P ,
QJ(s—n/p)p’/ Ejm (y) 7 (y) dy‘ <ec Z 9(i=r)(s+A—e)p Z |An]P.
RTL

r>j leld(m)
Summing over m € Z"
9i(s=n/p)p Z |k]m f] w(Qjm)
mezn ‘Q m|
<oy S o )
r>j mez™ lelj(m) (14)
D W I
r>j mEL™ |t (m) rl rl

< CZ 2(,j—r)(s+A+n/p—a—nu/p)p Z |)\ ‘p (er)

r>j lezn |Q"l| 7
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where the second inequality follows from the fact that for w € A!°¢ and Q,; C Qim We

have \Q | u
w(Q; cw(Q, gm .
(Qym) < cw(Q n( o )

Taking (13) and (14) together we get

2j(sfn/p)p Z |kjm( |QQ]m < Z2Q r)(s— B+epz |)\rl|p |22 |)

mezn r=0 lezm

+CZQ(] r)(s+A+n/p—e—nry/p)p Z |Art] < CZQ lj—r|sp Z | A [P |QQT|l

r>j lezn lezn

where 3 = min(s + A + % — % —e,B—s— e). Summing over j we have

<Z2j(s n/p)q< Z |I€ m QJm))q/;D>1/q
mezn ! |ng‘
1/q
9—li—rlsp Ma|P QTZ)) ) )
<ZO<Z 2, Mg

lezm

Now using the Young inequalities for convolution of sequences 1f > 1 or monotonicity
of the I, space 1f <1 we proved that

IR < el Mgy || < e £1B5;”

)

where the constant c is independent of the given atomic decomposition. m

6. Characterization by wavelets. We are going to deal with Daubechies wavelets
on R™. Let ¥ € C*(R) be Daubechies scaling function and " € C¥(R) Daubechies
wavelet with [, ¥(z)z"dx =0, k € N, v € Ny, v < k. We extend these wavelets from R
to R™ by the usual tensor product procedure

\IIij = 2jn/2 H wGr(le.T - mr)v (15)

r=1
where j € No, m € 2", G = (G1,...,G,) € G/ and G® = {F,M}" and for j > 0
GI = {F, M}, where * indicates that at least one G, must be an M.

{‘I’gGm :j€No,m€Z",G e G}
is an orthonormal basis in Lo (R™), cf. [11].

DEFINITION 6.1. Let s € R, 0 < p < 00, 0 < ¢ < 0o and w € A Then b5 is the
collection of all sequences A according to (3) such that

a/p\ 1/4q
H/\|b5w|{(22“"/” </ Z/\megi’i ’ (:L')dx) ) < 0

GeGy mezn
and f* is the collection of all sequences A according to (3) such that

(3 2 pGo)) e

Jm,G

H)‘l 911)” — < 00.
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THEOREM 6.2. Let 0 < p < 00, 0 < ¢ < o0, s € R and w € A°°. For wavelets defined in
(15) we take
k > max(0, [s] + 1, (%5 =3 = sl + 1, [op(w) — s])
in B,," case and
B2 max(0, ] + 1, [220 — 2 — 8] + 1, [y (w) — s])
in F3 case. Let f € S{(R™). Then f € A;;;”(R") if and only if it can be represented as
_ G o9—in/2.7G
f=) A2y,
7,G,m
where \ € ay,” and the series converges in SL(R™). This representation is unique with
G in/2 G
A = 272 (f, 955
and
I: f = {2jn/2 fv ]m.)}
is a linear isomorphism of Aj"(R™) onto ay,’.
If 0 <p,q < oo then the system {\I/

Proof.
Step 1. Let f € S{(R") and f = > A%, 27"/2¥%  Then af, = 27— 3)o—is ¢l
7,G,m

‘ L . Asw(mn
Fmtjmq i an unconditional basis in Ap"(R").

is an (s,p)-atom. Indeed,
suppa$, C dQjm  and |D%a$;,,| < 273(s=n/p)Filed
for |a| <k and k = K = L in the definition of atoms. So f € B,;"(R") and
il
Step 2. Now let f € Bgs”(R™). We take k%, = 2"/2¥% as kernels of local means.
Indeed

| £1B ™) < o] {270 /PAG,

j,m,G|bZ}q

supp kS, € CQjm and  |DOKS (z)] < 207l
where |a| <k and A = B = k. So from Theorem 5.8 we have
IR | < el £1B55" (R™)]]- (16)

From the atomic decomposition and (16) we have

g= > K5.(f)27"205, € By (RY).

7,G,m

It follows from Lemma 5.6 that (g, \I/JC-’:;,L,)
in Lo(R™) we get

g> \I]] m’ Z kG 2 jn/2(\y§;m’qjqu’) (f’ \Ijj m’)
7,G,m

make sense. By orthogonality of wavelet basis

This could be extended to finite linear combinations of \ijj;n, Both distributions f
and g are locally contained in the space Bp,(R") for any o < s — ®2= + 2. This follows
easily from the corresponding result for the spaces with Muckenhoupt weights, cf. [1],
since any local Muckenhoupt weight w € .A;)OC can be extended outside a fixed ball to
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a Muckenhoupt weight belonging to A,. Any ¢ € C§°(R") has the unique Lo (R™) wavelet
representation. But we can choose o such that k£ > max(—o+0,,0) so this representation
converges in the dual space of By (R"), cf. [10]. This implies that (g,¢) = (f,¢) for all
v € CP(R™) and g = f.
Step 3. By the above steps f € S/(R") belongs to B;,"(R") if and only if
= X527m205  and {AF,} € b
7,Gm
This representation is unique so )\G = kG . (f) and

Hle‘; w R” H ~ Hk, bs',qw

It follows from the uniqueness of the coefficients that [ is a monomorphism. We show
that I is onto. Let {)\ -1 € b% . Then by the atomic decomposition theorem

f = Y X5, 05, € B (RY).
7,Gm
But the uniqueness of the coefficients implies that /\ =(f, ¥ )

Let €;,¢,m = £1, then the sequence Ejvgﬁm)\ belongs to b y brovided that {)\ -
belongs to by,,. Thus the atomic decomposition theorem implies the convergence of the
series

G
Z Eij»m)‘Jm\Iij
7,G,m

in By;*(R"). This implies the unconditional convergence.

In the case of F;* spaces the proof is similar. =
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