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Abstract. We consider two spectral triples related to the Kronecker foliation. The corre-
sponding generalized Dirac operators are constructed from first and second order signature op-
erators. Furthermore, we consider the differential calculi corresponding to these spectral triples.
In one case, the calculus has a description in terms of generators and relations, in the other case
it is an “almost free” calculus.

1. Introduction. The notion of a spectral triple is fundamental in noncommutative
differential geometry, see [4]. It encodes the Riemannian and differential structure of a
noncommutative space as well as its dimension. Aiming at applications in physics, spec-
tral triples have been used to construct unified field theoretical models, e.g., the standard
model (see [4], [5]), and models including gravitation ([3], [13], [14]). A main achievement
in this connection was the identification of the Higgs field as a gauge field originating
from a noncommutative differential calculus on a discrete space. From the mathematical
point of view, only a few types of noncommutative spaces have been used in these ex-
amples: commutative algebras of smooth functions on a manifold [4], finite dimensional
algebras (for a classification of spectral triples in this case see [15] and [20]) and products
of both. Further examples of spectral triples have also been described explicitly for the
irrational rotation algebra and higher dimensional noncommutative tori [4], [11].

In order to formulate gauge field theories on noncommutative spaces one usually needs
explicit information about the differential calculus of the corresponding spectral triple.
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Such calculi have been analyzed in the above-mentioned cases ([4], [5], [12], [16]). In [17] it
has been shown that the extra structure of a finitely generated projective module allows
to introduce the graded algebra of differential-form-valued endomorphisms. This gives a
natural mathematical language to build unified field theoretical models in the spirit of
the Mainz-Marseille approach [7].

We remark that, using ideas from supersymmetric quantum theory, the notion of
a spectral triple itself has been modified and enriched, see [8] and [9]. This leads to
noncommutative generalizations of certain classical geometrical structures (Riemannian,
symplectic, Hermitian, Kéhler, ...). One hopes to apply these to superconformal field
theories with noncommutative target spaces.

In the seminal paper [6] Connes and Moscovici have shown how to associate spectral
triples to crossed product algebras related to foliations. Let (M, F) be a regular foliation
of a smooth manifold M with Euclidean structures on both the corresponding distribution
and the normal bundle. Then, there is an associated spectral triple for the crossed product
algebra C>°(M) x T', where T is a group of diffeomorphisms preserving these structures.
The corresponding Dirac operator is hypoelliptic and closely related to the signature
operator of the foliated manifold (a slight modification of the standard signature operator
in differential geometry, see [10]).

In [18], we have given two examples of spectral triples related to the Kronecker foli-
ation, partly following the method of [6]. Moreover, we gave a description of the corre-
sponding differential calculi. The aim of the present paper is to give details of the proofs
of the main propositions about the differential calculi. For the convenience of the reader,
we start with a short review of the general notion of a spectral triple and of the con-
struction of such triples related to foliations by the general method of [6]. We continue
reviewing the construction of two spectral triples related to the Kronecker foliation given
in [18]. This foliation is defined by an action of R on T? which obviously preserves natural
translation-invariant Fuclidean structures on the distribution as well as on the normal
bundle. We take I' = R and arrive at the algebra C°°(T?) xR, whose C*-version is Morita
equivalent to the irrational rotation algebra (noncommutative torus), see [22], [11]. The
Dirac operator of the first spectral triple (which has dimension 2) is closely related to the
ordinary signature operator on T2. The construction of the second triple (of dimension
three) follows the strategy proposed in [6]. The corresponding signature operators, and
henceforth also the Dirac operators, can be diagonalized explicitly in both cases. Then
we pass to the differential calculi associated to the above spectral triples. For the triple
related to the first order signature operator the differential calculus can be completely
characterized in terms of generators and relations. The restriction to I' = 1 leads to the
de Rham calculus on T2. The analysis of the differential calculus for the second triple
turns out to be much more involved. We show that in this case the restriction to I' =1
gives just the universal calculus on C*°(T?). For the case I' = R, we conjecture that an
“almost free” calculus is obtained.

2. The spectral triple related to a foliation. For the convenience of the reader,
we recall here the definition of a spectral triple and the differential calculus related to
such a triple ([4], [11]):
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DEFINITION 1. A spectral triple (A, H, D) consists of a *-algebra A, a Hilbert space
‘H and an unbounded selfadjoint operator D on H, such that

(i) A acts on H by a s-representation m : A — B(H) (B(H)—the algebra of bounded
operators on H),
(ii) the commutators [D,7(a)], a € A, are bounded and
(iii) the operator D has discrete spectrum with finite multiplicity.

A spectral triple has dimension n if the eigenvalues (counted with multiplicity) uy of |D|
fulfil limy, o0 px /K™ = C # 0.

We will not refer to gradings or real structures usually included in the definition of a
spectral triple, nor to more general notions of dimension.

The representation m of A in B(H) can be extended to a representation 7* : (A) —
B(H) of the universal differential calculus Q2(A) by

7 (Y abdat -+ da}) = > w(af)[D, w(a})] -+ [D, m(ak)]
k k

If Jy := @, kern™, then J := Jy + dJy is a differential ideal, and one arrives at the
differential calculus Qp(A),
Qp(A) :=Q"(A)/J.

Note that, if 7 is faithful, there are isomorphisms
OL(A) ~ 1 (QY(A)) (2.1)

and
QQD(A) ~ 7r2(QQ(A))/7r2(dJ(}). (2.2)

Now we review briefly the procedure given in [6], which relates a spectral triple to a
regular foliation of a smooth manifold. Let M be a compact manifold with a foliation
given by an integrable distribution V' C TM. The normal bundle of the foliation is N :=
TM/V, with canonical projection p : TM — N. Assume further that both V and N are
equipped with Euclidean fibre metrics and with an orientation (i.e., distinguished nowhere
vanishing sections wy, wy of the exterior bundles A"V, A" N (v = dim V, n = dim N)).
The orientations wy and wy also define a nonvanishing section of A" V* @ A" N* ~
A" T*M, i.e. a volume form on M. Let us consider the bundle

E=/\V¢® \Ng

(complexification). The metrics on V and N give rise to Hermitian metrics on A V& and
A\ N¢ and thus also on E. The orientations wy and wy can be mapped by means of the
metrics to sections vy of A V¢ and yy of A" N¢ which can be used, together with the
metrics, to define an analogue of the Hodge star on the exterior bundles A V& and A N¢.
We choose a variant of the x-operation such that *%/c =1 and *?\,C =1, i.e. %y, and xpn,
can be considered as Zs-grading operators (cf. [1]).

