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Abstract. We consider the norm closure A of the algebra of all operators of order and class
zero in Boutet de Monvel’s calculus on a compact manifold X with boundary ∂X. Assuming that
all connected components of X have nonempty boundary, we show that K1(A) ' K1(C(X))⊕
kerχ, where χ : K0(C0(T ∗Ẋ))→ Z is the topological index, T ∗Ẋ denoting the cotangent bundle
of the interior. Also K0(A) is topologically determined. In case ∂X has torsion free K-theory,
we get K0(A) ' K0(C(X))⊕K1(C0(T ∗Ẋ)).

Let X be a compact n-dimensional manifold, with boundary ∂X and interior Ẋ,
embedded in a closed manifold Ω of the same dimension. Let E and F be smooth complex
vector bundles over X and ∂X, respectively, E being the restriction of a bundle Ẽ over
Ω. Given a pseudodifferential operator P on Ẽ, we denote by P+u the restriction to Ẋ
of P applied to the extension by zero of u ∈ C∞(E) to Ω. This defines a mapping from
C∞(E) to C∞(E|Ẋ), completely determined by the restriction of P to Ẋ. P has the
transmission property if the image of P+ is contained in C∞(E).

We denote by A
EF

the set of all polyhomogeneous Green operators

A =
(
P+ +G K

T S

)
:
C∞(E)
⊕

C∞(F )
→

C∞(E)
⊕

C∞(F )
,(1)
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of order and class zero, as defined by Boutet de Monvel [2]. In (1), P is a pseudodiffer-
ential operator with the transmission property, S is a pseudodifferential operator on F .
G, K, and T are regularizing in the interior of X and locally at the boundary are given
as pseudodifferential operators on Rn−1 with operator-valued symbols. They are called,
respectively, singular Green operators, Poisson operators and trace operators. Detailed
expositions of Boutet de Monvel’s calculus can be found in [4, 9]. We adopt here notation
and definitions of [4].

We write L(H) for the set of all bounded operators on the Hilbert space H = L2(E)⊕
H−

1
2 (F ), H−

1
2 denoting the usual Sobolev space. A

EF
is an adjoint-invariant sub-algebra

of L(H), closed under holomorphic functional calculus [10]. It then has the same K-theory
as its norm closure, which we denote by AEF .

Assuming that the rank of E is nonzero (the case E = 0 belongs to classical index
theory on closed manifolds), it follows from the rules of Boutet de Monvel’s calculus that
AEF is strongly Morita equivalent to the corresponding algebra for the case when E and
F are rank-one trivial bundles. Since strongly Morita equivalent C∗-algebras have the
same K-theory [3], we now assume that E = X × C and F = ∂X × C, and write A and
A instead of AEF and AEF . In this paper we compute the K-groups of A, pointing out
relations between this computation and Boutet de Monvel’s index theorem. Proofs are
only sketched, details given in [8].

Our main tool is the analysis of the boundary principal symbol, *-homomorphism
defined by Boutet de Monvel on A already in [2]. In order to describe it, one needs to
use coordinates. Let the intersection, if not empty, of ∂X with the domain of any chart
be given by xn = 0, and let x′ = (x1, · · · , xn−1). With respect to such a chart, the opera-
tors G, K and T are pseudodifferential operators on Rn−1, with operator-valued symbols
g(x′, ξ′, Dn) : S(R+)→ S(R+), k(x′, ξ′, Dn) : C→ S(R+), and t(x′, ξ′, Dn) : S(R+)→ C;
where S(R+) denotes the space of restrictions to R+ = {xn;xn ≥ 0} of functions in the
Schwartz class S(R). These symbols, in their turn, are defined by complex-valued smooth
functions g(x′, ξ′, ξn, ηn), k(x′, ξ′, ξn), and t(x′, ξ′, ξn), also called symbols, even though
our operators are not usual pseudodifferential operators in the last variable xn. In fact, for
each (x′, ξ′) ∈ Rn−1 × Rn−1, g(x′, ξ′, Dn), k(x′, ξ′, Dn), and t(x′, ξ′, Dn) are integral op-
erators with kernels (2π)−2ĝ(x′,−xn, yn, ξ′), (2π)−1k̂(x′,−xn, ξ′) and (2π)−1t̂(x′, yn, ξ′),
respectively, where ĝ(x′, ·, ·, ξ′), k̂(x′, ·, ξ′) and t̂(x′, ·, ξ′) denote the Fourier transforms of
g(x′, ξ′, ·, ·), k(x′, ξ′, ·) and t(x′, ξ′, ·) (see [4], (2.3.25) and (2.4.4) to (2.4.7)). This explains
why the extra covariable ηn is needed for g. The symbol classes to which g, k, and t be-
long are such that, for each (x′, ξ′), the kernels of k(x′, ξ′, Dn) and t(x′, ξ′, Dn) belong to
S(R+), while that of g(x′, ξ′, Dn) is the restriction to R+ × R+ of a function in S(R2);
in particular, g(x′, ξ′, Dn) is a compact operator on L2(R+).

