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Abstract. An exposition is given of recent work of the author and others on the differential
calculi that occur in the setting of compact quantum groups. The principal topics covered are
twisted graded traces, an extension of Connes’ cyclic cohomology, invariant linear functionals on
covariant calculi and the Hodge, Dirac and Laplace operators in this setting. Some new results
extending the classical de Rham theorem and Poincaré duality are also discussed.

1. Introduction. This paper concerns the differential calculi that arise in the setting
of compact quantum groups. As soon as these calculi were discovered by S. L. Worono-
wicz [11] he and others recognized that they do not fit into the framework of noncom-
mutative geometry developed by A. Connes [1]. In fact, something entirely new arises
in the quantum group setting, as we shall see below. It is already clear that a deep and
significant extension of Connes’ theory will be required to deal with these new calculi.

The subject of this paper is joint work of the author and J. Kustermans and L. Tuset,
see [6, 7]. The reader should consult these works for further details of results or concepts
discussed here, in the case that no explicit reference is given.

The paper is an expanded version of a talk delivered at the conference Noncommuta-
tive Geometry and Quantum Groups held at the Banach Center in Warsaw in September
2001. The author would like to express here his thanks to the organizers for their kind
invitation to speak at the conference.

The paper begins with a brief section that defines basic terms and explains in what
sense differential calculi over quantum groups differ not only from the calculi that ap-
pear in the classical theory of manifolds, but also from the calculi appearing in the
theory of noncommutative geometry of Alain Connes. The following section, Section 3,
introduces the concept of a twisted graded trace. This is a sort of “volume integral”
on a differential calculus and extends Connes’ concept of a graded trace. The latter
concept is no longer adequate to deal with the “integrals” that occur in the quantum
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group setting. Twisted graded traces are a sort of analogue of a KMS state, whereas a
graded trace is an analogue of a tracial state. We discuss in this section an extension
of Connes’ theory of cyclic cohomology that bears a similar relationship to the differen-
tial calculi and integrals that occur in the quantum group framework as ordinary cyclic
cohomology does to the differential calculi and integrals considered by Connes in his
version of noncommutative geometry. In Section 4 we discuss left-invariant linear func-
tionals on left-covariant differential calculi. Covariant calculi are the most important in
the theory and invariant functionals are natural objects of study in their setting. We
discuss conditions that ensure that a left-invariant linear functional is a twisted graded
trace. Our results state that, in a sense, the objects one would naturally consider to
be the “volume integrals” in this theory are indeed twisted graded traces. In Section 5
we consider the Laplace and Dirac operators. We also discuss a Hodge-type decomposi-
tion and show how this implies a version of the classical de Rham theorem identifying
the cohomology spaces of the de Rham complex with corresponding spaces of harmonic
forms. In the penultimate section, Section 6, we introduce some conditions that ensure
the existence of a Hodge operator and that enable us to prove a version of Poincaré
duality. The final section, Section 7, is concerned with the question of obtaining a K-
cycle, in the sense of Connes, from the differential calculi that occur in the quantum
group framework. Our results here again point to the need for an extension of existing
theories.

2. Differential calculi. This brief section is concerned with basic notations and
terminology and discusses in outline how the theory of differential calculi over quantum
groups is different from the classical theory of forms on a manifold and from the theory
of forms and integrals occurring in Connes’ version of noncommutative geometry.

Let A be a unital algebra (all algebras and linear spaces are over the complex field C).
A pair (Ω, d) is a differential calculus over A if the following conditions hold:

1. Ω = ⊕∞n=0Ωk is a positively-graded algebra such that Ω0 = A;
2. d : Ω→ Ω is a graded derivation of degree one such that d2 = 0;
3. For each positive integer n, Ωn is the linear span of the elements of the form

a0da1 · · · dan and da1 · · · dan, where a0, . . . , an ∈ A.

Of course, this concept extends the usual idea of the calculus of differential forms
on a manifold, where the underlying algebra A is the algebra of smooth complex-valued
functions on the manifold.

There is always at least one differential calculus over an arbitrary unital algebra,
namely, the universal differential calculus. Although this plays an important role in our
results (see [6] for details), we shall have no need to consider it in this paper. At this
point we should observe that a problem with differential calculi in the general setting of
arbitrary algebras is their non-uniqueness. There may be many calculi over the algebra
being considered that seem to be equally nice or suitable (or equally problematical!).
This is the case for the Hopf ∗-algebra underlying the quantum group SUq(2). In this
case, there are two 4-dimensional bicovariant differential calculi. (Covariant calculi are
discussed in Section 4.)
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If ωk and ωl are a k-form and an l-form on a differential manifold, then we have near
commutativity in the sense that

ωk ∧ ωl = (−1)klωl ∧ ωk, (1)

where ∧ denotes the usual exterior product of forms. Nothing like this is true in the
quantum setting. For instance, in the first 3-dimensional calculus that Woronowicz con-
structed over the quantum group SUq(2) (see [11]), we have 1-forms ω(0), ω(1), ω(2) for
which

ω(1) ∧ ω(0) = −q4ω(0) ∧ ω(1)

and
ω(2) ∧ ω(0) = −q2ω(0) ∧ ω(2).