Thus, the space of sections of E has a natural inner product, and we denote by
H = L?(M, E) the Hilbert space of square integrable sections of this bundle. From now
on, we always consider complexified vector bundles, but omit the subscript C.
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In order to construct a generalized Dirac operator, a longitudinal differential d; and
a transversal differential operator dy have to be defined. The differential d, is defined
canonically by means of the Bott connection ([2]) given as the partial covariant derivative
V:T'(V)x T'(N) — ['(N) defined by

VxY = p([X,Y]),

for X € T(V),Y € T(N) and Y € I'(T'M) such that p(Y) = Y. By a standard procedure
(using the Leibniz rule and duality) V is extended to a differential dy, : T'(F) — I'(E)
defined by linear mappings T(A* V* @ A' N*) = T(A*T v o AL N*),

dra(Xo,...,Xx) = Y (=1)'Vx,(a(Xo,..., Xi, ..., Xx))
i=0,...,k
+ ) ()X X)), Xo, -, XL X X,

1<J

X; € T(V). Since the Bott connection is flat, we have d2 = 0.
In order to define a transversal differential operator one has to choose a subbundle

H C TM complementary to V. This defines a bundle isomorphism jg : AV* @ A N* —
A T*M in the following way: Let us denote by prj, and prj; the projections corresponding
to the decomposition TM* = V* @& H*, by pg : H — N the restriction of p to H and by
P its transposed map. Then jp is defined as the following composition:

1AM « . .
where ® — A denotes the replacement of the tensor product by the wedge product. Now,
the transversal operator dy is obtained from the exterior differential d by transporting
with jp and projecting to a certain homogeneous component: A V*® /A N* has an obvious
bigrading, and denoting by 7("*) the projector to the homogeneous component of bidegree

(r,s), one defines
dga =7 (g o do ju(a))

for a € T(A"V* @ A’ N*). The operator dg is a graded derivation of the Zs-graded
algebra (A V* @ A N*).

In a foliation chart, dy, and dy look as follows. Let (2%,4%),i =1,...,0v, k=1,...,n
be local coordinates of M such that z° are coordinates on the leaf for fixed y* (foliation
chart). The corresponding coordinate vector fields (9/0x%, 9/9y*) form a local frame of
TM and (9/9z%) a frame of V. The corresponding dual frame of T*M consists of the
differentials (dz®,dy*). We define §* € T'(V*) by 61(0/0x7) = 80 (i, =1,...,0). It is
immediate from the definition of N that the elements ny, := 9/9y* +V (k = 1,...,n)
form a local frame of N. The elements of the corresponding dual frame of N* are denoted
by n*. Finally, we choose a local frame hy, of the transversal space H. This frame is fixed
by assuming pp(hi) = ng. This leads to

0 0
ko i + N
with coefficient functions hf characterizing H. Then, the elements 67 A --- A 0 @ nit A
-~ AnJs form a local frame of E, and one can show that d; and dy are given by the

hy =
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following local formulae:

8ai1...irjl...js GNOINA- - Gir@nIt A- - Ande,

AL gy g 0 A NI @I AR = Ot

dH(ail..‘i,.jl..‘jseil JANGREIAN 9“ X Tle JANCIERIVAN njs) =
(71)Thk(04i1_”“j1__.j5)ail A A 0“ X nk A njl VARERIAN njs +
SN : : :
iy i o 8—79“ Ao NN AT @nF AR A AT (2.3)
x
t=1

(where 0" at position ¢ replaces 6't). The longitudinal differential dy, acts as a differential in
leaf direction, whereas dg is a sum of a principal part, which differentiates in transversal

direction, and a zero order part. As examples, let us give formulae for dy acting on
functions, (1,0)-, (0,1)- and (1,1)-forms:

duf = hi(f)n¥,

. Oht )
dp(a;f') = — (hk(aj) +a; 83:];) 07 @ nk,

dp (agn®) = hy(ag)n' An¥,

dH(Oéiin A\ nk) = — <hl(ajk) + i 8hl) 6’ ® nl AN nk,

oz

(dg(n*) = 0). For the adjoint operators d} and d%, (in H) it is difficult to write down
explicit formulae. One can show

dja = —xy dr, xy + term of order zero,

where #y is the (partial) Hodge operator related to the Euclidean metric and the orienta-
tion of V. Since d%; lowers the N*-degree one has for a € T(A\" V*) = D(\" V* @ A’ N*)

dia = 0.
Explicit formulae for d}; become rather complicated as, e.g., the case of (0,1)-forms shows:
* i kl m 6h}€ 1 i
dyy (i0') = —gn (hi(ew) — amlnig + oo 575 + 59vhelgvi;) ), (2.4)

where g§} = gn(n*,n'), gv;; = gv(8/02',0/0x7), g = gy (#,67) are the local com-
ponents of the fibre metrics (and their duals), and I'yj; are the “Christoffel symbols”
corresponding to gy ;-

In [6], using dg and dj,, two differential operators are introduced by

Qr=drdy, —dpdy, Qu=dn+dy,
and the mixed signature operator @) for M, acting on a form with N-degree Oy, is defined
by
Q=QL(-D)™ +Qu. (2.5)
As noted in [6], @ is selfadjoint. Finally, a generalized Dirac operator D is defined as the
unique selfadjoint operator such that

D|D| = Q. (2.6)



130 R. MATTHES ET AL.

If zero is not an element of the spectrum of @, it is given as

D =Q|Q|™* =Q(Q*» 4, (2.7)

as shows a straightforward argument using the spectral decomposition of Q.

One motivation for choosing a second order longitudinal part is the following: the
index of the signature operator should not depend on the choice of the transversal sub-
bundle H. Usually, the index of a pseudodifferential operator only depends on its principal
symbol. However, as follows from the local formulae (2.3) and (2.4), its principal part
explicitly depends on H, the dependence being in the coefficients of the partial deriva-
tives with respect to leaf coordinates. It turns out that one can get rid of this dependence
by introducing a modified notion of pseudodifferential operators (¢»DO’) which assigns
a degree 2 to transversal coordinates and a degree 1 to longitudinal ones. To have a
contribution also from @, one has to pass to a second order operator. In [6] a homotopy
argument was given to show that this does not affect the longitudinal signature class.