The polyhomogeneity hypothesis means that the local symbols p(x′, xn, ξ′, ξn),
g(x′, ξ′, ξn, ηn), k(x′, ξ′, ξn), t(x′, ξ′, ξn), and s(x′, ξ′) for P , G, K, T , and S possess
asymptotic expansions in homogeneous components. Let p0, g0, k0, t0, and s0 denote
the leading terms in those expansions. The boundary principal symbol γ(A) of the Green
operator A ∈ A is a function defined on the cosphere bundle of the boundary, S∗∂X,
valued in Green operators on R+. For each (x′, ξ′), γ(A)(x′, ξ′) is obtained from the sym-
bols (regarded as functions of ξn and ηn) p0(x′, 0, ξ′, ξn), g0(x′, ξ′, ξn, ηn), k0(x′, ξ′, ξn),
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t0(x′, ξ′, ξn), and s0(x′, ξ′). That is, we have:

γ(A)(x′, ξ′) =
(
p0(x′, 0, ξ′, Dn)+ + g0(x′, ξ′, Dn) k0(x′, ξ′, Dn)

t0(x′, ξ′, Dn) s0(x′, ξ′)

)
.

This is invariantly defined ([9], 2.3.3.1, Theorem 3; [4], Theorem 2.4.11), if we restrict
ourselves to an atlas whose changes of variables among boundary charts preserve the
variable xn, not only the set {xn = 0}. In other words, while the algebra depends only
on the manifold, the bondary principal symbol depends on the choice of an atlas.

The principal symbol of a Green operator is, by definition, the principal symbol of P ,
p0(x, ξ), regarded as a function on the cosphere bundle S∗X. We denote this by σ(A) =
σ(P ). Invertibility of the two symbols σ(A) and γ(A) is equivalent to the Fredholm
property for a Green operator A ([2], Theorem 5.1). That also follows from the estimate
[5, 9]

inf
C∈K
||A+ C|| = max{||σ(A)||, ||γ(A)||}, for all A ∈ A,(2)

which generalizes the classical estimate for the L2-norm, modulo compacts, of a pseudo-
differential operator on a closed manifold (then, γ = 0). We have denoted by K ⊂ L(H)
the compact ideal, by ||σ(A)|| the supremum norm of σ(A) on S∗X, and by ||γ(A)|| the
supremum of ||γ(A)(x′, ξ′)||

L(L2(R+)⊕C) over all (x′, ξ′) in S∗∂X. It follows from (2), in
particular, that γ extends to the C∗-algebra homomorphism

γ̄ : A→ C(S∗∂X)⊗ L(L2(R+)⊕ C).

There is a close connection between Boutet de Monvel’s calculus and the theory of
Toeplitz operators, as we now explain. Let U : L2(S1)→ L2(R) denote the unitary map-
ping Ug(t) =

√
2

1+itg( 1−it
1+it ), H−1 denote the image of C∞(S1) under U , and H0 = H−1⊕C.

