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Abstract. The paper deals with local means and wavelet bases in function spaces of Besov and
Triebel-Lizorkin type with local Muckenhoupt weights.

1. Introduction. Both concepts, local means and wavelet characterization are widely

studied in the context of Besov and Triebel-Lizorkin spaces. We refer to books by Hans

Triebel for details and historical remarks, cf. [8], [9]. The close relation between the local

means and wavelets is described in an unweighted case by H. Triebel in [10]. Our aim is

to extend his results into function spaces with local Muckenhoupt weights Aloc
∞ .

Local Muckenhoupt weights and corresponding weighted function spaces were intro-

duced by V. Rychkov in 2001, cf. [6]. This class of weights is a generalization of the

classical class of Muckenhoupt weights A∞. Wavelet characterizations of function spaces

with so called admissible weights were given by Haroske and Triebel in [2]. Later Haroske

and Skrzypczak proved the characterization for spaces with Muckenhoupt weights, cf. [1].

Recently Izuki and Sawano have proved the result for function spaces with weights from

the class Aloc
∞ , cf. [5].

We follow the main idea of H. Triebel from [10], that Daubechies wavelets can serve

both as atoms and kernels of local means. So, �rst we recall the atomic decomposition

of function spaces with the local Muckenhoupt weights due to Izuki and Sawano, cf. [4],

also [5]. Then we introduce local means and prove characterizations of function spaces.

Our approach to wavelet decomposition is more direct than the one presented in [5] since

we avoid some density arguments.
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2. Classes of weights. Let w be a nonnegative and locally integrable function on Rn.

These functions are called weights and for a measurable set E w(E) denotes
∫
E
w(x) dx.

Let Lwp (Rn) be the space of p-integrable functions on Rn with the measure w dx.

2.1. Muckenhoupt weights. Let us recall the de�nition of Muckenhoupt weights.

A weight w belongs to Ap, w ∈ Ap, 1 < p <∞, if

Ap(w) := sup
Q⊂Rn

1
|Q|p

∫
Q

w(x) dx
(∫

Q

w(x)1−p′ dx
)p−1

<∞

and w ∈ A1 if

A1(w) := sup
Q⊂Rn

w(Q)
|Q|

∥∥w−1
∥∥
L∞(Q)

<∞.

where supremum is taken over all cubes Q ⊂ Rn.
As an example we can take

w(x) = |x|α ∈ Ap for

{
−n < α < n(p− 1), if 1 < p <∞,
−n < α ≤ 0, if p = 1

or weights with logarithmic part

v(x) = |x|α log−β(2 + |x|).

Then

v ∈ A1 if

{
β ∈ R and − n < α < 0,

β ≥ 0 and α = 0,

and

v ∈ Ap, 1 < p <∞ if − n < α < n(p− 1), β ∈ R.

2.2. Local Muckenhoupt weights

Definition 2.1 (Rychkov, 2001) . We de�ne a class of weights Aloc
p (1 < p < ∞) to

consist of all nonnegative locally integrable functions w de�ned on Rn for which

Aloc
p (w) := sup

|Q|≤1

1
|Q|p

∫
Q

w(x) dx
(∫

Q

w(x)1−p′ dx
)p−1

<∞

and w ∈ Aloc
1

Aloc
1 (w) := sup

|Q|≤1

w(Q)
|Q|

∥∥w−1
∥∥
L∞(Q)

<∞.

It follows directly from de�nitions that Ap ⊂ Aloc
p and Aloc

p (w) ≤ Ap(w) for any

w ∈ Ap, 1 ≤ p <∞.

Definition 2.2. We say that w ∈ Aloc
∞ if for any α ∈ (0, 1)

sup
|Q|≤1

(
sup

F⊂Q,|F |≥α|Q|

w(Q)
w(F )

)
<∞,

where F is taken over all measurable sets in Rn.

Remark. Any Muckenhoupt weight of the class Ap belongs to the class Aloc
p . But local

Muckenhoupt weights cover also so called admissible weights and locally regular weights,

cf. [6], [2], [7].
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As an example we can take

w(x) =

{
|x|α for |x| ≤ 1,

exp(|x| − 1) for |x| > 1,

for −n < α < n(p− 1) if 1 < p <∞ and −n < α ≤ 0 if p = 1. Then w ∈ Aloc
p .

2.3. Properties of classes Aloc
p . We would like to mention some important properties

of classes Aloc
p .

Lemma 2.3 (Rychkov, 2001). Let 1 < p1 < p2 <∞. Then Aloc
p1
⊂ Aloc

p2
⊂ Aloc

∞ .

Conversely, if w ∈ Aloc
∞ , then w ∈ Aloc

p for some p <∞.