Let ' be any group of diffeomorphisms of M which preserves the distribution V' and
the Euclidean metrics on both V' and N. Then ¢ € I' acts via the pull back as unitary
operator U on ‘H, whereas functions from €' (M) act there as multiplication operators.
The crossed product algebra A := C°°(M) x T' can be defined as the x-subalgebra of
B(H) generated by these two types of operators. Due to Ujf= (fo 1/))U:[) every element
of A is a finite sum of elements fU;. Then we have, see [6]:

THEOREM 1. (A, H, D) is a spectral triple of dimension v+ 2n.

One of our main aims is to describe explicitly this spectral triple for the Kronecker
foliation of the two-torus.

3. Spectral triples for the Kronecker foliation

3.1. Crossed product algebra and Hilbert space. We consider the two-torus as the
quotient T2 = R?/27Z2. Thus, we have natural local coordinates 0 < 91,95 < 27.
Consider the R-manifold (T?, R, ), with group action

¥ :T? x R — T2,
given by
¢((1917 ’192)7 t) = (,'91 + at, 7-92 + bt)7
with a,b € R such that a > 0, a® + > = 1 and 6 = b/a being irrational. The foliation
of T? by the orbits of 1 is called the Kronecker foliation. It is well known, see [19], that

each leaf of this foliation is diffeomorphic to R and lies dense in T2.
The coordinate transformation

T = at + bis,
Yy = bﬂl — a192

is orthogonal and leads to coordinates (z,y) of a foliation chart. In these coordinates, R
acts as follows:

Y((z,y),t) = (x + t,y).
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To be more precise, this is the lifted action of R on R?, applied to global coordinates
(z,y) obtained from global coordinates (91,93) by the orthogonal transformation.
The associated crossed product algebra

O =0(T?) xR

is the x-algebra generated by the unitary operators Uy, Us and V; acting in the Hilbert
space L?(T?) given by

(U18)(V1,92) = e - £(V1,72),
(U26)(01,92) = -£(01,792),
(Vvtf)(ﬁl, ’192) (191 + at, Vo + bt) (31)

VE € L2(T?). Let ey = e (F1+192) (k| € 7) be the basis of trigonometric polynomials of
L?(T?). It follows from (3.1) that

Uier = ex+1.1,
Useri = ex,i41,
Viep = el(ak+bl)t6kl. (3.2)

It is now immediate to show

PROPOSITION 1. The unitary operators Uy, Us, Vi satisfy

U1Us = UaUy, (3.3)
ViU, = &' U, Vi, (3.4)
ViU = ULV, (3.5)
ViV =Vijs, t,s €R. (3.6)

REMARK 1. For rational § = =, m,n relatively prime, the operators Uy, Us, V; are
also well-defined. In this case, there is an additional relation

V27r\/m2+n2 - VO = ]-7
2mv/'m?2 + n? is the smallest value of ¢ such that V; = Vj = 1; any other such ¢ is an
integer multiple of this value.

PROPOSITION 2. The *-algebra O(T?) x R is isomorphic to C(uy,uz,v;)/J, where
C(uy,ug,ve) is the free associative unital x-algebra generated by uy,us and vy, t € R, and
J is the x-ideal generated by (3.3)—(3.6) and unitarity conditions for the generators.

Proof. See [18]. m

In analogy with the definition given before Theorem 1, putting M = T? and I' = R,
we define the crossed product

A:=C>(T?) xR (3.7)

as a *-subalgebra of B(L?(T?)). As noted in [18, Remark 2], A can be considered as a
topological completion of the x-algebra O in a natural Fréchet topology.

In our concrete case, the Hilbert space of the spectral triple of Theorem 1 can be
described as follows: Both V' and IV are one-dimensional, with local frames consisting each
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of one vector 9/0xz and n = /0y + V respectively. Let 7 and v denote the corresponding
elements of the dual frames. Then £ = AV* ® A N* is the direct sum of four line
bundles of elements of degrees (0,0), (1,0), (0,1), (1,1), with local frames 1, 7, v, TQv,
respectively. The natural choice of translation invariant (under the natural action of R?
on T?) Euclidean fibre metrics makes these frame elements mutually orthogonal unit
vectors in L%(T?, E). Note that all fibre metrics that are invariant under the R-action
defining the foliation are also translation invariant under R? (see [18, Lemma 1]). We
may identify
L*(T%, B) = L*(T?) & L*(T*) & L*(T?) & L*(T*?),

with ex;1 — (ex,0,0,0),..., e Qv — (0,0,0, ex).

Since the generators act, according to (3.1), componentwise in L?(T?, E) the crossed
product algebra of Theorem 1 coincides with (3.7).

We choose the transversal subspace H as simple as possible, i.e. we put ki = 0. Equiv-
alently, H is generated by the coordinate vector field 9/9y. Then the general formulae of
the foregoing section (and some easy computations for the adjoints) lead to the following
expressions:

f fr fv frev
of of
dy, 9 0 ax7'®1/ 0
of af
dpg 8—yy —a—y7'®1/ 0 0
- of of
. of of

with f € C°°(T?). To prove, e.g.,
dy(frev)= 3y

we denote by (+]-) the scalar product in L?(T?, E') and observe that

(g3 (fr © 1)) = (da(gr)|fr @ v) = (-g—g v fT®V)
- [ 25 oty = [ ot LS oy = (o7 | GLr).

Note that all the above operators can also be written as matrix differential operators.

3.2. The first order signature operator as Dirac operator. We will first show that
(C*(T?) x R, L*(T?, E), Q), with Q being the linear signature operator

Q=dp+d} +dy + di,

is a spectral triple of dimension 2. Using the foliation chart (z,y) and the local frame
{1, 7,v,7 ® v}, this operator can be written as
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9 o)
0 -2 -2 0
9 9
- 2 0 o 2
A I A R
y P o ox
0 -&% Z 0

The eigenvalue problem for Q is most easily solved by considering its square

9?2 %
92 92 0 0
02 = 0 97 T o7
o 0 0 _2 9 0
ox2 oy?
9? o

In coordinates (¢1,¥2) one is immediately led to the eigenvalue equations

o o \? B o\’ )
< <aa—?91+b8—192> (ba—’ﬂl_aa—%> )fj = A fj7

for the four components of an eigenvector f = f1 + foT + fsv + far @ v of Q2. It is now
straightforward to see that

€kl 0 0 0
0 €Ll 0 0
e = 0 e = 0 e = . e = 0
0 0 0 €kl
are eigenvectors of Q2 with the eigenvalue
A2, = (ak 4 b1)? + (al — bk)? = K2 4+ 12
The operator Q itself acts in this basis of L2(T2, E) as follows:
Q(ely) = (ak + bl)ef, + (al — bk)e),
Q(e2)) = (—ak — bl)er, + (—al + bk)e},,
Q(e3)) = (—al + bk)es, + (ak + bl)e},,
Q(ey;) = (al —bk)ez; — (ak + bl)e3,.
Thus, we have
A = £/ (ak +b)2 + (al — bk)2 = £\/k2 + 12 (3.8)
and
bk —al ak +bl 4
ef = Z)\—Jrekl + e} +Z}\—+eklv
Kl Kl
ak + bl al — bk
eff = Z}\—Jr@zlcz + ey +Z)\—+ekl7
Kl kl
ol l ak+ble +Zal—bk‘e
kl — Ykl )\]-:l kl )\]-:l kl»
_o al—0bk 5  ak+0bl 4 4

ekl =V F Chi +1 F e + e
kl kl

form a complete set of eigenvectors of Q.