Here the scalar q is a certain deformation parameter lying in the punctured interval
[−1,+1] \ {0}. In fact, not even this kind of twisted commutation relation holds between
arbitrary k- and l-forms ωk and ωl in a differential calculus in the general quantum group
setting.

In Connes’ theory of noncommutative geometry it is also the case that Equation (1)
no longer holds; that is, we do not have the graded commutativity that holds in manifold
theory. However, equality under the “integral sign” does hold: that is, we have

∫
ωk ∧ ωl = (−1)kl

∫
ωl ∧ ωk, (2)

where ωk and ωl are k- and l-forms in a differential calculus over an algebra and
∫

is an
“integral”. More precisely a linear functional

∫
satisfying Equation (2) is called a graded

trace. Graded traces are absolutely central in Connes’ theory—they play the role there
of “volume integrals”.

However, in the quantum group setting the “volume integrals” that arise are not
graded traces, as first observed by Woronowicz in [11]. In fact, as we showed in [6], they
are more like “graded KMS functionals” in a sense that we make precise in the next
section, where we discuss the properties of these functionals.

3. Twisted graded traces and an extension of Connes’ theory of cyclic co-
homology. Let (Ω, d) be a differential calculus over a unital algebra A. We say that a
linear functional

∫
: Ω→ C is a twisted graded trace if there exists an algebra automor-

phism σ : Ω→ Ω of degree zero such σd = dσ and
∫
ωk ∧ ωl = (−1)kl

∫
σ(ωl) ∧ ωk,

for all forms ωk ∈ Ωk and ωl ∈ Ωl. As before, we are using ∧ to denote the multiplication
operation on Ω. We call σ a twist automorphism for

∫
.

When we discuss covariant calculi in the next section we shall see that the volume
integrals that occur in that setting (the quantum group setting) are twisted graded traces
in this sense. For example, the volume integral defined by Woronowicz on his first 3-
dimensional left-covariant calculus over SUq(2) is a twisted graded trace. The same is
true for the 4D+ bicovariant calculus over SUq(2).
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If τ is a KMS state (at inverse temperature β = 1) on a C*-algebra A, then there
is a dense ∗-subalgebra A and an algebra automorphism σ : A → A such that τ(ab) =
τ(σ(b)a), for all a, b ∈ A. It is this aspect of the KMS condition that our twisted graded
traces generalize. However, the analogy is closer even than this. We refer the reader
to Section 7 of [7], where it is shown that, in certain circumstances, an automorphism
group can be associated to a twisted graded trace that plays a role relative to it similar
to the role played by a modular automorphism group relative to a corresponding KMS
state.

One of Connes’ important ideas is to show a correspondence between cyclic co-cycles
and triples (Ω, d,

∫
) consisting of differential calculi (Ω, d) and certain graded traces

∫

on Ω. The graded traces in this correspondence need to be closed in the sense that
∫
d = 0

and to be N -dimensional, for some non-negative integer N , in the sense that
∫
ωk = 0,

for all ωk ∈ Ωk, where k 6= N . If this is the case, then the N + 1-linear functional
ϕ : AN+1 → C defined by setting

ϕ(a0, a1, . . . , aN ) =
∫
a0da1 · · · daN (3)

is a cyclic co-cycle. Moreover, every N -dimensional cyclic co-cycle ϕ arises from a triple
(Ω, d,

∫
) in this fashion.

If
∫

is a twisted graded trace on a differential calculus (Ω, d), assumed to be closed
and N -dimensional, and ϕ is defined as in Equation (3), then ϕ will not be, in general, a
cyclic co-cycle. However, it turns out that it will be a cycle in another cohomology theory,
as we showed in [6]. The new cohomology theory generalizes Connes’ cyclic cohomology
and has many of the features, including all of the important basic ones, of Connes’ theory.
We discuss now how this new theory is defined.

First, let’s recall the outlines of Connes’ cyclic cohomology for a unital algebra A.
Begin by denoting by Cn the linear space of all n+ 1-linear functionals on A. Denote by
b : Cn → Cn+1 the usual Hochschild co-boundary operator defined, for ϕ ∈ Cn, by the
equation

(bϕ)(a0, . . . , an+1) =
n∑

i=0

(−1)iϕ(a0, . . . , ai−1, aiai+1, ai+2, . . . , an+1)

+ (−1)n+1ϕ(an+1a0, a1, . . . , an). (4)

This defines a complex (Cn, b)n whose associated cohomology is the Hochschild coho-
mology HH∗(A) of A. To obtain cyclic cohomology we need to introduce the permutation
operator λ : Cn → Cn defined, for ϕ ∈ Cn, by setting

(λϕ)(a0, . . . , an) = (−1)nϕ(an, a0, . . . , an−1). (5)

Denote by Cnλ the subspace of Cn of all elements ϕ for which λϕ = ϕ. Then ⊕nCnλ is
invariant under b and therefore we get a new complex (Cnλ , b)n by restriction of b. The
cohomology associated to this complex is the cyclic cohomology H∗λ(A) of A.

