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Abstract. Viewing comodule algebras as the noncommutative analogues of affine varieties
with affine group actions, we propose rudiments of a localization approach to nonaffine Hopf al-
gebraic quotients of noncommutative affine varieties corresponding to comodule algebras. After
reviewing basic background on noncommutative localizations, we introduce localizations com-
patible with coactions. Coinvariants of these localized coactions give local information about
quotients. We define Zariski locally trivial quantum group algebraic principal and associated
bundles. Compatible localizations induce localizations on the categories of Hopf modules. Their
interplay with the functor of taking coinvariants and its left adjoint is stressed out.

Using the localization approach, we construct a natural class of examples of quantum coset
spaces, related to the quantum flag varieties of type A of other authors. Noncommutative Gauss
decomposition via quasideterminants reveals a new structure in noncommutative matrix bialge-
bras. In the quantum case, calculations with quantum minors yield structure theorems.

Notation. The ground field is k and we assume it is of characteristic zero. If we deal
just with one k-Hopf algebra, say B, the comultiplication is A : B — B ® B, unit map
7 : k — B, counit € : B — k, multiplication p : B® B — B, and antipode (coinverse)
S : B — B. Warning: the letter S often stands for a generic Ore set. We use [56, 49, 38, 74]
Sweedler’s notation A(h) = > h() ® h(z) with or without explicit summation sign, as
well as its extension for coactions: p(v) = 3 v(g) ® v(1), where the zero-component is in
the comodule and the nonzero component(s) in the coalgebra. An entry symbol and name
of a matrix will match, except for upper vs. lower case, e.g. G = (g;), and G(I, will be the
submatrix with row multilabel I = (41,...,%) and column multilabel J = (j1,...,jk).
As a rule, row labels are placed as superscripts and column labels as subscripts.
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1. Introduction. There is an antiequivalence [32, 74] between the category of affine
group schemes over k and the category of commutative Hopf algebras over k. In the
framework of affine group k-varieties, the corresponding Hopf algebras are constructed as
algebras of regular functions on the underlying group variety. Hence, taking the viewpoint
of noncommutative geometry [8] we view Hopf algebras as noncommutative affine group
varieties [17, 50, 62].

Groups are useful as they describe the notion of symmetries: they act on spaces. A
B-variety is an algebraic variety F with a regular action v : E x B — E of an algebraic
group B. The Hopf algebra O(B) of regular functions on B coacts on the algebra of
regular functions on O(FE) via the coaction p : O(E) — O(E) ® O(B) given by the
formula p(e)(b) = v(e,b). This O(B)-comodule structure on O(E) is compatible with the
k-algebra structure on O(E) in the sense that the coaction is a k-algebra map, i.e. O(E)
is an O(B)-comodule algebra. Hence, in the noncommutative setup, comodule algebras
are viewed as noncommutative B-varieties.

When we denote an algebra (Hopf algebra) by a caligraphic letter, say £ (or B) then
the letter still suggests the underlying “variety”, as in & = O(FE), however we replace
O(E) by & precisely when we allow (though do not prescribe) noncommutative algebras.

Any function invariant on orbits of an action of a group on a set can be viewed as
a function on the set of orbits. Invariant functions are coinvariants in the algebra of all
functions with respect to the coaction of a Hopf algebra of functions on the group. This is
mutatis mutadis true in various setups—finite sets, topological spaces, affine vs. nonaffine
algebraic varieties, so we did not say it fully precisely. This is very important. Namely, if
we reverse the question and ask whether we could describe the space of orbits (quotient
space) by coinvariants, then, already in the commutative situation, the answer depends
much on the category chosen, and even if we start with a nice-behaved category, the
natural quotients should often be constructed in a larger category. One such phenomenon
stems from the fact that observables on the quotient space have singularities. For example,
if G is an affine algebraic group and B a closed algebraic subgroup, the quotient G/B is, in
general, not an affine variety, but it is always a quasiprojective variety [5]. In particular,
it is often a projective variety where the only global regular functions are constants.
However, there are many observables with the singularity locus of higher codimension
and regular behavior away from the singularities. Hence it may be sufficient to introduce
regular functions on Zariski open subsets of quotient spaces (complements of possible
singularity loci). The idea of locally defined quotients is one of the starting points of the
geometric invariant theory.

This survey gives an overview of efforts, at this point mainly of the present author, to
access and use the local information on noncommutative quotients, mainly in the case of
noncommutative coset spaces. The following are crucial observations in this programme:

e Noncommutative localizations are used to replace Zariski open subsets.

e Already in the commutative case, open sets in the quotient E/B correspond (via
the projection E — E/B), not to arbitrary, but only to B-invariant open sets in E.
To address this issue, in dual language, we introduce and study a notion of compat-
1bility of a noncommutative localization with the coaction. The coaction naturally
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extends to a compatible localization. We obtain the localized coaction. Any com-
patible localization of a B-comodule algebra £ induces a localization functor from
the category of those modules over £ which are also B-comodules in a compatible
way (relative Hopf modules). They are analogues of B-equivariant (quasicoherent)
sheaves on F.

e We study localized coinvariants, i.e. coinvariants for the localized coaction.

e In the case of noncommutative coset spaces, the existence of a covering by compat-
ible localizations with large algebras of localized coinvariants justifies calling the
latter charts in a coset space. Large is here in the sense of ability to perform de-
scent, e.g. if the localization has an induced structure of a faithfully flat Hopf-Galois
extension.

e Noncommutative Gauss decomposition for matrix bialgebras suggests natural can-
didates for (covers by) coaction compatible Cohn, and, in favorable cases, Ore lo-
calizations, such that the localized algebras can be trivialized as B-bundles over the
algebras of localized coinvariants. This provides a natural class of noncommutative
candidates for coset spaces.

e Calculations with quasideterminants and, in the case of quantum groups, quantum
minors, are useful techniques to study the above mentioned examples.

2. Commutative localizations (motivation). In (commutative) geometry local-
ization appears as a means to

e pass from a space to an open subset of the space;
e pass to a different space reflecting only an infinitesimal neighborhood of a point or
a subvariety.

In this paper we concentrate on the former flavor of localization. In the language of
algebras, localizing can be done by introducing functions defined only locally. For affine
varieties that means introducing inverses of those elements in the algebra whose zero
set lies outside of the local set. There were also some attempts to use a localization
for algebras of continuous functions [65], and that type of procedure may be useful for
extensions of the present work to the operator-algebraic rather than algebraic setup.

The localized ring has a simpler structure than the original ring. Indeed, if f is a
generator of an ideal I different from the whole ring R, then having f~! in the localized
ring means that f does not generate a proper ideal any more, as f~'f = 1. Hence,
localization kills ideals. In particular it kills prime and maximal ideals and, as those
correspond to points of schemes and varieties respectively, it removes some points from
the space and the space gets smaller or “localized”. For localization at a point we obtain
a local ring.