134 R. MATTHES ET AL.

PROPOSITION 3. (C°°(T?) x R, L%(T2, E), Q) is a spectral triple of dimension, 2.
Proof. See [18]. m

Note that the commutators of Q with the generators U; and U, are explicitly given
by

[Qa Ul]ellcl = a€i+1,z - bei—!—l,lv
[Q.Uileq, = *aellc+1,z + be%+1,la
[Q,Ur]ey, = b€11c+1,l + ae%ﬂ,za
[Qa Ul]eil = *beiﬂ,z - aez+1,l
and
Q. Usley, = bei,l+1 + ae%,l+17
[@, U2]€il = _bellc,l—H - aei,l-&-la
Q. Ua)e, = _aellc,l-&-l + bei,l—&-la
[Qa U2]€il = A€ 141 — bei,l—i—l'

In order to describe the differential algebra QQ(O(TQ) xR), we denote, as in formulae
(2.1) and (2.2), by m! and 72 the extensions of 7 to universal one and two forms. Since
7 is faithful by Proposition 2, Qé(@(’ﬂq) x R) is isomorphic to 7! (Q*(O(T?) x R)), with
duj v~ [Q,Uj], dv; — [Q, V4], and Q2 (O(T?) % R) = Q*(O(T?) xR)/(ker 1 +d(ker 7))
w2(Q3(O(T?) x R))/m2(d(ker 71)).

Let us first note that, under the identification L?(T?, E) ~ C* ® L?(T?) given by

1 0 0 0
en — 8 ek, ezz = (1) ®epl, €y — (1) @ ek, eiz — g ®ek, (3.9)
0 0 0 1
U1,Us, Vi and the above commutators can be written as follows:
Ur=1® s, Uy =1® 52, V; =1 ® vapt, (3.10)
where 81k = €x 411, 526k = k111, Vabterl = R T, and
0 a —-b 0 0 b a O
Qui=| % o . " Nes, 10,0, = :ab 00 T e 1)
0 b —a 0 0 a -0 0

Using this representation, together with [s1, s2] =0, 81045t = €% Vapi 51, S2Vapt =€ Vapt S2,
it is easy to show

LEMMA 1.

Vi(Q, U] = e [Q, hVi, Vi[Q,Us) = ™ [Q, Us) Vs, (3.13)



SIGNATURE OPERATORS AND SPECTRAL TRIPLES 135

[Q,h][Q, U=] = —[Q, Us][Q, Un]. (3.14)
[Q,Vi] = 0. (3.15)
Explicitly, we have
00 0 -1
[Q, h][Q, U] = 8(1)_(1) o | ®sise (3.16)
10 0 0

PROPOSITION 4. (i) Qg((’)(’ﬂq) x R) is a free left (and right) O(T?) x R-module
with basis {duy,dus}. Its bimodule structure is determined by

ujduy = dugu,, Yy, k€ {1,2}, (3.17)
veduy = e duqvy, vedug = et dusuy. (3.18)
Moreover,
dv, = 0. (3.19)
(i) Q%((’)(']IQ) x R) is a free left (and right) O(T?) x R-module with basis {duidus},
with
duldug = —duzdul. (320)

(iii) Q%(O(TQ) xR) =0 for k > 3.

Proof. Since the representation 7 of O(T?) x R in L?(T?, E) is faithful, the equations
(3.17), (3.18) and (3.20) follow from (3.12)—(3.14), whereas (3.19) comes from (3.15).
Now it is sufficient to show that every element of 7(Q!(O(T?) x R)) is of the form
a1[Q, U1] +a2[Q, Ua), ay,as € m(Q(O(T?) xR)) and that from a;[Q, U1] + a2[Q, Us] = 0
follows a; = az = 0. The first claim is immediate from the fact that m(O(T?) x R)
is generated by Uy, Uy, Uz, Uz, V; and from (3.15), (3.12)—(3.14). (Note that commuta-
tors [Q,U]’-“] can be reduced to [Q,U;] using the Leibniz rule: From 0 = [Q, U;U;] =
U [Q.Uj] + Q.U |U; follows [Q,U;] = —U;[Q, U;JU;. On the other hand, multiplying
[Q.U;]U; = U;1Q,Uj] from both sides with U} gives U7[Q,U;] = [Q,U;]U}.) It remains
to show linear independence. Assume

D (Vi UIU3[Q. U] + big Vi UIU3[Q. Ua]) = 0,

ij
aij,bi; € C, finite summation over ¢,j € Z. Acting with this expression on the basis
vector e,lgl gives

WUt I (aef oy g4y — belyirieg)

t;+1,]-,1((k+i+1)a+(l+j)b) (

ai;€
_ i 2 3
=bit1,j-1€ bek+z‘+1,l+j + aek+i+1,l+j)
(now for fixed i, j), which means

aaijeztw((k+1+1)a+(l+J)b) _ bbi+1)jilelti+1,jfl((k+l+1)a+(l+])b) =0,

ba,je'tis (it Dat()0) 4 gp iti 11,51 ((k+i+1)a+(145)b) _ .

i+1,5—1€
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Since

ae’tii ((k+i+1)a+(l+35)b) _beit;+1,j71((k+i+1)a+(l+j)b)
et | ) ity (bt Dat(+)8)  gitipns 1 (it Dat(l+i)b)

— (a2 + b2)ei(t1j+t£+1,j71)((k+i+1)a+(l+j)b) — ei(tij+t2+1,j71)((k+’i+1)‘1+(l+j)b) £0,

this system has only the trivial solution a;; = bj41,;—1 = 0. Thus (i) is proven.