Suppose now σ : A → A is an algebra automorphism of A and we shall associate a
cohomology to the pair (A, σ). First, we replace the Hochschild co-boundary operator by
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another operator bσ : Cn → Cn+1 defined by modifying Equation (4) as follows:

(bσϕ)(a0, . . . , an+1) =
n∑

i=0

(−1)iϕ(a0, . . . , ai−1, aiai+1, ai+2, . . . , an+1)

+(−1)n+1ϕ(σ(an+1)a0, a1, . . . , an).

A direct calculation shows that b2σ = 0. We also need a modified version λσ : Cn → Cn

of the permutation operator, defined by changing Equation (5) as follows:

(λσϕ)(a0, . . . , an) = (−1)nϕ(σ(an), a0, . . . , an−1).

Now denote by Cnλ (A, σ) the linear subspace of Cn consisting of all elements ϕ for which
λσϕ = ϕ. The space ⊕nCnλ (A, σ) is invariant under bσ. Using this, we get a complex
(Cnλ (A, σ), bσ)n by restriction of bσ. The cohomology of this complex is our new twisted
cyclic cohomology of the pair (A, σ) and is denoted by H∗λ(A, σ).

Of course, when σ = ι, the identity automorphism of A, our new cohomology theory
reduces to Connes’ theory: H∗λ(A, ι) = H∗λ(A).

Let us briefly explain the intuitive difference between our more general theory and
Connes’ theory. If ϕ ∈ C0

λ(A), then ϕ is a co-cycle—that is, bϕ = 0—if and only if,
ϕ(a0a1) = ϕ(a1a0), for all a0, a1 ∈ A; in other words, ϕ is a trace. One then thinks of the
co-cycles in Cnλ (A) as generalized traces. (Terminology in this connection is somewhat
ambiguous in the literature, since the use of the term trace often includes an assumption
of positivity of the functional involved. Of course, we make no such assumption here.)

Now suppose that ϕ ∈ C0
λ(A, σ). Then ϕ is a co-cycle; that is, bσϕ = 0, if and only

if, ϕ(a0a1) = ϕ(σ(a1)a0), for all a0, a1 ∈ A. Thus, one can think of co-cycles in Cnλ (A, σ)
as some kind of generalized KMS functionals.

It is natural to ask whether there is a version of Hochschild cohomology for the pair
(A, σ) and it turns out that there is. Indeed, this is important for our general theory.
If one defines Cn(A, σ) to be the linear subspace of Cn consisting of all elements ϕ for
which λn+1

σ ϕ = ϕ, then ⊕nCn(A, σ) is invariant for bσ and we get an induced complex
(Cn(A, σ), bσ)n whose corresponding cohomology HH∗(A, σ) is our twisted Hochschild
cohomology of the pair (A, σ). As with the cyclic theory, if σ = ι, we reduce to the usual
theory: HH∗(A, ι) = HH∗(A).

Remarkably, the general features and properties of Connes’ cyclic cohomology theory
extend to the general setting of the pair (A, σ). For example, one gets S, B and I operators
and a long exact sequence relating them as in Connes’ theory. One can show these facts
by re-tracing the steps in Connes’ original proofs and suitably modifying them. A more
efficient approach is possible, however, using the cyclic category Λ.

Suppose now (Ω, d) is a differential calculus over the unital algebra A and that∫
: Ω→ C is an N -dimensional, closed, twisted graded trace. Define the N + 1-linear

functional ϕ on A by the formula in Equation (3). Then ϕ ∈ CNλ (A, σ), where σ is
the restriction to A of a twist automorphism of

∫
. Moreover, bσϕ = 0; that is, ϕ is a

twisted co-cycle. Thus, a triple (Ω, d,
∫

) of the kind we are considering gives rise to a
twisted cyclic co-cycle and one can show in the reverse direction that every twisted cyclic
co-cycle ϕ ∈ CNλ (A, σ) arises from such a triple (Ω, d,

∫
).
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The construction of differential calculi in the general setting we are considering in this
section, and even in the more restricted setting where the algebra A is the underlying
Hopf algebra of a compact quantum group—this is the situation we consider in following
sections—is a highly non-trivial problem. The fact that differential calculi correspond
to twisted cyclic co-cycles has an extra interest, therefore, since it offers the possibility
of constructing calculi by selecting appropriate twisted co-cycles. This sounds promising,
but we do not know of any way of obtaining some naturally-occurring differential calculus
by this procedure, where the cyclic co-cycle is in some sense given a priori, and one can
recognize that this must give rise to an interesting calculus and thereby construct the
calculus. However, the idea is worth exploring.

4. Left-invariant linear functionals. In this section we will discuss how twisted
graded traces arise naturally in the setting of left-covariant differential calculi over com-
pact quantum groups. These calculi, and the special subclass of bicovariant calculi,
are of prime importance in the theory. We begin by defining terms and setting out
assumptions.