If we introduce inverses of functions, we still know how to multiply them: pointwise.
Noncommutative algebras are not algebras of functions on a genuine space consisting of
points only, so we do not have a priori a fully satisfactory recipe for how to multiply the
newly introduced inverses with other elements. There is an important case when such a
recipe is known and elementary. That is the case of inverting all elements belonging to a
given subset S in a ring R of special kind, called an Ore set. This is Ore localization.
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3. Ore localizations [61, 18, 80]. A semigroup R with unit is called a monoid. A
subset S of a monoid R is called multiplicative if 1 € R and whenever s;,ss € S then
s182 € S. Let R be a (noncommutative) unital ring. We can also view it as a monoid
with respect to multiplication. A multiplicative set S C R\{0} is called a left Ore set if
the following left Ore conditions are satisfied:

e (Vse SVre R3s' €S 3Ir' € R)(r's =s'r) (left Ore condition proper)
e (\ne€ RVse S)((ns=0)=3s' € S(s'n =0)) (left reversibility)

The left reversibility condition can be restated also as
(Vni,n2 € RVs € 5) ((n1s = ngs) = 3s’ € S (s'ny = s'na)),

which has the advantage that it makes sense for arbitrary monoids, as well as, once
the quantifiers are rewritten with care to appropriate source and target matching, also
for groupoids, and categories. In the latter case we obtain a “left calculus of fractions”
rather than a left Ore set, but the construction of localization (this time of a category)
and accompanying proofs may proceed essentially the same way as for Ore sets.
For a left Ore set S in a monoid R define the monoid S~'R of left fractions as follows.
As aset, STIR:= S x R/ ~, where ~ is the following equivalence relation:
(s,7) ~ (s',7") & (35€ S IFr € R) (38 =7s and sr' =7r).
The equivalence class of (s,r) is denoted s ~!r and called a left fraction. The multiplication
is defined by sy 'ry - sy 'y = (3s1) " (Fry) where 7 € R,5 € S satisfy 75y = &1 (one

Li = rlsgl,

should think of this, though it is not yet formally justified at this point, as §~
which enables one to put inverses next to one another and then the multiplication rule
is obvious). If the monoid R is a ring, then we can extend the addition to S™!'R too.
Suppose we are given two fractions with representatives (s1,71) and (sz2,r2). Then by the

left Ore condition we find § € S, 7 € R such that ss; = 7s3. The sum is then defined
51_17‘1 + 32_17‘2 = (8s1) 7 (8ry + 71p)

It is a long and at points tricky task to work out all the details of this definition. One has
to show that ~ is indeed an equivalence relation, that the operations are well defined,
and that S™!R is indeed a ring. Even the commutativity of addition needs work. At the
end one shows that i = ig : R — S™!R given by i(r) = 171r is a homomorphism of rings,
which is 1-1 iff the 2-sided ideal Is = {n € R|3s € S, sn = 0} is zero.

If S is left Ore, then we call the pair (i, S™'R) the left Ore localization of R with
respect to S. It has a universal property, namely, it is a universal object in the category
C = C(R, S) whose objects are pairs (4,Y), where j: R — Y is a map into a ring Y such
that the image j(S) of S consists of units, and the morphisms « : (5,Y) — (5/,Y’) are
maps of rings a : Y — Y’ such that avoj = j'. A universal object in C may exist when S
is not left Ore, for example when S is right Ore and not left Ore. In fact, the universal
object is a left Ore localization iff it lies in the full subcategory C' of C whose objects
(4,Y) satisfy 2 additional conditions: j(S)™1j(R) = {(j(s))"i(r)|s € S,r € R} is a
subring in Y and kerj = Is. Hence (i, S™'R) is universal in C!, and that characterizes
it, but the universality in C, although not characteristic, appears to be more useful in
practice.
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If M is a left R-module then S™'M = SR ®p M is also a left module. This is the
recipe for Ore localization of modules. The correspondence Qg : M +— S~!1M is an exact
endofunctor in the category of left R-modules, called the localization functor. For given
M, the map ign : M — S™'M given by m — 1 ® m is an R-module map, called the
localization map.

Ore sets are relatively rare and also hard to single out. In practice, the Ore condition
is checked on a suitable set of generators of a ring versus a suitable set of generators
of the Ore set. One often uses induction arguments, recursively applying the Ore condi-
tion.

4. Ore vs. Gabriel localizations [72, 34]. This section could be skipped on first
reading as only few remarks in the paper depend on it. The modern viewpoint on local-
ization as touched upon here is however essential for the current research in this area.

A lattice is a poset (W, =) such that for any two elements z1, 2o the least upper bound
21V zo and the greatest lower bound z1 A 2z exist. In other words, the binary operations of
meet A\ and join V are everywhere defined. A poset is bounded if it contains a maximum
and a minimum element, which we denote 1 and 0 respectively. A filter in a bounded
lattice (W, =) is a subset £L C W such that 1 € £,0¢& L, (21,22 € L = 21 A 29 € L) and
(ze L,z =z=7€lL).

For any subset w C R, and any left ideal J, denote (J : w) = {z € R|zw € J}. It is
also a left ideal. Let I} R be the preorder category of left ideals in a ring R with respect to
the inclusion preorder. It is a lattice. For the localization questions another partial order
> on I} R is sometimes better. Namely, K > J iff either J C K or there exists a finite
subset w C R such that (J : w) C K. Any filter in (I;R, >) is called a uniform filter.

For an Ore set S C R consider Lg = {J left ideal in R|J NS # 0} C I;R.

The left Ore condition implies at once that Lg can equivalently be defined by

(1) Ls ={J left ideal in R |Vr (J:7r)NS # 0}.

For any multiplicative subset S C R, not necessarily left Ore, formula (1) defines a Gabriel
filter Lg of left ideals in R. It is a uniform filter.
To any Gabriel filter £, one associates an endofunctor o, on the category of left
R-modules by
oe(M)={me M|3J e L, Jm =0}.

Equivalently, oz (M) = limje,Homg(R/J, M). For example, if £ = Lg where S is Ore,
then oz (R) = Ig (see section 3).

A subobject in a category is an equivalence class of monomorphisms. A functor F' is
a subfunctor of a functor G if inyy : F(M) — G(M) is a subobject and the inclusions
inps 0 F(M) — G(M) form a natural transformation of functors in : F' — G. Explicitly,
iny F(f)(F(M)) =G(f)(inp F(M)) for f: M — N.

If A is any Abelian category, then a subfunctor o of the identity (i.e. o(M) C M
and o(f)(o(M)) = f(o(M))) with the property o(M/o(M)) = 0 is called a preradical in
A. A radical is a left exact preradical. It follows that o, is an idempotent radical in the
category of left R-modules, i.e. it is a radical and oz (oz(M)) = o2 (M).
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To any Gabriel filter £, one associates a localization endofunctor @), on the category
of left modules by the formula

Qc(M) =lim e Hompg(J, M/op(M)).

It is not obvious that Q. (M) is naturally a left R-module: the fact that £ is a Gabriel
filter plays a crucial role. Namely, given f € Q,(M), choose J € L such that there is
a fy in Homp(J, M/os(M)) representing f. For r € R, the left ideal (J : r) € L, by
the definition of a uniform filter, and the rule x +— f(zr) defines an element (7f) .y
in Hompg((J : 1), M/oz(M)) representing the class of rf. This yields a well defined left
action.

Left multiplication by an element r € R defines a class [r] € Qz(R). There is a
unique ring structure on Q. (R) such that the correspondence i, : r — [r] becomes a ring
homomorphism iz : R — Qz(R).

Not only every Gabriel filter defines an idempotent radical, every radical also defines
a Gabriel filter by the rule

L, ={JCR|o(R/J)=R/J}.
When we restrict to the idempotent radicals, then this rule gives a bijection between the
idempotent radicals and Gabriel filters.

Though it does not behave as nicely as Ore localization does, scarcity of Ore sets
makes Gabriel localization attractive and it is widely used. Moreover, this more general
class of localizations can be phrased fully in the language of the Abelian category of left
R-modules, and it generalizes to other Abelian categories with some good properties. A
common generality in which this is studied are Grothendieck categories. A Grothendieck
category A is an Abelian category which is cocomplete (small inductive limits always exist
[4, 47, 90]), where filtered limits are exact, and which has a generator (an object G in A
such that C'+— Home(C, G) is a faithful functor), for details cf. [34, 64, 83, 90, 81]. Such
categories are a natural place to study noncommutative algebraic geometry beyond the
affine and projective cases [71, 81, 59].