To prove (ii) note that differentiating (3.17) for j = k leads immediately to dujdu; =
dusdug = 0. Moreover, (3.14) yields dujdus = —dugduy, so that Q%(O(TZ) x R) is
generated by dujdus. It remains to show that it is freely generated. To this end we have
to determine ker 7!. From (3.12) and (3.13) it follows that ker 7! contains the bimodule
generated by the elements wjduy — duguy, vidu; — e duq vy, vidug — €Ptdusvy. On the
other hand, this bimodule also contains ker 7': Let

_ r k, 1 n, qd 1
o= g i il tmqUt; U1 UpdUr Uy, uT Uy € ker .

Using the commutation rules (3.12) and (3.13) and the basis property of the [Q,wu;]
already proved in (i), one concludes from 7!(a) = 0 that

-
E Akl t g Vtj+tm U
Now, making use of the basis property of the monomials vsufub (Proposition 2), one has

Z a%kl’mnqe_i((k'*'l)aHb)tm =0 (r=1), (3.21)
tj+tm:T,k+n:K,l+q:L

Ilc+nul;rqefi((kJrl)aJrlb)tm =0, r=1,2.

and a similar equation for r = 2, for every fixed T, K, L. Now fix (for r = 1) ko, lo, ¢},
and write equation (3.21) as

1 _
At;0kolo, Tt , KK —ko,L—lo —

i((ko+1)atlob)(T—t;,) 1 —i((k+1)atib)(T—t;)
—e Jo Ot kol T —t;, K —k,L—1€ e
ti#tjo . k#ko,l#lo

Inserting this and a similar expression for » = 2 into « one obtains

_ 1 k, K—k, L—1
a= E Ut bl T—t; K — k, L—1Vt; Uy UpdUi 0 g Uy~ Uy
(t;,k,D)#(tj0,k0,l0)
_i((ko+1)a+lob)(T—t5,) 1 ko, lo K—ko, L—lo
€ 70 Qg k1, T—t; K~k L—1Vt;o U1 Uy AUV Uy Uy

(t5,k,0)#(t50:k0,l0)

e (k+D)atlb)(T—t;) (a similar term for r = 2).

Now, fix t; > t;,,k > ko,l > lp, and reduce the power of uy in front of du; in the
first term by subtracting and adding dujuse, thus producing a term in the bimodule (with
usdug —duqug in the middle) and a new term with a new e-factor of the old kind. Iterating
this procedure removes all superfluous powers of us. One can do the same for u; and vy
and finally ends up with an expression which turns out to be zero (up to a lot of terms all
lying in the bimodule). We leave the detailed computation to the reader. Thus we have
shown that ker 7! is also contained in the bimodule generated by the elements (3.17) and
(3.18).
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Therefore, a general element of ker 7! is of the form

J=_ ararb

with ag, by, € O(T?) x R, ay, one of the above generating elements of ker 7!. Then

w2 (dj) = m(ar)m®(dey)m(by),

because the other terms appearing according to the Leibniz rule contain a factor 7! (ay,)
= 0. We have to determine 72od(u;duy—duyu;) = 72(dujdug+durdu;) = [Q,U;][Q, Ug]+
[Q,Ux][Q,U;]. A trivial calculation using (3.11) and (3.10) shows that [Q,U;][Q,U;] =
—U?, whereas [Q, U][Q, Ua] + [Q, U2][Q, U1] = 0 by (3.14). It follows that

n?(dker ') = 7(O(T?) x R),

and it remains to show that from w(a)[Q,U1][Q,Us] € 7(O(T?) x R) follows a = 0.
Indeed, this follows from the fact that algebra elements have the diagonal form (3.10)
whereas [Q, U1][Q, U] is antidiagonal (3.16), which is preserved under multiplication with
a diagonal element 7(a).

(iii) is a trivial consequence of the fact that in a form of degree > 3 at least two
differentials of the same generator u; will meet to produce 0. m

Note that one can define calculi Qé(A) and Q%(A) for the topological version A =
C>(T?) x R ([18, Remark 4]).

3.3. The mixed signature operator. Let us now consider the mixed signature operator
Q given by formula (2.5). In matrix representation, we have

2
- 02 8% 0
-2 0
0 6% 0 2z

In order to diagonalize this operator, we have to solve the eigenvalue problem

f1 f1
fo | _ fo

ol £ =27 (3.22)
Ja fa

with f; € L?(T?, E). Q is already block-diagonal and acts in the same way in the space of
(0,0)- and (0, 1)-forms and in the space of (1, 1)- and (1, 0)-forms. It suffices to diagonalize
one block. Defining

g=h+/fs, h=fi—fs,

one arrives at ) )

0°h  Oh 0°g Odg

—+ — = — — —= = )\h.
Ox2 + Oy 9 Ba2 Oy

Returning to the original coordinates (¢1,v2), the foregoing equations read

92h 92h 2h  oh  oh
200 | oah RO O Oy 2
Coz T o000, TV o2 " "a0, T Ya9, Y (3.23)
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2 2 2
an—é + 2aba§1§§2 + ng—ﬂg + bé%gl - aaa—i = \h. (3.24)
The ansatz
g= Z e FOH02) Z et (F91+102)
k,eZ k,l€Z
leads to

((a®k? + 2abkl + b*1*)? + (bk — al)®)xr1 = N Xwis
which gives the eigenvalues
At = £+/(ak + bl)* + (bk — al)2.

One easily concludes that eigenvectors to the eigenvalues Ap;+ are of the form

hit = exty  gri+ = Yri+€rl

with
—(ak + bl)? + i(al — bk)

Aki+

Vei+ =

The eigenvectors of the original problem (3.22) are

1 1
fieie = 3 (Grix + hit) = B (14 Y+ ) ex,
1

1

f3kix = B (Grix — hit) = 5 (Yei+ — 1) ek,

or, written as elements of L?(T?, E),
m _1
Crix = 5Ok (Yt + 1)1+ (Ypi — L)v).
Since the metrics are chosen so that the frame elements 1,7, v, 7 ® v are orthonormal,
these vectors are already orthonormal (note that |yg+| = 1.) The same argument yields

another set 1
2

efrk = 5 Ch (Vi + D7 @ v+ (Yt — 1)7)

of eigenvectors to the same eigenvalues Ag;o. Note that the eigenvalue 0 appears only
for k = 1 = 0. In that case, equations (3.23) and (3.24) decouple, and we get four
independent eigenvectors 1,7,v,7 ® v. In order to see that these vectors together with
the e,(ellf) form an orthonormal basis of L?(T?, E), it is sufficient to see that all the vectors
ewl, epT, exv, epT ®v are linear combinations of the foregoing vectors. This follows

from the fact that the matrix

(7kl++1 Yo+ — 1 )
Y-+ 1 - —1

is always invertible (its determinant being —4vy;4 ).