We specialize our underlying algebra A now. It will no longer be an arbitrary unital
algebra—henceforth, we shall assume it is endowed with a co-multiplication ∆ making
it a Hopf algebra. Indeed, we shall later assume that it is the Hopf algebra underly-
ing a compact quantum group and when we talk of a differential calculus over such
a quantum group we shall mean a differential calculus over the corresponding Hopf
algebra.

A pair (Ω,∆L) is a left-covariant bi-module over the Hopf algebra (A,∆) if Ω is a
bi-module over A and ∆L is a linear map from Ω to the tensor product A⊗ Ω such that
the following conditions hold:

(1) (∆ ⊗ idΩ)∆L = (idA ⊗∆L)∆L and (ε ⊗ idΩ)∆L = idΩ, where ε is the co-unit of
(A,∆); that is, ∆L is a left co-action of (A,∆) on Ω;

(2) ∆L(aωb) = ∆(a)∆L(ω)∆(b), for all a, b ∈ A and ω ∈ Ω.

An element ω ∈ Ω is left-invariant if ∆L(ω) = 1 ⊗ ω. We denote by Ωinv the linear
space of all left-invariant elements of Ω and by Ωinv

n the linear subspace of all left-invariant
elements of dimension n.

Now let (Ω, d) be a differential calculus over A such that the unit 1 of A is a unit
for Ω and d1 = 0. Of course, Ω is a bi-module over A in an obvious way. If there is an
algebra homomorphism ∆L : Ω→ A⊗ Ω making Ω into a left-covariant bi-module and
if (idA ⊗ d)∆L = ∆Ld and ∆L(a) = ∆(a), for all a ∈ A, we call the triple (Ω, d,∆L)
a left-covariant differential calculus over the Hopf algebra (A,∆). A moment’s reflection
shows that there can be only one such left co-action ∆L making (Ω, d,∆L) a left-covariant
differential calculus. For this reason, we will speak of the left-covariant calculus (Ω, d),
omitting explicit reference of the left co-action ∆L. We shall often also speak of the Hopf
algebra A, omitting explicit reference of the co-multiplication ∆.

Suppose then (Ω, d) is a left-covariant differential calculus over a Hopf algebra A. The
natural linear functionals to study on Ω are those that are left-invariant; these are the
linear functionals

∫
: Ω→ C for which
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(
idA ⊗

∫ )
∆L(ω) =

(∫
ω

)
1,

for all forms ω ∈ Ω.
Recall that a (normalized) Haar integral on A is a linear functional h : A → C such

that h(1) = 1 and

(idA ⊗ h)(∆(a)) = (h⊗ idA)(∆(a)) = h(a)1,

for all a ∈ A. Such a functional does not always exist. However, if A is the Hopf algebra
associated to a compact quantum group, a Haar integral does exist [5, 13]. We shall
be interested only in Hopf algebras admitting a Haar integral—these are precisely the
co-semisimple Hopf algebras. It is easily seen that at most one Haar integral can exist.

Proposition 4.1. Let (Ω, d) be a left-covariant differential calculus over a Hopf al-
gebra A admitting a Haar integral. Let N be a positive integer. There is a non-zero,
left-invariant linear functional on Ω of dimension N , unique up to a non-zero scalar
factor, if, and only if, the linear space Ωinv

N is one-dimensional.

We say that a calculus (Ω, d) is N -dimensional if ΩN 6= 0 and Ωn = 0, for all n > N .
The condition that Ωinv

N be one-dimensional is a natural one for an N -dimensional calculus
and is often satisfied in examples. The result ensures that in the well-behaved calculi the
“volume integrals” that have been defined in a somewhat ad hoc way in the literature
are, in fact, the only possible ones, if they are to be left-invariant linear functionals.

Theorem 4.2 (Cf. [6, Corollary 4.9]). Let (Ω, d) and A be as in Proposition 4.1. Let∫
: Ω → C be an N -dimensional, left-invariant linear functional, for some N ≥ 0.

Suppose also that
∫

is closed and faithful in the sense that if ω is a form in Ω such that∫
ω′ω = 0, for all ω′ ∈ Ω, then ω = 0. Then

∫
is necessarily a twisted graded trace.

In other terms, any reasonable candidate for a “volume integral” (reasonable in the
sense that it is left-invariant, closed and faithful) is necessarily a twisted graded trace—a
KMS-type functional.

5. A Hodge-type decomposition and the Dirac and Laplace operators. To
introduce the Dirac and Laplace operators we’ll need to introduce the co-differential d∗

of d. For this and other reasons we’ll need to assume henceforth that the space of left-
invariant forms is finite-dimensional. This is not a strong assumption and is often satisfied
in examples. We’ll also need to confine ourselves now to differential calculi with a graded
involution, since our proofs rely heavily on the existence of this ∗-structure. Again, this
is a quite natural assumption in the context of differential calculi over compact quantum
groups. Finally, our proofs also require that the underlying Hopf algebra A also has an
involution and admits the existence of a Haar integral. This is, of course, the case for the
Hopf algebras associated to compact quantum groups, the case in which we are principally
interested. In view of these preliminary remarks, we begin now by defining some terms.