The last lemma implies that Aloc
∞ =

⋃
p≥1Aloc

p . In consequence we can de�ne for

w ∈ Aloc
∞ a positive number

rw = inf
{

1 ≤ p <∞ : w ∈ Aloc
p

}
.

The next lemma shows us an important relation between Ap and Aloc
p weights.

Lemma 2.4 (Rychkov, 2001) . Let 1 ≤ p <∞, w ∈ Aloc
p and I be a unit cube, i.e., |I| = 1.

Then there exists a w̄ ∈ Ap, such that w̄ = w on I and

Ap(w̄) ≤ cAloc
p (w),

where constant c is independent of I.

An example of a weight, which is in Aloc
p ∩ A∞, but not in Ap:

w(x) =

{
|x|α for |x| ≤ 1,

|x|β for |x| > 1,

for α, β > −n. For α < (p − 1)n we have w ∈ Aloc
p and rw = max(0,α)

n + 1, for α, β <

(p1 − 1)n we have w ∈ Ap1 and rw = max(0,α,β)
n + 1. Taking β big enough we get that w

is in Aloc
p ∩ A∞, but not in Ap.

Definition 2.5. Let f be locally integrable. The operator

M locf(x) = sup
Q3x

1
|Q|

∫
Q

|f(y)| dy,

where supremum is taken over all cubes in Rn for which |Q| ≤ 1, is called a local maximal

function.

The Fe�erman-Stein maximal inequality holds for the operator M loc and local

Muckenhoupt weights.

Lemma 2.6 (Rychkov, 2001) . Let 1 < p < ∞, 1 < q ≤ ∞ and w ∈ Aloc
p . Then for any

sequence of measurable functions {f j} we have∥∥{M locf j}|Lwp (lq)
∥∥ ≤ c∥∥{f j}|Lwp (lq)

∥∥.
Lemma 2.7 (Rychkov, 2001). Let w ∈ Aloc

p and 1 < p <∞. Then

w(tQ) ≤ exp(cwt)w(Q) t ≥ 1, ‖Q| = 1,

where cw > 0 is a constant depending on n and Aloc
p (w).
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It follows from the above lemma that classes Aloc
p are independent of the upper bound

for the cube size used in their de�nition, i.e. for any C > 0 we could have replaced |Q| ≤ 1
by |Q| ≤ C in De�nition 2.1.

3. Weighted function spaces. Following Rychkov we de�ne Besov spaces with local

Muckenhoupt weights, [6]. Because the class of tempered distributions S ′ is too narrow

for this purpose, we introduce a class S ′e which is a topological dual to the following

space:

Se := {ψ ∈ C∞(Rn) : qN (ψ) <∞ for all N ∈ N} ,
where the semi-norms qN are given by

qN (ψ) := sup
α∈Nn0 ,|α|≤N

(
sup
x∈Rn

eN |x||Dαψ(x)|
)
.

We can identify the class S ′e with the set of those distributions f ∈ D′ for which the

estimate

|〈f, ψ〉| ≤ A sup {|Dαψ(x)| exp(N |x|) : x ∈ Rn, |α| ≤ N} for all ψ ∈ C∞0 (Rn),

is valid with some constants A,N depending on f . Such a distribution f can be extended

to a continuous functional on Se.
We take a function ϕ0 ∈ D such that

∫
Rn
ϕ0(x) dx 6= 0 and

∫
Rn
xβϕ0(x) dx = 0

for some β ∈ N
n
0 , 0 < |β| ≤ B. We put ϕ(x) = ϕ0(x) − 2−nϕ0(x2 ) and ϕj(x) =

2(j−1)nϕ(2j−1x) for j = 1, 2, . . . . Then
∫
Rn
ϕj(x)xβ dx = 0 if |β| ≤ B. We will write

B = −1 if no vanishing moment conditions hold.

Definition 3.1 (Rychkov, 2001). Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R and w ∈ Aloc
∞ . Let

the function ϕ0 ∈ D(Rn) satisfy ∫
Rn

ϕ0(x) dx 6= 0

and ∫
Rn

xβϕ0(x) dx = 0, 0 < |β| < B,

where B ≥ [s]. We de�ne a weighted Besov space Bs,wpq (Rn) to be a set of all f ∈ S ′e for
which the quasi-norm∥∥f |Bs,wpq (Rn)

∥∥
ϕ0

=
( ∞∑
j=0

2jsq
∥∥ϕj ∗ f |Lwp ∥∥q)1/q

(with the usual modi�cation if q = ∞) is �nite, and a weighted Triebel-Lizorkin space

F s,wpq (Rn) to be a set of all f ∈ S ′e for which the quasi-norm∥∥f |F s,wpq (Rn)
∥∥
ϕ0

=
∥∥∥∥( ∞∑

j=0

2jsq|ϕj ∗ f |q
)1/q

|Lwp (Rn)
∥∥∥∥

(with the usual modi�cation if q =∞) is �nite.