A thick subcategory of an Abelian category A is a replete (= full and closed under
isomorphisms) subcategory 7 of A which is closed under extensions, subobjects and
quotients. In other words, an object M’ in a short sequence 0 — M — M’ — M"” — 0
in A belongs to 7 iff M and M” do. Localization at thick subcategories is a common
framework in noncommutative algebraic geometry [71, 68]. Starting from a pair (A, 7T)
where A is Abelian and 7 is thick, one forms a (Serre) quotient category [4, 19, 20, 34, 64,
68]. As objects one takes the objects of the original category, but in addition to the original
morphisms one adds to the class of morphisms the formal inverses of those morphisms
f for which both Ker f and Coker f are in 7. A thick subcategory is called a (Serre)
localizing subcategory if the morphisms which are invertible in the quotient category are
exactly those for which Ker f and Coker f are both in 7. Hence, more than one thick
subcategory may give the same quotient category, and that ambiguity is removed if we
consider the corresponding localizing subcategories instead.

For any idempotent radical o in A, define the class 7, of o-torsion objects and the
class F, of o-torsion free objects by
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T, ={M € ObA|o(M) =M}, F,={MecObA|o(M)=0}.

The pair (7,, F5) is an example of a torsion theory and 7, is a thick subcategory of A. A
torsion theory [4, 34] in an Abelian category A is a pair (7, F) of replete subcategories
of A such that every morphism 7" — F', where T is an object in 7 and F' an object in F,
is a zero morphism; and such that every object A in A can be put into an exact sequence
0—>T— A— F — 0 where T is an object in 7 and F' an object in F. Localizations
in Abelian categories, and categories of modules in particular, are often conveniently
described in terms of torsion theories.

A torsion theory is hereditary if every submodule of a torsion module is also tor-
sion. Torsion theories correspond to idempotent preradicals. Hereditary torsion theories
correspond to Gabriel localizations, which in turn correspond to idempotent radicals.

5. Covers via localizations [72, 69, 34, 80]. For a moment, we take the most general
view [69, 20, 4] that a localization is a functor Q* : C — C’ which is universal [20] with
respect to inverting some class ¥ of morphisms in C. A functor @Q* between Abelian
categories will be called continuous if it has a right adjoint, say Q., and flat if Q* is,
in addition, exact. A characterization of a localization functor is [20] that it has a fully
faithful right adjoint. A family V = (Q% : C — Cx)aea of flat functors covers C if it is
conservative, i.e.

VfeMorC (((VA) Qi(f) isinvertible) = f is invertible).

We are interested here in covers by localizations only, but we expect more general flat
covers to play a role in future extensions of this work, as they do in commutative algebraic
geometry. Flat covers by localizations are called by A. Rosenberg [69] Zariski covers.

Let us now specialize to the category of left R-modules. We would like to carry further
the picture that localizations correspond to certain open subsets. In addition to covers,
one would like to have “intersections”. A newcomer to localization should be warned,
however, of pitfalls here.

In the case of left Ore localizations S™'R and T~ 'R, the natural candidate for in-
tersection is the localization at the set S V T multiplicatively generated by S and T It
is automatically Ore, hence (S V T)"!R is a ring as usual. The set ST of products st,
s € S§,t € T is, in general, not multiplicative, but it does satisfy the left Ore condition.

As S7'R is an R-module, one can always introduce T-!S~'R as an R-module, by
applying the localization at S first, and the localization at T after that. T-1S~1R is not
necesarily a ring via Ore construction, as inverting 7' (more precisely, ig(T)) in S™!R
by Ore method asks for ig(T) to be left Ore in S™'R, which is not true in general,
and replacing left Ore sets by 2-sided Ore sets does not help. To get a feeling for this
phenomenon write down the Ore condition for ig(7T) in S™'R and notice that there is
more to check than the original Ore conditions for 7" in R say. Similarly, we can consider
STIT7'R and even T !S™I1T~'R etc.

(S VT)"'R is isomorphic to T"1S™!R as an R-module precisely when ig(T) is left
Ore in S™1R, hence, by symmetry, iff i7(S) is left Ore in T—!R. If this is true, which is
rare in the noncommutative case, we say that S and T are mutually compatible left Ore
sets [34, 89] (not to confuse with the compatibility with coaction which is a central topic
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in this paper). Hence, if S and T are compatible, the module T-*S~!R has a natural
ring structure (characterized also by the requirement that (i7, 7-1S~!'R) is an object in
C(S7IR,T)). Following A. Rosenberg, we call a cover semiseparated if the localizations
are pairwise compatible (this makes sense for localizations more general than Ore).

As SV T is a bigger set than ST, we loose some information (kill more ideals) using
localization at S'VT instead of the consecutive localizations at S and T'. More concretely,
if we view V as an operation of taking “intersection of open sets” and if a ring covered
by localizations could be considered as a “union” of such, then we face the fact that
“intersection” is not distributive with respect to “union”: {(S V T») 'R} ca does not
necesarily cover STIR if {T} ' R}rea covers R.

However, there is a positive result which puts us in business:

GLOBALIZATION LEMMA. Suppose a finite family of Ore localizations {Ty 'R}xen
covers R. Then for every left R-module M the sequence

0—-M— [[rv'M— ] 7,'T,'M
AEA (p,v)EAXA

is exact, where the first morphism is m — [[ix(m) and the second is

[T~ T tm) = it (m).
A (

8%

Here iy is the localization map and ##; , is the natural map from T, ' M to T,, "1, ' M,
hence the lower indices for ¢ denote the target and the order matters.

This statement has been generalizated to Gabriel filters [72], cf. also [34]. This may
be derived from the application of Barr-Beck’s theorem in this setup.

The meaning of the globalization lemma is that every module can be reconstructed
by gluing from its localizations, provided the overlaps in successive localizations in both
orders are taken simultaneously into account, as it is in the general picture of flat descent,
and this principle extends to triple etc. localizations. Two systematic methods to use this
basic fact about covers have been proposed.

The 15¢ method, proposed by F. van Oystaeyen and L. Willaert, is to organize covers of
some considered type into a noncommautative (analogue of a) Grothendieck topology [91,
92, 34, 59], noncommutativity referring to the fact discussed above that the order of
taking successive localizations matters. The notions of a sheaf and a quasicoherent sheaf
are then directly defined in analogy to the commutative situation [89]. Most of the work
in this direction is focused on the case of Z>o-graded Noetherian algebras for which a
nontrivial finite cover by nontrivial Ore sets exists, so called schematic algebras [91, 89].

The 2" method centers on a comonad [69] associated to a given flat cover, to place
it transparently in the general picture of flat descent [3, 12, 28, 70]. Then one associates
a cosimplicial object [69] to the comonad. When applying various functors to this con-
struction the exactness properties of the functors and of the comonad play a decisive role;
the description of objects obtained by gluing local data depends on the applicability of
Barr-Beck’s theorem [3, 4, 2, 40, 47, 48]. In particular, this is suitable for descent-type
questions, and the construction of quotients can also be understood that way.
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We say that a family T} LR of Ore localizations naively covers a ring R if

0—-R— [[75'R— [[(T.uT) 'R
AEA pn<v

is exact. Here the second map is

H my = H (i (M) = ()
A pu<v

where 4, ,, (omitted upper indices!) is the map i, , : T, 'R — (T, UT,) ' R. Every naive

cover is a cover, and every semiseparated cover is a naive cover. For the case of two

localizations only, naive covers coincide with semiseparated covers. Covers appear more

naturally than naive covers do, and having a naive (but nonsemiseparated) cover does

not guarantee much more than a cover can do.

6. Trivial principal bundles. Given an affine algebraic group B with a regular
right action v : £ x B — FE on an affine variety F, define a linear map

p=p, tOE) = OE xB)=Z0O(E)®O(B) by p.(f)(e,d) = f(v(e,b)).

The map p, is a right O(B)-coaction and an algebra map. In the noncommutative case
O(B) will be generalized to an arbitrary Hopf algebra B, and E to any O(B)-comodule
algebra £. Any left (right) comodule £ over a bialgebra B such that £ is an associative
algebra and the coaction is a homomorphism of algebras is called a left (right) B-comodule
algebra.