Suppose that A is a unital ∗-algebra and (Ω, d) is a differential calculus over A.
A graded involution on Ω is a conjugate-linear map ω 7→ ω∗ of degree zero such that
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(ω∗)∗ = ω, for all ω ∈ Ω and such that

(ωkωl)∗ = (−1)klω∗l ω
∗
k,

for all ωk ∈ Ωk and ωl ∈ Ωl. If Ω admits a graded involution extending the involution of
A for which d(ω∗) = (dω)∗, for all ω ∈ Ω, then this involution is necessarily unique and
we call the pair (Ω, d) a ∗-differential calculus over the ∗-algebra A.

Henceforth, we assume that A is a Hopf ∗-algebra admitting a positive Haar integral h
and that (Ω, d) is a left-covariant ∗-differential calculus over A such that Ωinv is finite-
dimensional.

That h is positive means h(a∗a) ≥ 0, for all a ∈ A. The underlying Hopf ∗-algebra of
a compact quantum group always admits a positive Haar integral.

The assumption that Ωinv is finite-dimensional ensures that Ω is N -dimensional, for
some integer N .

We now want to put an inner product structure on Ω. We can do this in a natural
way by first recalling that it is a consequence of left-covariance of Ω that the linear map
from A⊗ Ωinv to Ω that sends a⊗ ω onto aω is a linear isomorphism. We therefore can,
and we do, identify these spaces, as linear spaces, using this isomorphism.

Now A comes naturally endowed with its own inner product defined by setting
( a | b ) = h(b∗a), for all a, b ∈ A. Since Ωinv is finite-dimensional, it too admits inner
products. Choose one such that makes the spaces Ωinv

0 ,Ωinv
1 , . . . ,Ωinv

N orthogonal.
Of course, this does not uniquely determine the inner product on Ωinv. For most of

our considerations in this paper, an arbitrary choice such as the one we have made here
is all that is needed. However, further restrictions on one’s choice are necessary to obtain
the strongest results in our theory.

Given our inner products on A and Ωinv, we now endow Ω with the tensor product
inner product structure. Thus, we have

( aω | bη ) = h(b∗a)(ω | η ),

for all a, b ∈ A and all ω, η ∈ Ωinv. We denote by ω 7→ ‖ω‖ the norm induced by this
inner product.

Although generically Ω is not complete, and the differential operator d is not norm
bounded, nevertheless d admits an adjoint d∗ such that ( dω | η ) = (ω | d∗η ), for all
ω, η ∈ Ω. The proof makes use of the fact that (Ω, d) is a left covariant bi-module. We call
d∗ the co-differential of d. We can now define a Dirac operator D and Laplace operator ∇
by setting D = d+ d∗ and ∇ = D2 = dd∗ + d∗d.

Suppose now A is the Hopf ∗-algebra associated to a compact quantum group.
The co-representation theory of compact quantum groups can be used to show two

fundamental results concerning these operators. Firstly, D and ∇ are diagonalisable; that
is, there is a linear basis for Ω consisting of eigenvectors of D and ∇; secondly, Ω admits
a Hodge-type decomposition in the sense that

Ω = ker(∇)⊕ d(Ω)⊕ d∗(Ω).

The sum here is orthogonal and the decomposition is an analogue of the classical Hodge
decomposition.
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One can also show that

ker(d) = ker(d∗d) = ker(∇)⊕ d(Ω) and ker(d∗) = ker(dd∗) = ker(∇)⊕ d∗(Ω).

The elements of ker(∇) are called the harmonic forms. By the Hodge decomposition,
if ω ∈ Ω, then ω = ω0 + dω1 + d∗ω2, for some harmonic form ω0 ∈ ker(∇) and some
forms ω1, ω2 ∈ Ω. We call ω0 the harmonic part of ω. Note that we also show in [7] that
ker(∇) = ker(d) ∩ ker(d∗). It follows that dω = 0 if, and only if, ω = ω0 + dω1.

Our Hodge-type decomposition allows one to deduce a version of a classical theorem
of de Rham identifying the de Rham cohomology space of dimension k with the cor-
responding space of harmonic forms of dimension k. To see this, denote by H∗(Ω) the
cohomology associated to the de Rham complex

0→ Ω0
d→ Ω1

d→ · · · d→ ΩN → 0.