Remark. The de�nition of the above spaces is independent of a choice of the function

ϕ0, up to the equivalence of quasi-norms. The spaces are quasi-Banach and Banach spaces

if p ≥ 1 and q ≥ 1.
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Remark. To simplify the notation we write As,wpq (Rn) instead of Bs,wpq (Rn) and F s,wpq (Rn),
when both scales of spaces are meant simultaneously in some context.

4. Atomic decomposition. An important tool we will use to prove our main result

is an atomic decomposition for weighted Besov and Triebel-Lizorkin spaces proved by

M. Izuki and Y. Sawano in [4].

Definition 4.1. Let s ∈ R, 0 < p < ∞, K,L ∈ N0 and d ≥ 1. Then CK -functions

ajm : Rn 7→ C with j ∈ N0, m ∈ Zn, are called (s, p)-atoms if

supp ajm ⊂ dQjm, j ∈ N0, m ∈ Zn,

and there exist all (classical) derivatives Dαajm ∈ C(Rn) with |α| ≤ K such that

|Dαajm(x)| ≤ 2−j(s−n/p)+j|α|, |α| ≤ K, j ∈ N0, m ∈ Zn, (1)

and ∫
Rn

xβajm(x) dx = 0, |β| < L, j ∈ N, m ∈ Zn. (2)

Remark. Note that the last condition is omitted if j = 0.

Definition 4.2. Let 0 < p <∞, 0 < q ≤ ∞ and w ∈ Aloc
∞ . Then bwpq is the collection of

all sequences

λ = {λjm ∈ C : j ∈ N0, m ∈ Zn} (3)

such that ∥∥λ|bwpq∥∥ =
∥∥∥∥{ ∑

m∈Zn
λjmχ

(p)
jm

}
j∈N0

|lq(Lwp )
∥∥∥∥ <∞,

and let 0 < p < ∞, 0 < q ≤ ∞ or p = q = ∞ then fwp,q is the collection of all sequences

λ according to (3) such that∥∥λ|fwp,q∥∥ =
∥∥∥∥{ ∑

m∈Zn
λjmχ

(p)
jm

}
j∈N0

|Lwp (lq)
∥∥∥∥ <∞,

where χ
(p)
jm = 2jn/pχQjm . Once more we use the notation awpq.

Izuki and Sawano proved in [4] that functions from Bs,wpq and F s,wpq admit atomic

decompositions, cf. also [5].

For w ∈ Aloc
∞ let us de�ne

σp(w) = n
( rw

min(p, rw)
− 1
)

+ (rw − 1)n,

σq =
n

min(1, q)
− n

and

σpq(w) = max(σp(w), σq).

Theorem 4.3 (Izuki, Sawano). Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R and w ∈ Aloc
∞ . Let

K,L ∈ Z satisfy

K ≥ (1 + [s])+ and L ≥ max(−1, [σp(w)− s])
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when As,wpq denotes Bs,wpq and

K ≥ (1 + [s])+ and L ≥ max(−1, [σpq(w)− s])

when As,wpq denotes F s,wpq . Let f ∈ As,wpq (Rn). Then there exists a sequence of (s, p)-atoms

{ajm}j∈N0,m∈Zn and λ ∈ awpq such that

f =
∞∑
j=0

∑
m∈Zn

λjmajm and
∥∥λ|awpq∥∥ ≤ c∥∥f |As,wpq (Rn)

∥∥
with convergence in S ′e. Conversely, let {ajm}j∈N0,m∈Zn be a sequence of (s, p)-atoms and

λ ∈ awpq. Then the series

f =
∞∑
j=0

∑
m∈Zn

λjmajm

converges in S ′e and belongs to As,wpq (Rn) and∥∥f |As,wpq (Rn)
∥∥ ≤ c∥∥λ|awpq∥∥.

5. Characterization by local means. Following Triebel in [10] we can de�ne local

means in Besov spaces with local Muckenhoupt weights.

Definition 5.1. Let A,B ∈ N0 and C > 0. Then CA-functions kjm : Rn 7→ C with

j ∈ N0, m ∈ Zn, are called kernels if

supp kjm ⊂ CQjm, j ∈ N0, m ∈ Zn,

there exist all (classical) derivatives Dαkjm ∈ C(Rn) with |α| ≤ A such that

|Dαkjm(x)| ≤ 2jn+j|α|, |α| ≤ A, j ∈ N0, m ∈ Zn, (4)

and ∫
Rn

xβkjm(x) dx = 0, |β| < B, j ∈ N, m ∈ Zn. (5)

Since the kernels have �nite smoothness we will work with distributions of �nite order.