The image by U of the Hardy space H2 is equal to F (L2(R+)), with F denoting the
Fourier transform on R. Given p ∈ H0, the truncated Fourier multiplier p(D)+ equals
F−1UTp̃U

−1F , with Tp̃ denoting the Toeplitz operator of symbol p̃(z) = p( iz−iz+1 ). Denot-
ing also by K the compact ideal on L2(R+), one then gets (see also [4], Lemma 3.1.5):

Lemma 1. infC∈K ||p(D)+ + C|| = ||p(D)+ || = sup |p|, for all p ∈ H0.

Next we introduce notation needed to describe the kernel and the image of γ̄. Those
descriptions will then be used to compute the K-groups of A/K. That will be the central
part of this paper, in view of the following remark.

Remark 2. For sufficiently large k, there exist matrices in Mk(A) which, regarded as
operators on Hk, have Fredholm index one. Hence, K0(A) is isomorphic to K0(A/K), and
K1(A) is isomorphic to the kernel of the Fredholm index, regarded as a mapping from
K1(A/K) to K0(K) ' Z.

Let m denote the mapping C(X) 3 f 7→
(
f 0
0 f |∂X

)
∈ A (we use the same

symbol to denote a function and the corresponding multiplication operator). We de-
fine b : C(∂X) → Im γ̄ by b(f |∂X) = γ̄(m(f)). Let W denote the C∗-subalgebra of
L(L2(R+)⊕C) generated by all operators whose upper left corner is of the form p(D)+ ,



152 S. T. MELO ET AL.

p ∈ H0. If p(x, ξ) is the symbol of a pseudodifferential operator with the transmis-
sion property, then p(x′, 0, ξ′, ·) ∈ H0, for all (x′, ξ′). The range of γ̄, Im γ̄, is there-
fore contained in C(S∗∂X) ⊗ W. Let W0 denote the kernel of the *-homomorphism

W 3
(
p(D)+ ·
· ·

)
7→ p(∞) ∈ C.

Theorem 3. Im γ̄ = (C(S∗∂X)⊗W0)⊕ Im b ' (C(S∗∂X)⊗W0)⊕ C(∂X)

Proof. For each f ∈ L2(R+), let us denote by 〈f | the linear functional ψ 7→
∫
fψ;

and by |f〉 the linear map, from C to L2(R+), of multiplication by f . Let there be given
ϕ ∈ C∞(S∗X) with small support; and arbitrary f11 ∈ C∞c (R), f12, f21 ∈ C∞c (R+) and
s ∈ R. One can explicitly construct a Green operator whose boundary principal symbol

is, roughly speaking, “equal” to ϕ⊗
(
f11(D)+ |f12〉
〈f21| s

)
. A density argument then gives

C(S∗∂X)⊗W0 ⊂ Im γ̄.
We will be finished if we show that the intersection of the upper left corner of Im γ̄

and C(S∗∂X) ⊗ (C · I) is contained in C(∂X) ⊗ (C · I), where I denotes the identity

on L2(R+). Regarding the mapping A 7→
(
A 0
0 0

)
as an inclusion of the upper left

corner as a subalgebra of A, and analogously for Im γ̄, let f ∈ C(S∗∂X) be so that
f ⊗ I ∈ Im γ̄. Then, for every δ > 0, there exist a zero-order polyhomogeneous pseudo-
differential operator with the transmission property P and a singular Green operator G
such that ||γ(P+)(x′, ξ′)− γ(G)(x′, ξ′)− f(x′, ξ′)I|| < δ, for all (x′, ξ′) ∈ S∗∂X. For each
(x′, ξ′) ∈ S∗∂X, since γ(G)(x′, ξ′) is compact, we get:

inf
C∈K
||γ(P+)(x′, ξ′)− f(x′, ξ′)I + C|| < δ.

Lemma 1 implies that the left-hand side of the above inequality is equal to

sup
ξn∈R

|p0(x′, 0, ξ′, ξn)− f(x′, ξ′)| = sup
ξn 6=0

|p0(x′, 0,
ξ′

|ξn|
,±1)− f(x′, ξ′)|,

which is greater then or equal to |p0(x′, 0, 0,+1) − f(x′, ξ′)|, with p0 denoting the (ho-
mogeneous) principal symbol of P .