Let [ω] denote the class of the form ω ∈ Ωk in Hk(Ω). Then the natural map, [ω] 7→ ω0,
where ω0 is the harmonic part of ω, is a well-defined linear isomorphism from Hk(Ω) onto
the space of harmonic k-forms ker(∇k). Here ∇k is the restriction of ∇ to Ωk. The proof
is quite straightforward, but since the result is not included in our papers [6, 7] we give
the details here: First, to see the map is well defined, suppose that ω and η are k-forms
for which [ω] = [η]. Then ω − η is exact; that is, ω − η = dθ, for some form θ. Since the
harmonic part of ω − η is clearly ω0 − η0, where ω0 and η0 are the harmonic parts of ω
and η, respectively, we must have ω0−η0 = 0, by uniqueness of the Hodge decomposition
of ω− η. Thus, ω0 = η0 and our map from Hk(Ω) to ker(∇k) is well defined. Its linearity
and surjectivity are obvious. To see injectivity, let ω be a form in Ωk such that dω = 0
and its harmonic part ω0 vanishes. Then ω = dω1 +d∗ω2, for some forms ω1, ω2 ∈ Ω. The
equation dω = 0 implies dd∗ω2 = 0. Hence, d∗ω2 = 0. Therefore, ω = dω1 and so [ω] = 0,
as required.

If H∗(Ω) is finite-dimensional, we can now define an Euler–Poincaré characteristic
χ(Ω) for Ω using the usual formula; that is, by setting

χ(Ω) =
N∑

k=0

(−1)k dim(Hk(Ω)).

Likewise, we can define the analytic index ind (∇) of ∇ using the classical formula; that
is, by setting

ind (∇) =
N∑

k=0

(−1)k dim(ker(∇k)).

Our de Rham theorem then gives a simple analogue of the Atiyah–Singer index theorem
in this setting, identifying a geometric index of the quantum differential structure with
an operator index of the Laplacian: χ(Ω) = ind (∇).

For other results on a Hodge-type decomposition and on de Rham cohomology in the
setting of differential calculi over quantum groups, see [3].

6. The Hodge operator and Poincaré duality. In this section we discuss the
Hodge operator and a version of Poincaré duality. First we need to make some additional
assumptions.
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We shall suppose that the following conditions hold (in addition to our standing as-
sumptions from the preceding section—we include the assumption that A is the Hopf
∗-algebra associated to a compact quantum group):

(1) (Ω, d) is non-degenerate in the sense that if ω ∈ Ωk and ω′ω = 0, for all
ω′ ∈ ΩN−k, then ω = 0;

(2) dim(Ωinv
N ) = 1 and d(Ωinv

N−1) = 0.

These conditions imply that (Ω, d) admits an N -dimensional, faithful, left-invariant,
closed, twisted graded trace

∫
, unique up to multiplication by a non-zero scalar. (In fact,

Conditions (1) and (2) are equivalent to assuming that (Ω, d) admits an N -dimensional,
faithful, closed, left-invariant linear functional.)

The conditions imply the existence of an extremely useful operator: There is a unique
left A-linear isomorphism L : Ω→ Ω, called the Hodge operator, such that L(Ωk) =
ΩN−k, for k = 0, . . . , N and

(ω | η ) =
∫
η∗ ∧ L(ω),

for all ω, η ∈ Ω. Moreover, if ω ∈ Ωk, then d∗(ω) = (−1)kL−1dL(ω).
The results of the preceding two paragraphs follow from [6] and [7]. It is also possible

to obtain a version of Poincaré duality; since this is a new result, we state it formally
here and give its proof.

Theorem 6.1 (Poincaré Duality). The map

Hk(Ω)×HN−k(Ω)→ C, ([ω], [η]) 7→
∫
ω ∧ η,

is well-defined, bilinear and non-degenerate.

Proof. To see the map is well defined, suppose that [η] = [η′], so that η − η′ = dθ, for
some form θ. Then ∫

ω ∧ η −
∫
ω ∧ η′ =

∫
ω ∧ dθ.

We need to show the right-hand side integral is equal to zero. This follows from the fact
that dω = 0, that

∫
d = 0 and the equation

d(ω ∧ θ) = dω ∧ θ + (−1)kω ∧ dθ.
A similar proof shows that if [ω] = [ω′], then

∫
ω∧η =

∫
ω′∧η. Bilinearity of ([ω], [η]) 7→∫

ω ∧ η is, of course, obvious.
Suppose now [ω] ∈ Hk(ω) and

∫
ω ∧ η = 0, for all [η] ∈ HN−k(Ω). Then, if θ ∈

ker(d∗) ∩ Ωk, we have dL(θ) = (−1)kLd∗θ = 0 and therefore ( θ | ω∗ ) =
∫
ω ∧ L(θ) = 0.

Consequently, since ω∗ ∈ Ωk and the spaces Ω0, . . . ,ΩN are orthogonal, ω∗ is orthogonal
to ker(d∗) = ker(∇)⊕ d∗(Ω) and therefore ω∗ = dω′, for some element ω′ ∈ Ω, by our
Hodge-type decomposition. Hence, ω ∈ d(Ω) and therefore [ω] = 0. A similar proof shows
that if [η] ∈ HN−k(Ω) and

∫
ω ∧ η = 0, for all [ω] ∈ Hk(Ω), then [η] = 0. Thus, the map

([ω], [η]) 7→
∫
ω ∧ η is non-degenerate, as required.