For a set E with a right B-action define

ExpE={(e1,e5) EEXE|3bEB, exb=e3} CEx E.

If F is a topological space then E x g E inherits a subspace topology from E x E. The
action of B is free if for every pair (e1,eq) € E X g E there is a unique b with e1b = es.
Then the rule 7 : (e1, e2) +— b defines a map of sets 7 : E xp E — E. If B is a topological
group a principal B-bundle is a topological space F with a free right B-action such that
T is a continuous map. In addition, a local triviality condition is usually required.

For algebraic varieties continuous maps are replaced by regular maps.

A principal B-bundle is trivial if there is a section ¢t : X — FE of the projection
p: E — X, ie. a continuous map such that pot = idx. Let ¢ be a section, p~!(x) some
fiber, and f a continuous function on B. Then the formula

(2) 11(f)(e) = f(r(t(p(e)),e))

defines a continuous function v¢(f) on E. In the algebraic case, the map

(3) VB =&, fry(f)

defines a map of commutative B-comodule algebras, where B = O(B) etc.

To prepare for the study of locally trivial principal bundles we now introduce certain
free and smash products, and a notion of compatibility.

Let B be a k-bialgebra and (M, po) a family of B-comodules. A family of k-linear
maps fo : My, — A where A is a fixed algebra is called {p, }-compatible iff there is a
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unique coaction p4 on A making A a B-comodule algebra and for each « the diagram
M, % M,®B
fal | famid
A " AeB
comimutes.

ExampLES. 1. Compatible localization maps, cf. 8.1.

2. Given a right B-comodule (V, p), the inclusion V — T(V) is p-compatible.

3. Let (41, p1), (A2, p2), ..., (An, pn) be a finite sequence of right B-comodule algebras.
The family of natural inclusions ij : A; — A; ® Ay ® ... ® A, is {p;}-compatible.

4. A free product of a family of associative algebras {4,},cs is T(®esA4,) modulo
an ideal generated by all expressions of the form a ® a’ — aa’ where both a, a’ belong to
A; with the same j If all A; are B-comodule algebras, then combining Examples 2 and
3 and this description conclude that the family of natural inclusions i; : A; — *jcsA; is
{p; }-compatible.

4a. In particular, consider an algebra U with the trivial B-coaction and B self-coacting
by comultiplication. By compatibility, U x B becomes a B-comodule algebra.

Let U be an algebra and B a Hopf algebra. Define the category C = C(U, B) of higher
smash products of U and B as follows. An object in C is a triple (A,¢,7y) where A is a
B-comodule algebra, ¢ : U < A8 is a 1-1 algebra map, and v : B — A is a B-comodule
algebra map such that A is generated by ¢(U) and v(B). A morphism in C from (A,¢,~)
into (A’,¢/,~') is amap f : A — A’ of B-comodule algebras such that ¢/ = ¢ o f and
v =vof.

For every object in C, one defines a map

B:BRA—A  bra=> y(ba)ay(Shz).

This is an algebra action making A a B-module algebra (i.e. b >14 =14 and b > (aa’) =
S (bay > a)(be) > a)), and AP a B-submodule subalgebra. Moreover, A% is the
smallest B-stable (i.e. I>-invariant) subalgebra of A containing U. It follows that A is
isomorphic, as a comodule algebra, to the (ordinary) smash product A®B4B for that
action on A®B i.e. the tensor product A" @ B with product rule (v ® b)(v' ® b') =
v(b(1) > ') ® bayb’ and B-coaction id ® Ag.

The free product U x B with the induced B-coaction (cf. Example 4a, above) and
the natural inclusions (yy : U — U x B and v : B — U % B, form a universal object
in C. Any ordinary smash product U#B in C(U, B) is locally terminal in the sense that
any morphism in C with source U#5 is an isomorphism in C, and that for any object
C there is at most one morphism from C to U#B. All locally terminal objects in C are
of that type. Isomorphism classes in C of ordinary smash products (with the same U)
are distinguished by the action >. For every given B-module algebra action on U, there
is a unique isomorphism class of locally terminal objects in C such that ¢y is a map of
B-modules.

Finally, C is an umbrella category, i.e. it has a universal initial object and a class 6 of
locally terminal objects, and for every object C' in C there is at least one T' € 6 with a
(unique) morphism C' — T in C.
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A trivial quantum principal B-bundle is an object in C(U, B) for some algebra U. Notice
that for the same B and the same base space U there is more than one trivial bundle, as
the action > can be different. In our point of view even for a fixed total space we allow
different i(U) C AP as long as «(U) and (B) generate A. Namely a natural candidate
for the quantum base space is sometimes smaller than the whole algebra of coinvariants,
and the latter appears with the help of the action in the total space (so it is not fully
“base”).

7. Commutative local triviality and torsors. For algebraic principal bundles,
local triviality is considered with respect to one of the several standard topologies for
schemes. Local triviality in Zariski topology is the strongest requirement, and the local
trivialities in étale, fppf, fpgc topology are weaker, in that order [14, 53]. A principal bundle
locally trivial in étale topology is often called a torsor. If the orbit space is denoted by
X, one can replace B by a trivial B-bundle B over X (i.e. by the product B x X). Then
B is a (relative) group scheme over X. More generally, consider any group scheme B
over X (topological analogue: a bundle of groups over X) acting upon X in the category
of schemes over X. Descent theory implies [53] that local triviality of E over X in flat
topology is equivalent to the requirement that E is faithfully flat and locally of finite type
over X and that

(4) (e,b) — (e,eb) : Exx B - Exx E

is an isomorphism. If E, X and B are affine, then we can dualize (4) by taking global
sections of the structure sheaf [14]. In that case X = 'Oy is the ring of 'O p-coinvariants
in £ =TOg. Then, if (4) is isomorphism, it follows [14] that the map

(5) ERxE—ERB, e®xe — (e®xk1p)p(e)

is bijective. An extension of any algebra X by a Hopf algebra B is a B-comodule algebra
£ such that X equals to the ring £°°F of coinvariants in £. An extension is Hopf-Galois
iff the map (5) is bijective. An extension is cleft if there is a convolution-invertible map
of B-comodules v : B — & (cf. (3)). For any cleft extension there is a k-linear map

>:BX—-X, b DU:Z’Y(b(l))U’yil(b@)),

as it is direct to check that the right-hand side is a B-coinvariant. The map > measures
X,ie.b>1=1andb > (uww) = > (bay > u)(be) >v). Cleft extensions are (a special
case of ) Hopf-Galois extensions. (€, idgeos, ) is a trivial quantum principal B-bundle over
£°B if  is also an algebra map. In that case, convolution invertibility of v comes for
free as v~ ! =~0S.

8. Localized coinvariants

8.1. Compatibility. Suppose we are given a bialgebra B and a right B-comodule algebra
E. An Ore set T and a localization i : £ — T~1E are compatible with a coaction
p: € — £ QB if there exists a unique map

pr:T71& T 108
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which makes (T 1€, pr) into a B-comodule algebra and the following diagram commutes:

e b E®B
ir | ir@id |
Tl¢ % TTE®B,
ie. proir = (ir ®id) o p.

In other words, Ore localization is p-compatible iff there is a unique B-comodule
algebra structure on the localized algebra such that the localization map is an intertwiner.

This definition is still appropriate for those more general (than Ore) localizations
for which Q(R) is still naturally a ring with homomorphism i : R — Q(R), and the
composition of functors Q*i, (where i, is the restriction of scalars functor from Q(R)-
modules to R-modules) is an equivalence between the category of Q(R)-modules and
the localized category. (Only) such localization functors satisfy Q(M) = Q(R) @ g M for
all M. They are called perfect localizations [34, 83]. A Gabriel localization is perfect iff
Q@ = Q.Q" is an exact endofunctor. For even more general cases, one may redefine the
p-compatibility in the language of Hopf module categories.