The proof of the following theorem uses the already mentioned norm estimates for
Toeplitz operators and for pseudodifferential operators on closed manifolds. It also de-
pends on analogous results for Green operators: the estimate (2) for the norm of the
quotient A/K, and the norm estimate, essentially given by (3), for the quotient of A by
an ideal I ) K.

Theorem 4. The principal symbol induces an isomorphism from ker γ̄/K to the alge-
bra C0(S∗Ẋ) of all continuous functions on S∗X which vanish over ∂X.

Proof. Let I denote the C∗-subalgebra of L(H) generated by K and all Green operators
of the form ϕQψ, with Q a zero-order polyhomogeneous pseudodifferential operator on
Ẋ and ϕ, ψ ∈ C∞c (Ẋ) (we are again regarding the upper left corner as a subalgebra).
The estimate

inf
C∈K
||ϕQψ + C|| = sup

S∗Ẋ

|ϕψσ(Q)|



BOUTET DE MONVEL’S ALGEBRA 153

follows from [7], Theorem A.4, or from [6], Theorem 3.3. This gives I/K ' C0(S∗Ẋ).
Since ker γ ⊂ I, and ker γ contains a dense subset of I, we have I = ker γ ⊆ ker γ̄. To
prove the reverse inclusion, it is enough to show that

inf
ϕ,ψ,Q

||P+ +G+ ϕQψ|| ≤ c||γ(P+ +G)||,(3)

for all P+ + G in the upper left corner of A. We give a hint of how that can be proven,
loosely using local coordinates.

Let P̃ denote the pseudodifferential operator of symbol p(x′, 0, ξ′, ξn), where p is the
symbol of P . Since γ(P̃ ) = γ(P ), P − P̃ ∈ I. Moreover, there exists a compact C such
that ||P̃ + C|| ≤ 2 supx′,ξ′,ξn |p0(x′, 0, ξ′, ξn)|. By Lemma 1, for each (x′, ξ′),

sup
ξn

|p0(x′, 0, ξ′, ξn)| = ||p0(x′, 0, ξ′, Dn)+ || = ||γ(P+)(x′, ξ′)||.

This proves (3) when G = 0. For P = 0, (3) follows from (2). The general case follows
then from Lemma 1, using that γ(G)(x′, ξ′) is compact for each (x′, ξ′).

Since Im γ̄ and A/I are isomorphic, and K∗(C(S∗∂X)⊗W0) vanishes, we get:

Corollary 5. b∗ : K∗(C(∂X))→ K∗(A/I) is an isomorphism.

Now we consider the exact sequence of C∗-algebras

0→ C0(T ∗Ẋ)→ C0(B∗Ẋ)→ C0(S∗Ẋ)→ 0(4)

induced by the restriction mapping, each cosphere being regarded as the infinite points
of the radial compactification of the corresponding cotangent space. Since the bundle of
closed balls B∗Ẋ is homotopically equivalent to Ẋ, (4) yields the cyclic exact sequence
of abelian groups (see [1], 9.3.1)

K0(C0(T ∗Ẋ)) → K0(C0(Ẋ)) → K0(C0(S∗Ẋ))xδ1
y

K1(C0(S∗Ẋ)) ←− K1(C0(Ẋ)) ←− K1(C0(T ∗Ẋ))

(5)

If one assumes that every connected component of X has nonempty boundary, then
any finite number of zeroes of a section of T ∗X may be continuously deformed to Ω \X.
This implies that S∗Ẋ possesses a continuous section Σ. Composition with Σ defines
a C∗-algebra homomorphism s : C0(S∗Ẋ) → C0(Ẋ) such that s ◦ m′ is the identity,
with m′ : C0(Ẋ) → C0(S∗Ẋ) denoting the pullback under the bundle projection. Since
the upper-right and the lower-left arrows in (5) are homomorphisms induced by m′, (5)
becomes the two split exact sequences