If the cohomology spaces Hk(Ω) are finite-dimensional, the preceding theorem implies
that Hk(Ω) is linearly isomorphic to HN−k(Ω), for k = 0, . . . , N . However, this is still
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true even in the case that the cohomology spaces are not finite-dimensional. To see this
we observe first that by replacing, if necessary, the inner product on Ωinv by another
one (for which the spaces Ωinv

1 , . . . ,Ωinv
N are still pairwise orthogonal), we may obtain the

equality
dω = (−1)k+1L−1d∗Lω (ω ∈ Ωk), (6)

a result that we shall need in the following proof (for this result see [7]). We now explicitly
define a map ψ : Hk(Ω)→ HN−k(Ω) by setting ψ[ω] = [Lω0], where ω0 is the harmonic
part of ω. It is clear that ψ is well defined and linear. To see that it is injective, suppose
that ψ[ω] = 0; that is, [Lω0] = 0. Then Lω0 = dθ, for some form θ ∈ ΩN−k−1. Hence,
ω0 = L−1dθ = L−1dLL−1θ = (−1)k+1d∗L−1θ. Since ker(∇) and d∗(Ω) are orthogonal,
this shows that ω0 = 0 and therefore, since dω = 0, we have ω ∈ d(Ω). Hence, [ω] = 0
and ψ is injective, as required. To see surjectivity of ψ, let [η] be an element of HN−k(Ω).
Without loss of generality, we may suppose that η is harmonic, so that dη = d∗η = 0.
Choose ω ∈ Ωk such that L(ω) = η. Since dω = (−1)k+1L−1d∗Lω = (−1)k+1L−1d∗η = 0,
we have [ω] ∈ Hk(Ω). Since we also have d∗ω = (−1)kL−1dLω = (−1)kL−1dη = 0, ω is
a harmonic form. Hence, ψ[ω] = [L(ω)] = [η]. Thus, ψ is surjective.

Note that we needed to make a choice of a particular inner product on Ωinv so that
Equation (6) holds in order to make the proof above work, and that this choice affects
how L is defined, and therefore how ψ is defined. Nevertheless, this choice does not enter
into the statement of our result if we restate it less precisely, to say only that Hk(Ω) and
HN−k(Ω) are linearly isomorphic, for k = 0, . . . , N .

Henceforth, we return to our general assumption concerning the inner product on Ωinv;
that is, we assume only that it is such that the the spaces Ωinv

1 , . . . ,Ωinv
N are pairwise

orthogonal.
It follows from our Poincaré duality theorem that if the calculus (Ω, d) has finite

Euler–Poincaré characteristic—that is, the spaces Hk(Ω) are finite-dimensional—and N

is odd, then Ω has zero characteristic; that is, χ(Ω) = 0.
For other results on the Hodge and Laplace operators in the setting of differential

calculi over quantum groups, see [2].

7. K-cycles. Recall that Connes [1, p. 310] defines a K-cycle over a ∗-algebra A to
be a triple (H,D, π) for which

(1) H is a Hilbert space and π : A→ B(H) is a ∗-homomorphism;
(2) D is an (unbounded) self-adjoint operator in H with compact resolvent;
(3) [D, π(a)] is norm-bounded, for all a ∈ A.

Continuing with the notation and assumptions from the preceding two sections, let
H be the Hilbert space completion of Ω. Define a ∗-homomorphism π : A → B(H)
by setting π(a)ω = aω, for all a ∈ A and ω ∈ Ω. If D, as before, denotes our Dirac
operator, then one might expect (hope) the triple (H,D, π) is a K-cycle. (More precisely,
one should replace D by an extension that is self-adjoint in H, but we’ll ignore all finer
points here.) However, in view of our observations in earlier sections, one should not now
be surprised to find that (H,D, π) is not, in general, a K-cycle. The principal difficulty
involves Condition (3) in Connes’s definition—this does not hold in general. We shall
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sketch a proof in one special case, since the details are rather simple there. For a fuller
discussion of “no-go” results along these lines we refer the reader to the papers [9, 10] of
K. Schmüdgen.

Let (Ω, d) be the left-covariant calculus over the quantum group SUq(2) constructed by
Woronowicz in [11]. Let Aq be the Hopf ∗-algebra underlying SUq(2). The assumptions of
the preceding two sections are satisfied by (Ω, d) and Aq. However, [D, π(a)] is not norm-
bounded for every element a ∈ Aq. Suppose otherwise and we shall obtain a contradiction.
In this case the map ψa : Ω0 → Ω1, defined by restricting [D, π(a)], is norm-bounded. If
b ∈ Ω0, then ψa(b) = d(ab) − adb = d(a)b, using the fact that d∗(Ω0) = 0. Since the
elements of the form ada′ (a, a′ ∈ Aq) linearly span Ω1, we have norm-boundedness of the
map, Ω0 → Ω1, b 7→ ωb, for all ω ∈ Ω1. Now Ωinv

1 admits a linear basis ω0, ω1, ω2 and there
exist unique linear maps Er : Ω0 → Ω0 such that ωrb = Er(b)ωr, for r = 0, 1, 2. Norm-
boundedness of the maps b 7→ ωrb implies norm-boundedness of the maps b 7→ Er(b)ωr
which in turn implies norm-boundedness of the maps Er. However, it is easy to verify,
using the formulas in Table 1 of [11], that the maps Er are not norm-bounded. Hence,
[D, π(a)] cannot be norm-bounded for all a ∈ Aq.