Classically we think of p-compatibility as the condition that the corresponding Zariski
open set is B-invariant, i.e. a union of B-orbits.

Any p-compatible Ore localization ig : €& — S™1€ of a cleft B-extension & is cleft.
The section is 75 = ig o «y. If v is an algebra map, so is yg. This is forced by the very
definition of the p-compatibility.

8.2. Practical criterium of compatibility. The localization E[T ] is pp-compatible iff

for each t € T, the element ((i ®id) o p)(t) is invertible in the algebra T71€ @ B.
The proof is elementary, cf. [76, 77].

8.3. Localized coinvariants [76, 77). Let T be a p-compatible right Ore set in a right 5-
comodule algebra (&, p). By compatibility there is a uniquely defined localized B-coaction
pr on Er = T~1E. We define the algebra of T-localized right p-coinvariants in € to be
the algebra of pp-coinvariants in Ep:

P ={yeér|pry=y®1}.
8.4. Nested localizations [76, 77]. Let S C T C £ be an inclusion of Ore subsets in &,
both compatible with B-coaction p.
(i) The square diagram involving localized coactions commutes:
sle B sTlew B
id ] | if®id
T-'¢ B T7leeB
In other words, the natural maps z% between localizations are intertwiners.

(ii) The natural map i3 between the localizations maps the (sub)algebra of S-localized
coinvariants into the (sub)algebra of T-localized coinvariants:

ijS_'((Sflg)coB) C (Tflg)coB.

8.5. Compatibility and Hopf modules. Given a right B-comodule algebra &, (relative)
(€, B)-Hopf modules, or simply dimodules, are the objects of the category ¢ M? formed
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by left £&-modules M which are also right B-comodules, with compatibility

> em) Bk eymay = Y_(em)() @k (em) ).

For any M € ¢ MP" one defines the B-coaction p’ on the tensor product S~ @y M over
the ground field k:

p/ . SLE R M — S-1E Rk M R B,

p'(x @k m) =3 2(2(0) @k M(0)) @k T(1)M(1).-
This coaction factors to the B-coaction py; on the S™1M which is the tensor product of
the same factors but now over &:

ps-1m(x @ m) = (2(0) D M(0)) Dk T(1)M(1),

i.e. we have the commutative diagram

Silg®kM LN (5715®kM) Rk B
l pr l pProdyid
STIM =S M "5M  (S71€ @ M) @y B

where the vertical maps are the natural projections. The bottom map is well-defined
thanks to the compatibility of £-module and B-comodule structure on M:

Y- ((ye) ) ®e n(0)) @x (ye)(1yn(1)
= > (€0 ®e 1n(0)) @k Y(1)€(1)N(1)
= >-(Y(0) ®e (en)(0)) ®x Yy (en)qy € S™'M ®x B.

Thus we get a functor Qg ceMB = i g MB.

This argument extends to perfect localizations. For more general localizations, when
the definition in terms of the ground ring is not appropriate, we say that a localization
functor Q = Q* is p-compatible if it induces a localization functor Q% on the category of
dimodules ¢ M5, The localization maps iy, : M — Q(M) then also lift to the maps of
dimodules. This may be seen by observing that, abstractly, the localization maps come
from the adjunction i : Id — Q.Q™.

Apart from easy generalizations, the reformulation in terms of dimodule categories has
other useful consequences. For each dimodule M, there is an equality Q%(Q5M) = Q5 M
of dimodules. A more important observation is that the functors of the type ng can be
iterated. This means that there is a natural B-coaction on the successive p-compatible lo-
calizations S71S; ! - S 1€ which is a refinement (cf. discussion of covers by localizations
above) of the previous picture where we could do this only for (S1V.SaV...VS, ) 1E, as the
latter is a ring. We can now define the module of localized coinvariantsin S8y .- S-1€
as the module of coinvariants for this induced B-coaction.

9. Covers by coaction—compatible localizations. To every cover of £ by flat
localizations one associates a cosimplicial object

(6) E—— T, &L E—r -

where £, are the successive localizations. If the cover is semiseparated then we can
identify £,, with &£,,, etc. so the products can be taken with u < v < ... with respect to
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any fixed ordering on the indices of the cover. If the localizations are p-compatible and
cover semiseparated this is a cosimplicial object in the category of B-comodule algebras.
Without semiseparetedness it is only in the category ¢ MPB.

Denote by g/\/lff,,m the category obtained from ¢MP? by successive application of
dimodule category localizations Qf. Again, in the semiseparated case, g./\/lffl,_” will agree
with the dimodule category g‘wm./\/lB , but in general &,, ... is not a ring, but only an
&-bimodule, so the latter category does not make sense. For any flat localization functor
Q*, its right adjoint @, is fully faithful [20]. Thus we may view the objects in g/\/lfy”_ as
living in ¢ M5B, In particular, every functor F defined on ¢ M? can be naturally evaluated
on g/\/lf,,m.

More generally, if we replace the B-comodule algebra £ in (6) by any dimodule M €
£ M?PB we also obtain a cosimplicial object. Moreover, the construction is functorial in M.
Hence we obtain a cosimplicial object in the category of endofunctors End g MB.

For details on this “standard resolution” construction see [69], remembering that now
our objects live in the Abelian (actually Grothendieck [94]) category ¢ MPE.

Consider the left exact functor

()COB:SMB_)MM

of taking the submodule of coinvariants, where U = £°°5. The functor M — & ®y M is a
left adjoint to ()°°5. Here the £-action on €@y M extends the map e(e’ ®ym) = ee’ @y m
and the B-coaction extends the map e ® m +— > (eg) ®u v) ®x e(1). The adjunctions are
given by

M — (E @y M)®B, mi-1@m,

E @y M©B — M, e @y m — em.

H.-J. Schneider’s theorem [75, 60] says that these two adjoint functors are equivalences iff
€ is a faithfully flat Hopf-Galois extension of U. We’ll now sketch the interplay between
the functors playing a role in the Schneider theorem and the (co)simplicial structures
coming from the cover by the coaction-compatible localizations.

Throughout this section we denote U*" = (EWN,)COB. We use the upper indices, as
UM is not necessarily a localization (lower indices!) of U. In section 8, we have discussed
that any p-compatible localization functor ), induces the localization functor ff on the
category of dimodules, hence if the functors from the Schneider theorem are equivalences
then there is a well defined localized category yyM,,... of M, but in general ;M is
not defined. When such localized categories are defined, we can restate the very fact by
saying that the p-compatible cover 4 = {Q,} of £ induces a cover 1 of U. The category
of UH¥---modules, denoted by y/uv... .M is not necessarily a localized category 3y M, ... of
uM, even when the latter exists (when it exists it is typically bigger than the latter). In
other words, taking the coinvariants and localizing do not commute.

A cosimplicial object in ¢ MPB is given by a functor from the cosimplicial category
A to ¢ MB. In our case, to each function f : [[] — [k] in the cosimplicial category A
one assigns a certain composition Q? of the localization functors fo (roughly speaking;:
formulas also involve their right adjoints, the inclusion into the direct product, and the
unit of an appropriate adjunction, cf. [47, 69, 70, 93]).
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For each cover Y = {Q,} of €& by p-compatible Gabriel localizations we define a
category ¢ M ()8, the U-accessible quotient, as follows. For mere sake of comparison,
we'll also define two other categories in a similar way, ¢ MB(U),  M(£l). Instead of
an object M and its successive localizations M, .. we consider a family N of objects
N# (upper indices!) in categories C*” respectively, given with a family of structure
morphisms b.. Here CH* = y4,... M for the $-accessible quotient ¢ M ()5, and CHV =
eMB, and yM,,.. for the construction of ¢ MPB(4l) and uM(L) respectively. Here
uM(4l) is defined only when $l is defined. Denote Nj = 1., N#o#% and Cy the
corresponding category. A family of structure morphisms is an assignment b : (f, k) —
b(f, k), where f : [[] — [K] is in the cosimplicial category A, k is a natural number and
b(f, k) is a morphism in Cy,

b(f °4g, k) - b(97 l) © Qg(b(fa k))
b(f,k) : QF(Ni) — Ny, such that ¢ Q% (Ni) = QEQF(Ny) — Q5 (N,) — Ny,
b(id, k) = id

Objects of the category ¢ M (44)°°8 are pairs (N,,b), as described above, and similarly
for the other two categories. A morphism f, : (No,b) — (N,,b') is a sequence (f%),
where each f : N, — Nj is an &-module map, and where f; commute with structure
morphisms. Composition of morphisms is defined componentwise. This construction is an
analogue of the category of simplicial sheaves over a simplicial space, cf. [6, 13, 33, 54].