Let us consider a set CmK (Rn) of functions ϕ in Cm(Rn) such that suppϕ ⊂ K, where

K ⊂ Rn is compact and a set Cm0 (Rn) consists of functions of order m with compact

support.

Definition 5.2. A distribution f ∈ D′(Rn) is of order m if for every compact K ⊂ Rn
there exists a constant c such that

|f(ϕ)| ≤ c
∑
|α|≤m

sup
x∈K
|Dαϕ(x)| for every ϕ ∈ C∞0 (Rn).

The set of all distributions of order m is denoted by D′m(Rn).

Theorem 5.3. If f ∈ D′m(Rn) then f can be extended to a continuous linear functional

on Cm0 (Rn), moreover (Cm0 (Rn))′ = D′m(Rn).

The proof of the above theorem can be found in [3].
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Definition 5.4. Let f ∈ D′A(Rn) ∩ S ′e(Rn). Let kjm be kernels according to De�nition

5.1 (with the same constant A). Then

kjm(f) = (f, kjm) =
∫
Rn

kjm(y)f(y) dy, j ∈ N0, m ∈ Zn, (6)

are called local means. Furthermore, we put

k(f) = {kjm(f) : j ∈ N0,m ∈ Zn} . (7)

Definition 5.5. Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞ and w ∈ Aloc
∞ . Then b̄s,wpq is the

collection of all sequences λ according to (3) such that∥∥λ|b̄s,wpq ∥∥ =
( ∞∑
j=0

2j(s−n/p)q
(∫
Rn

∣∣∣ ∑
m∈Zn

λjmχ
(p)
jm(x)

∣∣∣pw(x) dx
)q/p)1/q

and f̄s,wp,q is the collection of all sequences λ according to (3) such that∥∥f̄s,wp,q ∥∥ =
∥∥∥∥( ∞∑

j=0

∑
m∈Zn

2jsq
∣∣∣λjmχ(p)

jm

∣∣∣q)1/q

|Lwp
∥∥∥∥ <∞.

Lemma 5.6. Let s ∈ R, 0 < p < ∞ and w ∈ Aloc
∞ . Then Bs,wpp (Rn) ⊂ D′l(Rn) for any

l ≥ max(0, [−s+ nrw
p −

n
p ] + 1).

Proof. Let f ∈ Bs,wpp (Rn). From the atomic decomposition we have

f =
∑
j,m

λjmajm

and λjm ∈ bwpp, with convergence in D′(Rn). It means that we can approximate f by

functions fk =
∑
j≤k,|m|≤k λjmajm, i.e. f = limk→∞ fk in D′(Rn), that is

f(ϕ) = lim
k→∞

fk(ϕ)

for all ϕ ∈ C∞0 (Rn).
For p > 1 from the Hölder's inequality we have

|fk(ϕ)| =
∣∣∣ ∑
j,|m|≤k

λjmajm(ϕ)
∣∣∣ ≤ ∑

j,|m|≤k

|λjm|
∣∣∣∫
Rn

ajm(x)ϕ(x) dx
∣∣∣

≤
( ∑
j,|m|≤k

2jn|λjm|pw(Qjm)
) 1
p
( ∑
j,|m|≤k

2−jnp
′/pw(Qjm)−p

′/p
∣∣∣∫
Rn

ajm(x)ϕ(x) dx
∣∣∣p′) 1

p′

Since λ ∈ bwpp, we have
∞∑
j=0

∑
m∈Zn

2jn|λjm|pw(Qjm) <∞. (8)

From |ajm(x)| ≤ 2−j(s−n/p) we get∣∣∣∫
Rn

ajm(x)ϕ(x) dx
∣∣∣p′ ≤ c|Qjm|p′ 2−j(s−n/p)p′ sup

x
|ϕ(x)|p

′

≤ c 2−j(s−n/p)p
′−jnp′ sup

x
|ϕ(x)|p

′
.
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Let suppϕ ⊂ K, where K is a compact subset in Rn. If Qjm ⊂ Q0,l then

w(Qjm)−p
′/p ≤ cw(Q0,l)−p

′/p 2jnup
′/p, (9)

since w ∈ Aloc
u for some rw < u <∞. So∑

m:Qjm∩K 6=∅, |m|≤k

w(Qjm)−p
′/p ≤ 2jnup

′/p+jn
∑

l:Q0,l∩K 6=∅

w(Q0,l)−p
′/p. (10)