Thus we have found the spectral decomposition of the selfadjoint operator Q. Its
unboundedness is reflected in the unboundedness of the Ag4. It is now easy to write
down also the spectral decomposition of the corresponding Dirac operator D: Applying
(2.7) for nonzero eigenvalues gives

(1,2) (1,2)
Dey " = £V Ameyy
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where Aj; is the positive root Ag;y. Putting eé&_ = l,e&))_ = v, eé%)_s_ =7 ® v and

eé%) = 7, the formula defines D also on the kernel of @ (cf. 2.6), and gives the spectral
decomposition of D.
(1,2)

The unitary operators Uy, U and V; act by (3.2) on the basis vectors e, as follows:

1,2 1 Vki+ 1,2 Vri+ 1,2
Ulegcl:t) =3 {(1 + ) I(c+1)l+ + ( + egchl),lf )

V41,04 Ve+1,1—
1 Vrit (1,2) Vrit (1,2)
U612)——{(1+ )e +(1+ ey ,
D Vg4 ) EET Viaq1,— ) L
Vt 1 2) i(ka+lb)te](€1[ﬁ)'
Defining
12 1/ a2, @az
Mt = 5 (3 sy T ekl—)> ’
one finds
(1,2 1,2
U177k )= nl(c+1),l+7 (3.25)
o (1,2) _ Vel (1,2) 7 3.96
1M — ,yk+1’l77k+1,l7 ( )
(1,2 1,2
U277kl+) = 7712 l+)1 +7 (3.27)
U (1.2) _ Tkl (1,2) : 3.98
2N = B Mei+1,— ( )
(1,2 i(ka 1,2
mG ) _ ik +lb)t77](€l ), (3.29)
(1,2 (1,2
D = g2, (3.30)

From Theorem 1 or by direct computation using (3.25)—(3.30) one gets
PROPOSITION 5. (C*°(T?) x R, L%(T?, E), D) is a spectral triple of dimension 3.

Next, one would like to describe the differential calculus Qp related to this spectral
triple. Unfortunately, we have no definite result about 2p. We will however show that
the first order calculus for the restriction of the spectral triple to the subalgebra C'°°(T?)
is the universal one, supporting our conjecture that also the first order calculus of the
full triple is universal, up to some relations involving V;. To begin with, we have as an
immediate consequence of (3.25)—(3.30)

LEMMA 2. Let p,q,r,s € Z. Then we have

(1,2) v At s,l+qVk+s,l+q — V Akl Ykl (1,2)

UTul D, U U = . . 3.31

iU | 103 ) Ve+r+s,l+p+q Frtslipter ( )
Moreover,

[Dﬂ‘/;f] = 07 ‘/t[DaUl] :eiat[D7U1]‘/:fa ‘/t[DaUZ] = eibt[-DaUZ]‘/;f~ (332)

Proof. By direct computation using (3.25)—(3.30). m

From Theorem 1 we know that the particular choice I' = 1 gives rise to a spectral
triple over C*°(T?). Let us now first investigate the corresponding differential calculus
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Qp(O(T?)). By faithfulness of the representation, we can again identify Q5 (O(T?)) with
a subspace of B(L?(H)). We have

PROPOSITION 6. The first order differential calculus QL (O(T?)) is freely generated
by the elements [D,U;U3] (s,q € Z).

Proof. We show that no nontrivial relations between U U and commutators [D, UfU3]
exist. Let us first consider relations involving D and U; only. From Lemma 2 it follows
for p = ¢ = 0 that

Abts i Vets,l — VARIVEL (1,2)

Ur D,Us (1,2) — )
1 ko Vo trtod Metrts,1F

Using the Leibniz rule and the fact that different overall powers of U; are independent
(by the foregoing formula) we find that nontrivial relations would be of the form
s—1
> anU" [D,UF™] =0, (3.33)
m=0

for s € N. Applying (3.33) to nfllo’i) (n=k,....,k+s—1) we get, after a redefinition of

the summation index, the following system of equations:

s—1
Zaj (\/ Akt 1,0Vk+j4+1,0 — )\ko’Yko) =0,
i=0

(3.34)

—

s—

E a; <\/ Abtjts,0Vk+5+5,0 — )\k+571,0%+57170) = 0.

j=0

For the discussion of this system of equations it is useful to define a function h on Z

putting
h(i) = v/ Aiovio — v/ Ai—1,0%i-1,0-

In terms of the function h, the matrix of the system of equations (3.34) is

h(k+1) h(k+2)+h(k+1) o h(k+s8)+... +h(k+1)
h(k+2) h(k+3)+h(k+2) o h(k+s+1) 4. 4 h(k+2)
hk+35) h(k+s+1)+h(k+s) - h(k+2s—1)+...+h(k+s)

The determinant of this matrix can be tranformed into the following expression, using
multilinearity and antisymmetry of the columns:

h(k+1) h(k+2) o h(k+s)
h(k+2) h(k+3) o (k4 s+1)

) (3.35)
h(k + s) .h(k—&—s—i-l) <o h(k+2s—1)

It is sufficient to show that the determinant (3.35) is always nonzero. Indeed:
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LEMMA 3. We have
h(io) -+ h(io + k)
R #0,
h(ix) -+ h(ix + k)
for allk € N and ig,...,ix € Z.
Proof. See Appendix A. =

Thus, there are no relations between U; and D besides the ones coming from the
Leibniz rule. In the general case we are looking for a,,, € C such that
s—1 q—1
S amaUPUR D, U US "] = 0.
m=0n=0
Again, we are led to the consideration of a homogeneous linear system of equations
for the a;,,,. The corresponding matrix of coefficients is an (sq) X (sq)-matrix with general
matrix element

Ck,(m,n) = ( )\kJrsfm,qfn’ykJrsfm,qfn - )\kO’ka)a
(k=1,...,sq.) In analogy to the case discussed above we have

LEMMA 4. Let s,q € N be fized. Then we have
det (Ok,(mm)) #0.

Proof. The proof is a straightforward generalization of the proof of Lemma 3 to the
case of functions, defined on Z2, see [21]. =

The proof of the proposition follows now immediately from the fact that between the
elements [D, U;UJ] there are no relations besides the ones coming from the Leibniz rule. m

We were not able to derive more relations of the type (3.32) between commutators of
D with some generator and other generators (up to such relations resulting from applying
[D, ] to (3.3)—(3.6) and the unitarity condition, using the derivation property). This seems
to be due to the fact that Ax; and g, contain second and fourth powers of k£ and [ under
the square root. Therefore we have

CONJECTURE 1. The bimodule Q% (C>(T?) x R) is generated by duy and dus and is
described by two relations,

vedur = e““*duqvy, vidug = e dugu,.