The functor M + (N, b) defined by N#¥- = (M, )8 and b = id defines a functor
eMB — ¢ M(8)°B. The functor M +— (N,,b) defined by N*+ = M, from ¢MP
to g MB (40) is, however, an equivalence of categories (and all the structure morphisms
are isomorphisms). This follows from the globalization lemma (section 5) and general
nonsense about simplicial objects (cf. [70], Prop. 1.0.8.2, for the appropriate statement
in the language of comonads).

It is a basic phenomenon that taking coinvariants does not commute with localization.
However, if ()°°B is an equivalence of categories, then all the localization functors QS may
be viewed as localization functors in the category ;M. By the globalization lemma (now
in y M), yM = yuM(4), where { is the localization cover induced by i as above. Hence
eMPE is equivalent to ¢ M(U)°B. If ()°°B is not an equivalence, but ()°°® of each of the
categories g/\/lf is (each &, is a faithfully flat Hopf-Galois extension), then ¢ M? is still
equivalent to g M ()5,

One thinks of the category of Hopf modules ¢ M? as the category Qcohp(E) of B-
equivariant (for right B-action, where B is an affine group and B = O(B)) quasicoherent
sheaves on an affine B-variety E. If the action is free and under some flatness condi-
tions, classical descent theory [28] identifies Qcohp(E) with the category Qcoh(E/B)
(in that case, “descent is effective”) of quasicoherent sheaves on the quotient space. The
latter category is approximated by the il-accessible quotient, and achieved in the case of
Schneider’s equivalence in each localization of the cover. In a sense, this is a globaliza-
tion of Schneider’s equivalence, i.e. a special case of the (effective) descent method for a
noncommutative nonaffine base (quotient) space.

One could naively always define Qcoh(E/B) as being simply ¢ M. However, this may
not be always achieved, if we want to equip this category with local coordinate charts.
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A comodule algebra & itself (put coaction aside for a moment) does not only define the
category of £-modules, it amounts also to a choice of a Morita equivalence class of the
underlying ring of that category. A global version of that choice is achieved as follows.

€ is viewed as a relative noncommutative scheme [69] over the category of modules
over k. The inverse image of the distinguished object in the category of k-modules is
the structure sheaf Og. For any perfect localization @, the inverse image Q*(Og¢) is a
k-algebra. One wants a noncommutative quotient scheme E/B over k also equipped
with Op/p. Realizing this structure sheaf for some category close to eM?B is the basic
meaning of the construction of the quotient space. Our approach is to localize enough to
get Op,p from local coinvariants, or at least to approximate it. “Size” of an U-accessible
quotient is a naive measure of the approximation. An ideal case is when each localization
of £ is a Hopf-Galois extension: intuitively, the local coinvariants then patch to the full
structure sheaf. One can extend the theory beyond the affine case. A (nonaffine) noncom-
mutative k-scheme Spec(€) is required to come with an affine cover by compatible perfect
localizations. Those are given coactions (on the pieces of Og). The coaction should agree
when viewed at the level of categories of modules (in the commutative case only some
B-schemes are of this form, but it is strictly larger than affine B-schemes). To achieve
further progress it is promising to rely on simplicial and cohomological methods; the
ideas of cohomological descent [13] and the noncommutative Cech cohomologies [69, 92]
provide a framework. Cf. also [3, 6, 12, 25, 33, 45, 54, 55, 55]. Very recently, V. Lunts
suggested that it might be useful to consider more general flat covers and resolutions of
would-be quotient space than the covers coming from localizations, and to use the corre-
sponding (co)simplicial objects to define and investigate quotients of comodule algebras
in full generality [46] (even nontrivial p-compatible localization covers are not always
available). However, in the rest of the paper, I will present my earlier work focusing on
the localization approach, which for some purposes suffices.

10. Quantum bundles. A right (left) Zariski locally trivial principal B-bundle is a
right (left) B-comodule algebra (&, p) together with a right (left) Zariski local trivializa-
tion. A local right (left) trivialization of (€, p) consists of

e a cover of € by p-compatible perfect localizations iy : £ — Ex,
e a family {7y : B — &Ex} of right (left) B-comodule algebra homomorphisms.

Here the B-comodule structure on &, is the one induced by p-compatibility.
Local triviality implies that each (Ex,4x,v)) is in the category of higher smash prod-
ucts C(U, B) for some U (trivial quantum principal bundle).
Let now (M, ppr) be a left B-comodule. Define
(7) Ky = (1 ®id)(id @ 7\ ® id)(id ® par) : EB @ M — E\ @ M,
Fa=@p®id)(id® (A 05) ®@id)(id® par) : Ex@ M — €\ @ M.

Equivalently, k) is the unique map such that

pa(f@m) =" fa(m1) @ m).

These data are enough to define the associated (vector) bundle &y, when the cover
{\ € A} is finite. Denote T'\éyr = E5°% ® M and define I'\€ys to be a k-space of local
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sections of associated bundle over localization A. For other localizations @,, (not included
in the trivializing cover), a version of the globalization lemma (Theorem 6.2 in [71]) and
elementary arguments justify the definition by a “k-twisted descent” formula

.)\u . - ')‘/Nl X

(ZA,LL,)\/#’ ® ld)HAFA - (Z)\%/)\/#/ & ld)K,)\/F)\/
A . ey .

(ZA/H/AM & ld)ﬁj)\FA - (Z)\/M/’)\M ® ld)IﬁJ)\/F)\/

Fuéu = {F = H F\ e H Qu(Trénm),

AEA AEA
This said, below we limit ourselves to the original cover and the global sections.

PROPOSITION 1. k) o k) = id. In particular, ky is an isomorphism onto its image
and Ky 0 Fxlime, = id.

The cotensor product of a left B-comodule M and right B-comodule £ is defined by
EOpM ={H c EQ M | (id @ pp)H = (pp @ id)H}.

The cotensor product has a priori only a structure of a k-vector space. If £ is a
B-comodule algebra which is the total space of a Hopf-algebraic trivial principal bundle
(which we identify with the smash product £°°4B), then it is elementary that £°8 @ M
is canonically isomorphic to the cotensor product as a k-vector space. We extend this
result to the setting of locally trivial bundles.

LEMMA 2 [76, 77]. The image of EOM in the localization £y @ M is contained in
Imky.

The algebra of global sections of the associated bundle '€y is (in this setup) given by

r - F= Fy e r ) N . Y . .
o { g\ g g\ A (lﬁ/,x ®id)kaF\ = (Zﬁv\ ® id)ka Fy

THEOREM 3. ['&ys is naturally isomorphic to EO0gM as a k-vector space.