0→ Ki(C0(Ẋ))
m′∗←→
s∗

Ki(C0(S∗Ẋ))→ K1−i(C0(T ∗Ẋ))→ 0,

i = 0, 1. In particular, Ki(C0(S∗Ẋ)) is isomorphic to the direct sum Ki(C0(Ẋ)) ⊕
K1−i(C0(T ∗Ẋ)). With respect to this isomorphism, for each i, the canonical projec-
tion of Ki(C0(S∗Ẋ)) onto K1−i(C0(T ∗Ẋ)) corresponds to a connecting mapping in (5),
while the injection of Ki(C0(Ẋ)) into Ki(C0(S∗Ẋ)) is the group homomorphism induced
by m′.
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Defining m̃ by C(X) 3 f 7→ m̃(f) = [m(f)] ∈ A/K, with [·] denoting the canonical
projection from A onto A/K, we obtain the commutative diagram

0→ I/K → A/K
π→ A/I → 0xm̃

xm̃
xb

0→ C0(Ẋ) → C(X) r→ C(∂X) → 0

(6)

Under the isomorphism of Theorem 4, the restriction of m̃ to C0(Ẋ) corresponds to m′.
Hence, the connecting mappings associated to the two exact sequences in (6) are the
same, modulo the isomorphisms b∗ and the split injections m′∗; i.e.,

K1(A/I) δ′→ K0(C0(S∗Ẋ)) K0(A/I)
exp′→ K1(C0(S∗Ẋ))xb∗

xm′∗ and
xb∗

xm′∗
K1(C(∂X)) δ0

→ K0(C0(Ẋ)) K0(C(∂X))
exp0

→ K1(C0(Ẋ))

commute, with δ0 and exp0 denoting the connecting mappings for the six-term exact
sequence associated to the lower sequence in (6), and δ′ and exp′ those for the upper one
(modulo the isomorphism of Theorem 4). This implies:

Theorem 6. If the boundary of every connected component is not empty, then, for
each i = 0, 1, there is an exact sequence

0→ ker ri∗ ⊕K1−i(C0(T ∗Ẋ))→ Ki(A/K)→ Im ri∗ → 0,

where ri∗ : Ki(C(X)) → Ki(C(∂X)) is the homomorphism induced by the restriction to
the boundary r : C(X)→ C(∂X).

Corollary 7. If, moreover, the K-groups of C(∂X) are torsion free, then Ki(A/K)
is isomorphic to Ki(C(X))⊕K1−i(C0(T ∗Ẋ)), i = 0, 1.

Proof. Twice apply the fact that, if a sequence 0 → A → B → C → 0 of abelian
groups is exact and C is free, then B is isomorphic to A⊕ C.

Example 8. Suppose that X, in addition to being compact and all its components
having nonempty boundary, is orientable and has dimension two. Corollary 7 then implies
that K0(A/K) ' K1(A/K) ' Z2g+m, where g denotes the genus of X and m the number
of connected components of its boundary. By Remark 2, we get K0(A) ' K0(A) ' Z2g+m

and K1(A) ' K1(A) ' Z2g+m−1.

Consequences of Boutet de Monvel’s index theorem. A central point in Boutet de
Monvel’s paper is the definition of a homomorphism from K1(A/K) to K(T ∗Ẋ) ([2],
Theorem 5.21; see also [9], 3.2.2.4, Theorem 1). Let us denote the composition of the
canonical isomorphism K0(C0(T ∗Ẋ)) ' K(T ∗Ẋ) with that homomorphism by ind :
K1(A/K)→ K0(C0(T ∗Ẋ)) (we refer to [1], Section 1, for topological K-theory definitions
and notation). Here we shall use how ind is defined, and how it relates to the Fredholm
index, to give a more precise description of the structure of K1(A/K),