It seems that these difficulties in the end come from the quadratic part in the signature
operator Q.

Let us note that we could choose another diffeomorphism group, restricting the action
of R to the subgroup Z. Then, the generators V; (or v;) would be reduced to one generator
Vi =V (v1 = v), and all the above formulae remain, replacing always V; (v;) by some
power of V' (v). However, we would not get rid of the difficulties related to the differential
calculus.
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A. Proof of Lemma 3. The proof of this lemma rests on the following characteri-
zation of functions f defined by determinants of Hankelian type, see [23], such that

f(io) -+ flio + k)
P =0, (A1)

fx) - flin+ k)
Vk € N and ig,...,i; € Z. We have

THEOREM 2. A function f defined on Z fulfils (A.1) if and only if it is of one of the
following two types:

k—1
fli) =8y, (A.2)
=0
k ’ )
fai) =Y B, (A.3)
j=1

with o, 3, B; € C.
Proof. Let us first show by induction that f; and fo fulfil (A.1). For fi(i) =

g Zf;é a;ji and k =1 we have

apfB apftt

aoﬂj a06j+1

Vi, j € Z. Let now (A.1) be valid for kK = n. Then we have for k =n +1

:0’

g Y agig BT aglio+1)7 e BOFTHE R a(ip +n+ 1)
7=0 Jj=0 J=0

B g AT Y ag(in 1) e BTN iy A 1)

j=0 Jj=0 Jj=0 =
Bt 3 agil Ly BTN @ (ingy + 1) e B ST o (g + 0+ 1)

§=0 3=0 3=0

n . n . n .

> ajig 32 aj(io +1) > ajlio+n+1)
j=0 Jj=0 J=0

S agi] S aglin 1) e Y agli a1y

ol a1 a1 n
6i0+-~'+in+1+w Jgo 7 j=0 7 Jj=0 T

ZO ajiiL—i-l ZO Oéj(in_H + 1)3 . ZO O‘j(ln+1 +n+ 1)]
J= J= J=
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But
n n n )
> agig Y alio+1) o X ajlio+n+ 1)
Jj= Jj= j=
> oagiy 3 ag(in +1)7 > aj(in+n+1)
0 i=0 0
Jj= J= 7= =
n n n )
> ajin gy 20 (ingr +1)7 > jling1 +n+1)
=0 Jj=0 Jj=0
S asih 3 ay[(io+ 1)~ if] > a; [(io +n+ 1) — (ig +n)]
j=0 j=1 j=1
Sl e [+ 1) = ] > aj [l 4 17— (i +n)]
Jj= j= J=
n n n ) .
Zo il g 231% [(znﬂ +1)7 —i +1} . 21 @ [(ing1 +n+1)7 = (ing1 +n)]
J= J= J=
N R N LY R Y I
zocw0 21% I=0 LI glaj =0 (1) Go +m)
j; J j; j:l AW ]; j:l ANS l
Zoaﬂl Zlajl 0(1)21 o _Zlajl O(l)(21+”)
j= J= = J= = =
n 4 n j—1 4 n j—1 .
_Zoajln-H _Zl @ zzo (i) (27 B '21 a; ZZO (]l) (fng1+n)
J= 7= = j= =
n j=1 n j=1
> X (1) > a5 ¥ (1) (i +n)
J= = Jj= =
" | 1 i=0 17 i=0
> ajib : ot
Jj=0 n j—1 i n j—1 NS
2. (7) thar > (7) (in41+n)
j=1 =0 J=1 =0
j—1 j—1
iaj (j)il. .Zn:a,j (J)(Z —I—n)l
: J 1) ‘0 y J 1) \*0
N j=1 =0 j=1 " i=0
(-1t Zaﬂ-fwfl =0,
=0 - I AW z = AN l
a3 ()i X ey 30 () (in +n)
j=1 " i=0 j=1 " i=0

by assumption. Analogously, for fa(i) = Z§:1 a; ﬁ;- we have for k =1

; i+1
a1 By a1 Bt

j j+1
a15{ a15{+

143

Vi, j € Z. Let us now assume the validity of (A.1) for k = n. Then we have for k=n+1
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n+1 i n+1 o1 n+1 iotntl
>oaB BT e 0 By
j=1 j=1 j=1
n+1 . n+1 . n+1l .
Z ajﬁ]h Z ajﬁ;1+1 Z aj/@;l-&-n—&-l
j=1 j=1 j=1 =
n+1 . n+1 . n+1 .
" g1+l nt1tntl
DB 3 gt e 3D gt
j=1 j=1 j=1
(S - i - io+n
‘21 a;3;° Zl ;B (B — Brt1) - Zl a; B (85 — Bn+1)
j= j= j=
S 3 B (B = Bur) o @B (B — )
s ilFj £ iFj ' n+1 ) 1OZJ j ' n+1
1= J= J= =
ntl Gnt1 w Gt 1 2 in41+n
Do Y BT (B = Bat1) 0 Do af3; (B — Bn+1)
i=1 7=1 =1
n ) n .
.Zl ;85" (B; = Pntr) - Zlo‘iﬂ;ﬁn (Bj = Bn+1)
n+1 j= j=
> By : : +ot
j=1 n in+1 n i1+
>0 B (B = Batr) - 20 i (B = Bnt1)
j=1 j=1
n . n .
>0 B (B = Busr) -+ 2 BT (B = Brn)
n+1 4 Jj=1 Jj=1
(D)"Y g : g : =0,
=1 n . n .
2 B (B = Buga) -+ 2 ;37" (B — Bns)
j= j=

by assumption.
Let us now assume that a function f defined on Z fulfils (A.1) for some k& € N. We

choose i1 = ig+1,...,ix =ipo+k and let f(ig),..., f(io+2k—1) denote the corresponding
values of f. Then f(ig 4+ 2k) has to fulfil

flio)  flio+1)--- flio+k)

f(i0:+ 1) f(i0:+2) '.:'f(io +:k+1) o (A4)
Flio+ k) flio+1) -+ flio+2k)
provided that
f(iO) f(l:0+1)"'f(i0f/€—1)
f(@o.‘i‘ 1) f(20.+2) f(lo.‘i‘k) 40 (A5)

flo+k—=1) flio+ k) - flio+ 2k —2)
(We may assume without loss of generality that (A.5) holds. In [21] it is shown that in
the other case one is led to the case k — 1.) From (A.4) and (A.5) we find that the 2k
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values f(ig),. .., f(iog + 2k — 1) determine f completely. Now we show that this function
is either of type (A.3) or (A.2).