Proof. By the globalization lemma, there is an isomorphism i, from £ to the equalizer
of the diagram [[ €y =% [[Ex,n. Tensoring iy and the equalizer diagram with idas over
the ground field k yields an isomorphism iy ® idy; from &€ ® M to the equalizer of
[T& @ M = []E\ v ® M. A direct check shows that [ ps, ® idpy and [[ide, ® pu
agree on the image of map & (iy ® idps) defined on [], £5°% ® M. As our localization
endofunctors are flat, and the coactions pg, extend pg, the covering property implies that
[ pe ® idas agrees with [Jide, ® pas in the equalizer. The isomorphism I'éy; — EO0pM
is well defined by (ipn ® idar) [, #x. Namely, its inverse is H — [, &a(ix ® ida) H.
This follows by Lemma 2 and the properties of k)-s listed above. m

COROLLARY 4. Let G be an Hopf algebra, B a quantum subgroup (quotient Hopf alge-
bra). If (G, pB) is a Zariski locally trivial principal pg-bundle, then the inducing functor
for comodules Ind% : MB — MY can be realized by gluing local sections.

Here m : G — B is an onto map of Hopf algebras. The induced comodule can be
described as IndgM = GOpM where pg : G — G ® B is given by pg = (id® W)VAQ.

One can interpret the global sections functor I' as an appropriate 0—th Cech-type
cohomology HY. Similarly, the application of the methods in [69] implies a generalization
of Corollary 4: the composition H? o ¢, where H* are the appropriate higher Cech-type
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cohomologies and £_ is the associated bundle functor M +— &)y, realize the higher derived
functors R'Ind$ of the induction functor for comodules.
We use (co)matrix notation for coaction to introduce the transition matrices for £yy.
Supose {mg} is a basis of M and the B-coaction is given by
pmg HZm%“@ma.
«

Represent F)\ € I'\&yr as
Fy = Z f)? @ Mg
[0
The condition kyFy = kx Fy (in both consecutive localizations) reads
D Rnmd) @mg =Y [y (mh) @ mg.
o,

As {mg} is a basis, this is equivalent to the statement
(VB) Zf/\’YA Zf)«’YX

Multiplying this identity by 'yA(Smﬁ) and summing over J we obtain
(8) Z FRa(m)ya(Sm}) = Z Fon (m)ya(Sm)).

As v, is an algebra map, Y~ 7a (ma)*yA(Smﬁ) = 621, which simplifies the left-hand side
to fy. Denote

(9) (DMxr x Zw/ A(Smy) € Exva.

This defines a matrix 9y y» which is called the transition matriz between the charts A
and X'. In this notation (8) becomes

= Zf?/ RUVBY!

It follows from definition (9) that
mA,A = I, m)\,um,u,u = m)\,ua

where the upper index of M/ » is the column index rather than the row index (the latter
would be along conventions for other matrices in this work).

Finally, we comment on the restriction of (algebras of global sections of) bundles to
Ore localizations.

THEOREM 5 [76, 77]. There exist a Hopf algebra B and a B-comodule algebra (€, p)
such that

E°B s commutative (possible to choose the

e The algebra of (global) coinvariants
polynomial ring k[u] ).

e & is isomorphic to a smash product of B and £°B with coaction @ A.

o There exists a multiplicative set U C £°°B (automatically Ore by commutativity)

such that there is no pair of a p-compatible left Ore set S C € and an isomorphism
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¢ of B-comodule algebras
C : (Sflg)coB N Ufl(gcoB)
such that € o ig|gcos = iy.

This phenomenon is nonexistent in the commutative case and generic in the noncom-
mutative case, even if, as here, all the global coinvariants pairwise commute. In [58] some
conditions preventing such phenomena were considered for certain kinds of localizations
using filters of ideals. In [45] graded actions and actions by differential operators were
considered and, in their setup, guaranteed that module algebra actions extend to local-
izations. In the language of modules and dimodules, the simplest reasoning about these
phenomena is as follows. The coaction on the whole ring does not necessarily extend to
the localized ring as we know. If it does, then the localization induces the functor @Z on
eMB 50 if the latter category is equivalent to 3y M (say, in the faithfully flat Hopf-Galois
case), we obtain an induced localization in the base for free. The induced radical oy in
the base category zM is given by M +— N whenever 6% : M ® B+ N ® B. One cannot
a priori say if the induced localization of ;4 M is of some specific type. Say, if we start with
a p-compatible Ore localization of ¢ M, is the induced localization of ;M Ore or only a
perfect localization? This is not a very tractable question. A B-comodule algebra (&, p) is
sufficiently localized with respect to the family of all p-compatible left Ore localizations
if for every such S there is a left Ore set U in U = £°°B such that

is|EB  EF — (S71&)F

is canonically isomorphic to an Ore localization of £8 with respect to some Ore set
U C EB. Tt is interesting to compare this notion with other mentioned conditions on the
relation between the base and total algebra. For example, by the fundamental theorem
of Hopf modules, each p-compatible flat localization of 3 M?P? is equivalent to a flat local-
ization of the category of k-vector spaces. As all such localizations are trivial, it is not
possible to find a nontrivial Ore localization G[T Y of a Hopf algebra G such that the
comultiplication Ag extends multiplicatively to a coaction Ap in the localization. This is
an extension of the basic fact that the only G-invariant subset of an algebraic group G
is G itself.

Start with a localization @iy of the base category ;. M, and suppose it is abstractly
equivalent to the category of dimodules ¢ MZ on the total algebra £. Then, of course, we
have a localization QB on that category, but there is no a priori reason to believe that
QP is induced by any localization @) defined on the ambient category M. For example,
the same module M can have two different Hopf module structures M; and M, and
QB(M;) may disagree with QB (M,) as an £-module. If the abstract category equivalence
is however the natural one—as in the Schneider theorem, that is, via ()°°® and ®y3—then
this bad phenomenon is prevented.

Ore sets in the coinvariants algebra U (for a trivial bundle) may correspond to more
general (than Ore) p-compatible localizations in the total space, so taking just the “topol-
ogy” generated by Ore localizations would mean that the geometric projection is not con-
tinuous in the obvious sense, even in otherwise well-behaved noncommutative examples.
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11. Cohn localization [9, 10]. Let R be a possibly noncommutative ring, and ¥ a
given set of square matrices of possibly different sizes with entriesin R. Amap f: R — S
of rings is Y-inverting if each matrix in ¥ is mapped to an invertible matrix over S. A
Y-inverting ring map iy : R — Ry is called Cohn localization (or universal Y-inverting
localization) if for every ¥-inverting ring map f : R — S there exists a unique ring map
f: Ry — S such that f = f oisx.

A set ¥ of matrices is called multiplicative if 1 € ¥ and, for any A, B € 3 and a matrix

AC
0B

of Ry can be obtained as the components of the solutions to all the matrix equations
Au = a, where a is a column over R and A € 3. To any multiplicative ¥, P. M. Cohn [10]
associates an idempotent preradical oy. Its left-module variant is given by

C of right size over R, the matrix ( ) € 3. If ¥ is multiplicative, then the elements

M o (M) ={mec M|3u=(uy,...,u,)", 3i, m =u; and 3A € &, Au = 0}.

The associated torsion theory is not always hereditary (i.e. a submodule of a ox-torsion
module is not necessarily ox-torsion). Equivalently, oy, is not necessarily left exact. Hered-
itary torsion theories correspond to Gabriel localizations. In practice, the main problem
with Cohn localization is that it is usually hard to determine the kernel of the localization
map.

12. Quasideterminants and noncommutative Gauss decomposition. Invert-
ing matrices with noncommutative entries plays a role not only in Cohn localization but
also generally in solving linear systems of equations in noncommutative variables. The
main tool to do calculations with such matrix inverses and perform Gauss-type decom-
positions are quasideterminants of Gel’fand and Retakh [22, 41, 23, 24, 76].

Let A € M, (R) be an n x n matrix over an arbitrary noncommutative unital associa-
tive ring R. Suppose the rows and columns of A are labeled. Let us choose a row label 4
and a column label j. By A; we’ll denote the (n — 1) X (n — 1) matrix obtained from A
by removing the i-th row and the j-th column. The (i, j)-th quasideterminant |Al;; is

|Als; = a§ - Zk;éi,z;éj ali(A;)z_lcla?

provided the right-hand side is defined.