Now we can keep on estimating∑
j,|m|≤k

2−jnp
′/pw(Qjm)−p

′/p
∣∣∣∫
Rn

ajm(x)ϕ(x) dx
∣∣∣p′

≤ c
∑

j,|m|≤k

2−j(s+n)p′ sup
x∈Rn

|ϕ(x)|p
′
w(Qjm)−p

′/p

≤ c
∑

j≤k,l:Q0,l∩K 6=∅

2−j(s+n)p′2jnup
′/p+jn sup

x∈K
|ϕ(x)|p

′
w(Q0,l)−p

′/p

≤ CK sup
x∈K
|ϕ(x)|p

′ ∑
j∈N0

2−j(s−nu/p+n/p)p
′
.

For s > nu
p −

n
p we have

|fk(ϕ)| ≤ CK sup
x∈K
|ϕ(x)| ,

where CK depends only on K. Hence

|f(ϕ)| ≤ CK sup
x∈K
|ϕ(x)| .

So f is a distribution of order 0 if s > nu
p −

n
p . Now let s ≤ nu

p −
n
p and l > −s+ nu

p −
n
p .

Using the Taylor expansion of ϕ and the moment conditions if j > 0 we get∣∣∣∫
Rn

ajm(x)ϕ(x) dx
∣∣∣ = c

∣∣∣∫
Rn

ajm(x)
∑
|α|=l

Dαϕ(x0 + Θ(x− x0))(x− x0)α dx
∣∣∣

≤ c 2−j(l+s−n/p+n)
∑
|α|=l

sup
x∈Rn

|Dαϕ(x)| .
(11)

Summing over j, |m| ≤ k, we get from (11) and (9)

∑
j,m

2−jnp
′/pw(Qjm)−p

′/p
∣∣∣∫
Rn

ajm(x)ϕ(x) dx
∣∣∣p′

≤ cK
∑
j∈N0

2−j(l+s−nu/p+n/p)p
′
(∑
|α|=l

sup
x∈K
|Dαϕ(x)|

)p′
.

Incorporating the term with j = 0 we get

|fk(ϕ)| ≤ cK
∑
|α|≤l

sup
x∈K
|Dαϕ(x)|.



LOCAL MEANS AND WAVELETS IN FUNCTION SPACES 407

For 0 < p ≤ 1 we have an estimate

|fk(ϕ)| =
∣∣∣ ∑
j,|m|≤k

λjmajm(ϕ)
∣∣∣

≤
( ∑

j,|m|≤k
Qjm∩K 6=∅

|λjm|p
∣∣∣∫
Rn

ajm(x)ϕ(x) dx
∣∣∣p)1/p

≤
( ∑

j,|m|≤k
Qjm∩K 6=∅

2jn|λjm|pw(Qjm) sup
x∈K
|ϕ(x)|p|Qjm|pw(Qjm)−1 2−j(s−n/p)p2−jn

)1/p

≤ sup
x∈K
|ϕ(x)| sup

j,|m|≤k
Qjm∩K 6=∅

2−j(s+n)w(Qjm)−1/p

( ∑
j,|m|≤k

Qjm∩K 6=∅

2jn|λjm|pw(Qjm)
)1/p

.

Using the fact that λ ∈ bwpp we get

|fk(ϕ)| ≤ C sup
x∈K
|ϕ(x)| sup

j,|m|≤k,Qjm∩K 6=∅
2−j(s+n)w(Qjm)−1/p.

In the same manner as in (9) we can see that

|fk(ϕ)| ≤ C sup
x∈K
|ϕ(x)| sup

j,l,Q0,l∩K 6=∅
2−j(s+n)2jnu/pw(Q0,l)−1/p

≤ C(K) sup
x∈K
|ϕ(x)| sup

j∈N0

2−j(s−nu/p+n).

For s > nu
p − n we have

|fk(ϕ)| ≤ C sup
x∈K
|ϕ(x)| .

For s ≤ nu
p −n and l > −s+ nu

p −n using the above estimations and the same inequalities

as in (11) we get

|fk(ϕ)| ≤
( ∑
j,|m|≤k

|λjm|p
∣∣∣∫
Rn

ajm(x)ϕ(x) dx
∣∣∣p)1/p

≤
∑
|α|=l

sup
x∈K
|Dαϕ(x)| sup

j,|m|≤k,K∩Qjm 6=∅
2−j(l+s+n)w(Qjm)−1/p

≤ cK
∑
|α|=l

sup
x∈K
|Dαϕ(x)| sup

j∈N0

2−j(l+s+n−nu/p).