The preceding counter-example raises the question of what is possible. To address
this question we were led to the problem of computing the eigenvalues of the Laplacian.
I’ll explain the connection to K-cycles below, but first I’ll discuss briefly this problem.
It is an interesting one and one that is quite difficult in general. However, there is one
case where the computation of the eigenvalues is not so difficult, at least in principle.
This concerns the problem of computing the eigenvalues of ∇0, the restriction of ∇ to
the 0-forms.

Suppose then (Ω, d) is a left-covariant ∗-differential calculus over a Hopf ∗-algebra A
and, for simplicity, assume that (Ω, d) and A satisfy the assumptions of Sections 5 and 6.
In this case there exists an orthonormal basis ω1, . . . , ωM for Ωinv

1 and linear functionals
χ1, . . . , χM on A such that

da =
M∑

r=1

((idA ⊗ χr)∆(a))ωr (a ∈ A).

Set χ =
∑M

r=1(χ∗r ⊗ χr)∆, where χ∗r(a) = χr((S(a))∗)−, for all a ∈ A (S is the antipode
of A). Then it is straightforward to calculate that ∇0(a) = (idA ⊗ χ)∆(a), for all a ∈ A.

Suppose now that U is an irreducible unitary co-representation of A on the finite-
dimensional Hilbert space Cn. Then the operator T = (id ⊗ χ)(U) ∈ B(Cn) is positive.
Choose an orthonormal basis e1, . . . , en for Cn for which T has diagonal matrix, so that
Tei = λiei, for some scalars λi. Let Uij be the matrix entries of U relative to this basis.
Then the matrix (Tij) of T is given by Tij = χ(Uij) = λiδij . Hence, ∇(Uij) = (idA ⊗
χ)∆(Uij) = (idA ⊗ χ)(

∑n
k=1 Uik ⊗ Ukj) =

∑n
k=1 χ(Ukj)Uik =

∑n
k=1 λkδkjUik = λjUij .

Thus, Uij is an eigenvector of ∇0 with eigenvalue λj .
Since A admits a linear basis consisting of the matrix entries of a family of pairwise-

inequivalent irreducible unitary co-representations of A, it follows that ∇0 is diagonalis-
able. Moreover, we can calculate the eigenvalues provided we can calculate explicitly χ

and a complete family of inequivalent irreducible co-representations.
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This is the easy bit—calculating the eigenvalues of ∇ on Ω0. Things become much,
much more complicated when one tries to calculate the eigenvalues of ∇ on the spaces
Ω1,Ω2, . . .. However, we were able to do this in the case of Woronowicz’ first example of
a three-dimensional differential calculus (Ω, d) over the Hopf ∗-algebra Aq underlying the
compact quantum group SUq(2). This is the calculus already mentioned above, introduced
in [11]. We know already that in this case [D, π(a)] is not norm-bounded for all a ∈ Aq.
However, we succeeded in showing that if α and β are non-negative numbers such that
α+β = 1, and if R is the norm-bounded operator on Ω defined by R = (1+∇)−1/2, then
Rα[D, π(a)]Rβ is norm-bounded for all a ∈ Aq. Here, as before, π is the ∗-homomorphism
fromAq toB(H) defined by left multiplication on Ω andH is the Hilbert space completion
of Ω. This boundedness result required our calculation of the eigenvalues of ∇ and the
derivation of asymptotic estimates on these eigenvalues. The proofs are lengthy and quite
complicated.

Our boundedness result is interesting for a number of reasons. Firstly, A. Jaffe has
developed in [4] an extension of Connes’ theory to cover the case where [D, π(a)] may
not be norm-bounded, but where, for some positive norm-bounded operator R and some
non-negative numbers α and β, Rα[D, π(a)]Rβ is norm-bounded, for all a in the relevant
algebra. Unfortunately, Jaffe requires that α+β < 1! Therefore, his theory does not apply
to this example, no more than Connes’ does. However, it is possible that the asymptotic
estimates we derived could be refined to show that we could take α+ β < 1 and thereby
fit within Jaffe’s framework (personally I doubt this). An alternative possibility is to try
to extend Jaffe’s theory to cover the case where α+ β = 1. There is probably a very good
reason why Jaffe did not do this in the first place and I suspect this to be a very hard
problem, if it is do-able at all.

To conclude, our results show the limitations of existing theories of noncommutative
geometry in the context of differential calculi over compact quantum groups. Nevertheless,
many results of the classical theory of manifolds—the Hodge decomposition, de Rham’s
theorem, Poincaré duality—can be extended to our setting, as can modified versions of
some aspects of Connes’ theory—twisted graded traces and twisted cyclic cohomology.
Moreover, our calculations offer some possible directions for how Connes’ and Jaffe’s
theories might be modified to cover the case of differential calculi over quantum groups.
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