Let first the constants f(ip), ..., f(i0 + 2k — 1) be such that the following condition
holds:

I+1
Zﬂwrlfjf(i +7)(=1)7 (l J; 1) =0, (A.6)
§=0

for some g € C,1 € {0,...,k — 1} and all ¢ = 4, ...,ip + 2k — | — 1. We show that the
corresponding function on Z is of the form (A.2). Suppose that 8 € C is a solution of

(A.6). Then we find constants «; as follows. Defining ¢(i) := fﬂ(? (6 #0), we can always
find a; (i =0,...,1) as solutions of the following linear system of equations:

glio) = ag + ayig + - - - + ayil,
glio+1) = ag + a1 (ig + 1) + - - - + cy (i + 1),

g(io+l) :(10+O&1(i0+l)+"'+Ozl(i0+l)l

by
A Y O = i
1| lio+1-- (ig+ 1)1 glio+1) (i + 1)+ -+ (ip + 1)
Q; = 1. . .
A . . .
1ig+1--- (’io + l)i_l g(io + l) (io + l)H_l (io + l)l
with
1 ig - i
Lig+1-- (ig+ 1) !
A=l 10 . (ZO . ) _ (_1)1(1;1) H]' 7&0.
: : : =1
Lig+1 -+ (ig + 1)
Now that we have chosen the constants 3 and ayg, ..., q; such that
flio +7) = f1lio +J)
is fulfilled, for all j =0, ...,[, it remains to be shown that we also have
flio+1+1) = fi(io+1+1).
But

i=0 J
Vs =0,...,7 — 1 (which follows from evaluating the s-th derivative of f(z) = (x —1)" =

Z;:O (;) (=1)72"7 at x = 1). Now we find

I+1 +1 !
S oA (—1y (Z J; 1) fili+g) =Y BT (1) (l B 1) > am(i+j)"

§=0 §=0 J m=0
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— gi+itl lz% Zl: Zm: am(—1) (l + 1> (’:) jnjmen

7j=0m=0n=0 J
l m I+1
_ pl4i+1 m) -n _1\J l+ 1 m—-n __
=4 amZ(n ZZ( 1)( . j =0.
m=0 n=0 7=0
Therefore, we have
41
, _fl+1 . S
S (~1)ipHid ( . )(fum) ~ Filio+))
i=0 J
= (1) (flio+1+1) — filio+1+ 1)) =0,
ie.
flio+1+1) = filio +1+1).
Let us now consider the general case (A.3). Suppose, that f(ig),..., f(ip + 2k — 1) are
chosen such that (A.6) does not hold. Then we have to solve the following system of
algebraic equations (where we have chosen ig = 0):

F(0) = Cy + -+ Ci,
f(1) =Cip1 + - + Cifr,

fk—1) =17+ CuB
which can always be done using Grébner basis techniques, see [21]. =

The proof of Lemma 3 follows now immediately from the observation that the function

h(i) = vV XioYio — vV Ai—1,0%i-1,0
is obviously not of the form (A.2) or (A.3). =

References

[1] N. Berline, E. Getzler and M. Vergne, Heat Kernels and Dirac Operators, Springer, Berlin,
1992.

[2] R. Bott, Lectures on characteristic classes and foliations, in: Lect. Notes Math. 279,
Springer, Berlin, 1972, 1-94.

[3] A. H. Chamseddine and A. Connes, The spectral action principle, Comm. Math. Phys.
186 (1997), 731-750.

[4] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.

[5] A. Connes and J. Lott, Particle models and non-commutative geometry, Recent advances
in field theory (Annecy-le-Vieux, 1990), Nucl. Phys. B Proc. Suppl. 18 B (1990), 29-47
(1991).

[6] A.Connes and H. Moscovici, The local index formula in noncommutative geometry, GAFA
5 (1995), 174-243.

[7] R. Coquereaux, G. Esposito-Farese and F. Scheck, Noncommutative geometry and graded
algebras in electroweak interactions, Int. J. Mod. Phys. A, 7 (1992), 6555-6593.



(8]

[10]
[11]
12]
13
[14]
[15]
[16]
17)
18]

[19]
[20]

21]
22]

23]

SIGNATURE OPERATORS AND SPECTRAL TRIPLES 147

J. Frohlich, O. Grandjean and A. Recknagel, Supersymmetric quantum theory and differ-
ential geometry, Commun. Math. Phys. 193 (1998), 527-594.

J. Frohlich, O. Grandjean and A. Recknagel, Supersymmetric quantum theory and non-
commutative geometry, Commun. Math. Phys. 203 (1999), 119-184.

P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem,
Publish or Perish, Wilmington, 1984.

J. M. Gracia-Bondia, J .C. Vérilly and H. Figueroa, Elements of Noncommutative Geom-
etry, Birkhauser, Basel, 2000.

W. Kalau, N. A. Papadopoulos, J. Plass and J.-M. Warzecha, Differential algebras in
non-commutative geometry, J. Geom. Phys. 16 (1995), 149-167.

W. Kalau and M. Walze, Gravity, non-commutative geometry and the Wodzicki residue,
J. Geom. Phys. 16 (1995), 327-344.

D. Kastler, The Dirac operator and gravitation, Comm. Math. Phys. 166 (1995), 633—643.
T. Krajewski, Classification of finite spectral triples, J. Geom. Phys. 28 (1998), 1-30.

R. Matthes, G. Rudolph and R. Wulkenhaar, On the structure of a differential algebra
used by Connes and Lott, Rep. Math. Phys. 38 (1996), 45—66.

R. Matthes, G. Rudolph and R. Wulkenhaar, On a certain construction of graded Lie
algebras with derivation, J. Geom. and Phys. 20 (1996), 107-141.

R. Matthes, O. Richter and G. Rudolph, Spectral triples and differential calculi related to
the Kronecker foliation, J. Geom. and Phys. 46 (2003), 48-73.

P. Molino, Riemannian Foliations, Birkhauser, Basel, 1988.

M. Paschke and A. Sitarz, Discrete spectral triples and their symmetries, J. Math. Phys.
39 (1998), 6191-6205.

O. Richter, On functions defined by the vanishing of determinants of Hankelian type, in
preparation.

M. A. Rieffel, C*-algebras associated with irrational rotations, Pac. J. Math. 93 (1981),
415-429.

R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics,
Springer, Berlin, 1998.