So f is a distribution of order l for any l ≥ max(0, [−s+ nrw
p −

n
p ] + 1).

Corollary 5.7. Let a weight w belong to the class Aloc
∞ . The spaces F s,wpq (Rn) and

Bs,wpq (Rn) consist of distributions of �nite order l for any l ≥ max(0, [−s+ nrw
p −

n
p ] + 1).

Proof. Let us choose s′ < s such that l ≥ max(0, [−s′ + nrw
p −

n
p ] + 1). Then by the

elementary embeddings and Lemma 5.6 we have

F s,wpq (Rn) ⊂ Bs
′,w
pp (Rn) ⊂ D′l(Rn).

A similar argument works for Besov spaces.
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By the next theorem we have the characterization of Besov and Triebel-Lizorkin spaces

with Aloc
∞ weights by local means.

Theorem 5.8. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R. Assume that w ∈ Aloc
∞ . Let kjm be

kernels according to De�nition 5.1, where A,B ∈ N0 with

A ≥ max(0, [−s+ σp(w)], [nrwp −
n
p − s] + 1), B ≥ max(0, [s] + 1),

when As,wpq denotes Bs,wpq and

A ≥ max(0, [σpq(w)− s], [nrwp −
n
p − s] + 1), B ≥ max(0, [s] + 1),

when As,wpq denotes F s,wpq . Let C > 0 be �xed. Let k(f) be as in (6) and (7). Then for

some c > 0 and all f ∈ As,wpq (Rn),∥∥k(f)|ās,wpq
∥∥ ≤ c∥∥f |As,wpq (Rn)

∥∥.
Proof. We prove the theorem for Besov spaces. The proof in F s,wpq case can be rewritten

similarly to the unweighted case by using Lemma 2.6.

Let

f(x) =
∞∑
r=0

∑
l∈Zn

λrlarl(x), f ∈ Bs,wpq (Rn), (12)

be an atomic decomposition according to Theorem 4.3 where

K = B ≥ max(0, [s] + 1) and L = A ≥ max(0, [−s+ σp(w)], [nrwp −
n
p − s] + 1).

For j ∈ N we split (12) into

f = fj + f j =
j∑
r=0

∑
l∈Zn

λrlarl +
∞∑

r=j+1

∑
l∈Zn

λrlarl

and get ∫
Rn

kjm(y)f(y) dy =
∫
Rn

kjm(y)fj(y) dy +
∫
Rn

kjm(y)f j(y) dy.

Let r ≤ j and l ∈ ljr(m) where

ljr(m) = {l : CQjm ∩DQrl 6= ∅} ,

where C,D ∈ R are positive constants independent of j, r.

By the Taylor expansion of arl and properties of atoms (1) and local means (5) we

have

2j(s−n/p)
∣∣∣∫
Rn

kjm(y)arl(y) dy
∣∣∣

≤ c 2j(s−n/p)
∑
|γ|=B

sup
x
|Dγarl(x)|

∫
Rn

|kjm(y)|
∣∣y − 2−jm

∣∣B dy = c 2(j−r)(s−n/p−B).

Thus for any ε > 0 we have

2j(s−n/p)p|kjm(fj)|p ≤ c
j∑
r=0

∑
l∈ljr(m)

|λrl|p2(j−r)(s−n/p−B+ε)p.
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Summing over m ∈ Zn we get

2j(s−n/p)p
∑
m∈Zn

|kjm(fj)|p
w(Qjm)
|Qjm|

≤ c
j∑
r=0

2(j−r)(s−n/p−B+ε)p
∑
m∈Zn

∑
l∈ljr(m)

|λrl|p
w(Qjm)
|Qjm|

= c

j∑
r=0

2(j−r)(s−n/p−B+ε)p
∑
l∈Zn

∑
m:l∈ljr(m)

|λrl|p
w(Qjm)
|Qjm|

≤ c
j∑
r=0

2(j−r)(s−B+ε)p
∑
l∈Zn
|λrl|p

w(Qrl)
|Qrl|

(13)

where the last inequality is a consequence of the estimate card ljr(m) ∼ 1, which follows

from the assumption r ≤ j.
Now let r > j. Using the Taylor expansion of kjm and moment conditions of atoms

(2) and (4) we have

2j(s−n/p)
∣∣∣∫
Rn

kjm(y)arl(y) dy
∣∣∣

≤ 2j(s−n/p)
∑
|γ|=A

sup
x
|Dγkjm(x)|

∫
Rn

|arl(y)|
∣∣y − 2−rl

∣∣A dy = c 2(j−r)(s−n/p+n+A).