Any x ∈ K1(A/K) is of the form x = [[A]], for some Fredholm A ∈ Mk(A), [[A]]
denoting the K1-class of the projection [A] of A onto Mk(A/K). If A happens to be
a bundle isomorphism near the boundary, σ(A) is independent of the covariable near
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the boundary, and hence induces an element d(σ(A)) of K(B∗X,S∗X ∪ T ∗X|∂X). By
definition, ind (x) is the element of K0(C0(T ∗Ẋ)) identified with d(σ(A)) via the iso-
morphisms K0(C0(T ∗Ẋ)) ' K(T ∗Ẋ) ' K(B∗X,S∗X ∪ T ∗X|∂X). Consequently we see
that, if x = [[A]] ∈ K1(I/K) is induced by A ∈ Mk(I ⊕ C), then ind (x) corresponds,
via the isomorphism K1(I/K) ' K1(C0(S∗Ẋ)), to δ1(x), where δ1 denotes the index
mapping associated to (4). In other words: We have ind ◦ i∗ = δ1, for the homomor-
phism i∗ : K1(I/K) → K1(A/K) induced by the inclusion i of I/K into A/K. Moreover,
since the principal symbol of m(f), for any f ∈ C(X), is an isomorphism over all B∗X,
ind ◦ m̃∗ = 0.

Using, moreover, the isomorphism K1(C0(S∗Ẋ)) ' K1(C0(Ẋ)) ⊕K0(C0(T ∗Ẋ)), we
then obtain from (6) the commutative diagram

K0(C0(T ∗Ẋ))xδ1 ↖ ind

K1(C0(Ẋ))⊕K0(C0(T ∗Ẋ)) i∗→ K1(A/K) π∗→ K1(A/I) δ′→ · · ·xm′∗
xm̃∗

xb∗
xm′∗

K1(C0(Ẋ))
i′∗→ K1(C(X)) r∗→ K1(C(∂X)) δ0

→ · · ·

.

Some diagram chasing gives:

Theorem 9. If X is connected and ∂X is not empty, then K1(A/K) is isomorphic to
K1(C(X))⊕K0(C0(T ∗Ẋ)). More precisely, in the above diagram, m̃∗ and the restriction
of i∗ to K0(C0(T ∗Ẋ)) are injective, and K1(A/K) = m̃∗(K1(C(X))⊕ i∗(K0(C0(T ∗Ẋ))).

Even though the restriction of i∗ : K1(C0(S∗Ẋ)) → K1(A/K) to K0(C0(T ∗Ẋ)) is
injective, i∗ itself is not: For the case considered in Example 8, we get ker i∗ ' Zm−1.

Corollary 10. With respect to the isomorphism of Theorem 9, ind corresponds to
the canonical projection from K1(C(X))⊕K0(C0(T ∗Ẋ)) onto K0(C0(T ∗Ẋ)).

The Fredholm index on K1(A/K) is the composition of the topological index χ :
K0(C0(T ∗Ẋ)) → Z with ind ([2], Section 5.8; [9], 3.2.2.3, 3.2.2.4). By Remark 2, we
then get:

Corollary 11. K1(A) and K1(A) are isomorphic to K1(C(X))⊕ kerχ.

Below we denote by the same symbols matrices of continuous functions and the mul-
tiplication operators they define.

Corollary 12. If A ∈ Mk(A) defines a Fredholm operator on Hk, then, for some
l ≥ k, there exist: an l-by-l matrix P of zero-order polyhomogeneous pseudodifferential op-
erators on Ẋ, an invertible f ∈Ml(C(X)), ϕ and ψ ∈ C∞c (Ẋ), and a continuous path of

Fredholm operators in Ml(A) connecting A⊕1l−k to A1A2, where A1 =
(
ϕPψ + I 0

0 I

)

and A2 =
(
f 0
0 f |∂X

)
, I denoting both the identity on L2(X;Cl) and on H−

1
2 (∂X;Cl).

Proof. This follows immediately from Theorem 9 and the definitions, after one notes
that: (i) the set of all such A1 and the compact operators generate a dense subalgebra of
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Ml(I⊕C), and (ii) any homotopy of invertibles in Ml(A/K) may be lifted to a homotopy
of Fredholm operators in Ml(A) ([1], 3.4.6).
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