Thus for any ε > 0 we get

2j(s−n/p)p
∣∣∣∫
Rn

kjm(y)f j(y) dy
∣∣∣p ≤ c∑

r>j

2(j−r)(s−n/p+n+A−ε)p
( ∑
l∈ljr(m)

|λrl|
)p
.

From the Hölder's inequality and the estimates card ljr(m) ∼ 2n(r−j)

2j(s−n/p)p
∣∣∣∫
Rn

kjm(y)f j(y) dy
∣∣∣p ≤ c∑

r>j

2(j−r)(s+A−ε)p
∑

l∈ljr(m)

|λrl|p.

Summing over m ∈ Zn

2j(s−n/p)p
∑
m∈Zn

∣∣kjm(f j)
∣∣pw(Qjm)
|Qjm|

≤ c
∑
r>j

2(j−r)(s+A−ε)p
∑
m∈Zn

∑
l∈ljr(m)

|λrl|p
w(Qjm)
|Qjm|

≤ c
∑
r>j

2(j−r)(s+A+n/p−ε)p
∑
m∈Zn

∑
l∈ljr(m)

|λrl|p
w(Qrl)
|Qrl|

(
|Qjm|
|Qrl|

)u

≤ c
∑
r>j

2(j−r)(s+A+n/p−ε−nu/p)p
∑
l∈Zn
|λrl|p

w(Qrl)
|Qrl|

,

(14)
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where the second inequality follows from the fact that for w ∈ Aloc
u and Qrl ⊂ Qjm we

have

w(Qjm) ≤ cw(Qrl)
(
|Qjm|
|Qrl|

)u
.

Taking (13) and (14) together we get

2j(s−n/p)p
∑
m∈Zn

|kjm(f)|pw(Qjm)
|Qjm|

≤ c
j∑
r=0

2(j−r)(s−B+ε)p
∑
l∈Zn
|λrl|p

w(Qrl)
|Qrl|

+c
∑
r>j

2(j−r)(s+A+n/p−ε−nrw/p)p
∑
l∈Zn
|λrl|p

w(Qrl)
|Qrl|

≤ c
∞∑
r=0

2−|j−r|κp
∑
l∈Zn
|λrl|p

w(Qrl)
|Qrl|

,

where κ = min(s+A+ n
p −

nrw
p − ε,B − s− ε). Summing over j we have( ∞∑

j=0

2j(s−n/p)q
( ∑
m∈Zn

|kjm(f)|pw(Qjm)
|Qjm|

)q/p)1/q

≤ c
( ∞∑
j=0

( ∞∑
r=0

2−|j−r|κp
∑
l∈Zn
|λrl|p

w(Qrl)
|Qrl|

)q/p)1/q

.

Now using the Young inequalities for convolution of sequences if q
p ≥ 1 or monotonicity

of the lp space if
q
p < 1 we proved that∥∥k(f)|b̄s,wpq

∥∥ ≤ c∥∥λ|bwpq∥∥ ≤ c∥∥f |Bs,wpq ∥∥,
where the constant c is independent of the given atomic decomposition.

6. Characterization by wavelets. We are going to deal with Daubechies wavelets

on Rn. Let ψF ∈ Ck(R) be Daubechies scaling function and ψM ∈ Ck(R) Daubechies

wavelet with
∫
R
ψ(x)xv dx = 0, k ∈ N, v ∈ N0, v < k. We extend these wavelets from R

to Rn by the usual tensor product procedure

ΨG
jm = 2jn/2

n∏
r=1

ψGr (2jxr −mr), (15)

where j ∈ N0, m ∈ Zn, G = (G1, . . . , Gn) ∈ Gj and G0 = {F,M}n and for j > 0
Gj = {F,M}n∗, where ∗ indicates that at least one Gr must be an M .{

ΨG
jm : j ∈ N0,m ∈ Zn, G ∈ Gj

}
is an orthonormal basis in L2(Rn), cf. [11].

Definition 6.1. Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞ and w ∈ Aloc
∞ . Then bs,wpq is the

collection of all sequences λ according to (3) such that∥∥λ|bs,wpq ∥∥ =
( ∞∑
j=0

2j(s−n/p)q
∑
G∈Gj

(∫
Rn

∣∣∣ ∑
m∈Zn

λGjmχ
(p)
jm(x)

∣∣∣pw(x) dx
)q/p)1/q

<∞

and fs,wpq is the collection of all sequences λ according to (3) such that∥∥λ|fs,wpq ∥∥ =
∥∥∥∥( ∑

j,m,G

2jsq
∣∣λGjmχ(p)

jm

∣∣q)1/q

|Lwp
∥∥∥∥ <∞.
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Theorem 6.2. Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R and w ∈ Aloc
∞ . For wavelets de�ned in

(15) we take

k ≥ max
(
0, [s] + 1, [nrwp −

n
p − s] + 1, [σp(w)− s]

)
in Bs,wpq case and

k ≥ max
(
0, [s] + 1, [nrwp −

n
p − s] + 1, [σpq(w)− s]

)
in F s,wpq case. Let f ∈ S ′e(Rn). Then f ∈ As,wpq (Rn) if and only if it can be represented as

f =
∑
j,G,m

λGjm2−jn/2ΨG
jm,

where λ ∈ as,wpq and the series converges in S′e(R
n). This representation is unique with

λGjm = 2jn/2
(
f,ΨG

jm

)
and

I : f 7→
{

2jn/2(f,ΨG
jm)
}

is a linear isomorphism of As,wpq (Rn) onto as,wpq .

If 0 < p, q <∞ then the system
{

ΨG
jm

}
j,m,G

is an unconditional basis in As,wpq (Rn).

Proof.

Step 1. Let f ∈ S ′e(Rn) and f =
∑

j,G,m

λGjm2−jn/2ΨG
jm. Then a

G
jm = 2−j(s−

n
p )2−j

n
2 ΨG

jm

is an (s, p)-atom. Indeed,

supp aGjm ⊂ dQjm and
∣∣DαaGjm

∣∣ ≤ 2−j(s−n/p)+j|α|

for |α| ≤ k and k = K = L in the de�nition of atoms. So f ∈ Bs,wpq (Rn) and∥∥f |Bs,wpq (Rn)
∥∥ ≤ c∥∥∥{2j(s−n/p)λGjm

}
j,m,G

|bwpq
∥∥∥ = c

∥∥λ|bs,wpq ∥∥.
Step 2. Now let f ∈ Bs,wpq (Rn). We take kGjm = 2jn/2ΨG

jm as kernels of local means.

Indeed

supp kGjm ⊂ CQjm and
∣∣DαkGjm(x)

∣∣ ≤ 2jn+j|α|,

where |α| ≤ k and A = B = k. So from Theorem 5.8 we have∥∥k(f)|bs,wpq
∥∥ ≤ c∥∥f |Bs,wpq (Rn)

∥∥. (16)

From the atomic decomposition and (16) we have

g =
∑
j,G,m

kGjm(f) 2−jn/2ΨG
jm ∈ Bs,wpq (Rn).

It follows from Lemma 5.6 that (g,ΨG′

j′m′) make sense. By orthogonality of wavelet basis

in L2(Rn) we get

(g,ΨG′

j′m′) =
∑
j,G,m

kGjm(f) 2−jn/2(ΨG
jm,Ψ

G′

j′m′) = (f,ΨG′

j′m′).

This could be extended to �nite linear combinations of ΨG′

j′m′ . Both distributions f

and g are locally contained in the space Bσpp(R
n) for any σ < s− nrw

p + n
p . This follows

easily from the corresponding result for the spaces with Muckenhoupt weights, cf. [1],

since any local Muckenhoupt weight w ∈ Aloc
p can be extended outside a �xed ball to
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a Muckenhoupt weight belonging to Ap. Any ϕ ∈ C∞0 (Rn) has the unique L2(Rn) wavelet
representation. But we can choose σ such that k > max(−σ+σp, σ) so this representation
converges in the dual space of Bσpp(R

n), cf. [10]. This implies that (g, ϕ) = (f, ϕ) for all

ϕ ∈ C∞0 (Rn) and g = f .

Step 3. By the above steps f ∈ S ′e(Rn) belongs to Bs,wpq (Rn) if and only if

f =
∑
j,G,m

λGjm2−jn/2ΨG
jm and {λGjm} ∈ bs,wpq .

This representation is unique so λGjm = kGjm(f) and∥∥f |Bs,wpq (Rn)
∥∥ ∼ ∥∥k(f)|bs,wpq

∥∥.
It follows from the uniqueness of the coe�cients that I is a monomorphism. We show

that I is onto. Let {λGjm} ∈ bwpq. Then by the atomic decomposition theorem

f =
∑
j,G,m

λGjmΨG
jm ∈ Bs,wpq (Rn).

But the uniqueness of the coe�cients implies that λGjm = (f,ΨG
jm).

Let εj,G,m = ±1, then the sequence εj,G,mλ
G
jm belongs to bwpq provided that {λGjm}

belongs to bwpq. Thus the atomic decomposition theorem implies the convergence of the

series ∑
j,G,m

εj,G,mλ
G
jmΨG

jm

in Bs,wpq (Rn). This implies the unconditional convergence.

In the case of F s,wpq spaces the proof is similar.
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