At most n? quasideterminants of a given A € M, (R) may be defined. If all the
n? quasideterminants |A|;; exist and are invertible then the inverse A~' of A exists in
A€ M,(R) and

(10) (Al = (A7)

Suppose now we are given an equation of the form
Az =¢

Define A(j,€) as the n x n matrix whose entries are the same as of A except that the
j-th column is replaced by £. Then the noncommutative left Cramer rule says

[|Alij2? = |AG,€)l
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Quasideterminants for classical matrices are up to sign ratios of the determinant of
a matrix and the determinant of an (n — 1) X (n — 1) submatrix, as one can see by
remembering the formula for matrix inverse in terms of cofactor matrices.

Quasideterminants satisfy a number of useful identities, namely, analogues of classical
Muir’s law of extensionality, Jacobi inversion formula, Laplace expansion formulas etc.
There is also a new property called heredity. Descriptively it is a compatibility of taking
quasideterminant with partitioning a matrix (into square matrix blocks). In other words,
one can take quasideterminants of partitioned matrices in stages.

Noncommutative Gauss decomposition of a matrix GG is the decomposition

(11) G=UA
where A is a lower triangular matrix (with possibly noncommutative entries) and U is
an upper unidiagonal matrix (i.e. ué- =0 for i > j, and u; =1 for i = j).
The problem (11) is equivalent to the set of n? equations
k
gi = a + Zk>z>g “kag , 1=,
! Zk>g>z j ;1< -]

In terms of quasideterminants the solution is

i i
gjl gz+% e In
) i+ i+ . i+1
ap=| % I,
g? g1 9n
(12) ) ) oY ) ) 1
i i ... i - J
9;  9j+1 9n 9] g]+1 n
, gHL gl il R U S
U; _ g] g]«i»l n gj g]+1 n , Z<j,
n n n n n n
95 Y5+ 0 9n Ay Y95 9541 0 On

Jj

whenever all the principal (= lower right corner) quasiminors (= quasideterminants of
submatrices) exist and they are invertible. We suggest to the reader to picture (positions
of) rows and columns in G which are involved in the submatrices of G in (12).

13. Matrix bialgebras and Hopf algebras

13.1. The full ring M (n, k) of n x n matrices with (commutative) entries in a field k
is isomorphic to k™ as a k-vector space. This isomorphism induces a structure of affine
k-variety on M (n,k). The regular functions on that variety are polynomials in matrix
entries. Introduce n? regular functions

t;: M(n, k) — k, ti(a) = a], a€ M(nk), i,j=1,...,n

Then O(M (n,k)) = k[t{,t3,...,tp] is the ring of global regular functions on M (n, k)
Let G be a bialgebra, possibly noncommutative, over a field k and G = (gj ); 11
an n X n-matrix over G. G is a matriz bialgebra with basis G if the set of entries of G

generates G and if the comultiplication A and counit € satisfy

AG=G®G, ie Agj Sor_ 1gk®gj7
eG =1, ie. e(gh) =0l
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The free (noncommutative) associative algebra F' on n? generators fi has a unique coal-
gebra structure making it a matrix bialgebra with basis ( f] ); 1’ *" . We call it the free
matriz bialgebra of rank n?. Every bialgebra quotient of that blalgebra is a matrix bial-
gebra.

13.2. Free Hopf algebras. We are going to sketch the construction of free Hopf algebras
due to Takeuchi [87]. Let C be a coalgebra over k. Let C; = C for i an even nonnegative
integer, and C; = C;°" (the cooposite coalgebra of C') for an odd positive integer. Then
define V' to be the external direct sum (coproduct) of the coalgebras C;,

v=]]c

The tensor algebra T'(V') of V, as of any other coalgebra, has a unique bialgebra structure
such that the natural inclusion iy : V' — T(V) is a coalgebra map. We have T'(V°P) =
T(V)P. Then define a k-linear map

Sy : V=V by (vg,v1,v2,...) =(0,v,v1,v,...).

There is a unique bialgebra map S : T(V') — T'(V)°P extending Sy . Let I be the 2-sided
ideal in T'(V') generated by all elements of the form

ZC(]_)S(C(Q)) —¢(e)1 and ZS(C(l))C(g) —€e(0)], ceCyyi=1,2,...
This 2-sided ideal is a biideal and S(Ig) C Ig, hence it induces a bialgebra map
S:T(V)/Is — (T(V)/Is)P.
It follows that H(C) = T(V)/Ig is a Hopf algebra, the free Hopf algebra on C. For any
Hopf algebra H' and a coalgebra map ¢ : C' — H’ there is a unique Hopf algebra map
¢' : H(C) — H' such that ¢’ oi = ¢ where i : C — H(C) is the composition of the
inclusion into T'(V') and the projection T(V) — H(C).

Notice that, for any family {C;} of coalgebras, T'(I], C;) = [, T(C;) where the co-
product on the RHS is the coproduct in the category of bialgebras, which is the free
product of algebras with the natural induced coalgebra structure. In the case when the
index set is the nonnegative integers and C;1; = C;°", the LHS specializes to an inter-
mediate stage in building H(C), so it is a generalization of it.

Manin [50] generalized the RHS. He replaces T(C;) by any bialgebra B; with B; 11 =
B°"°P_ Notice that the algebra structure is also opposite between even and odd cases
(superfluous/unvisible condition in the case of T'(C;)). Let B =[], B; and S : B — B be
again defined by shift in index by +1. Then the 2-sided ideal Is C B generated by

> byS(bz)) — e(b)1 and > S(b))bez) — €(b)1, b€ B;,
is S-stable and H(B) = B/Is is a Hopf algebra, the Hopf envelope of B.

It satisfies the following universal property: for any Hopf algebra H' and a bialgebra
map ¢ : By — H' there is a unique Hopf algebra map H(¢) : H(B) — H' such that
H(¢)oi = ¢ where i : By — H(B) is the composition of the inclusion into B and the
projection B — H(B).

13.3. Matriz Hopf algebras. One can specialize the construction of Hopf envelope to

any matrix bialgebra on a basis T = (t});_ i 1 - A matriz Hopf algebra G with basis
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T = (t}) is a Hopf algebra which has a matrix subbialgebra B with basis T such that
the map H(id) : H(B) — G is onto. B is not necessarily a matrix bialgebra with respect
to that basis: e.g. the commutative coordinate ring of GL(n, k) is not a matrix bialgebra
with respect to the obvious basis T, as one needs to introduce inverse of the determinant.
That can be, of course, repaired by enlarging the basis. On the other hand, O(SL(n, k))
is a matrix bialgebra and a matrix Hopf algebra with the same standard basis T'.

The free matriz Hopf algebra NGL(n,k) is the free Hopf algebra generated by the
free matrix coalgebra Mc(n, k) (the latter is just the k-vector space C of dimension n?
with matrix comultiplication). Equivalently, NGL(n,k) is the Hopf envelope of the free
matrix bialgebra N'M(n, k) on n? generators. Notice that M (n, k) is finite dimensional,
N M(n, k) is finitely generated and NGL(n,k) is a priori not even finitely generated.

PROPOSITION 6. Let X1 C Xy be two sets of submatrices of the basis T of NM,, =
NM(n, k). Then the natural maps £ N'M,, — S5 NM,, are 1-1.

Proof. Tt is known [9] that there is an algebra embedding of any free associative algebra
into a skewfield K. Let j : N M,, — K be such an embedding. By the universal property of
the localization there is a unique map jx : ¥ "N M,, — K provided X consists of matrices
which are invertible over K. For that it is sufficient to prove that all the quasideterminants
exist and they are invertible (nonzero). The quasideterminants can be defined inductively
by size, provided all the involved quasiminors at every step are nonzero. In our case we
deal with quasiminors of T only. Their images under the projection X — K/[K, K] onto
the commutative field /[, K] are apparently nonzero, hence they are nonzero over K,
hence invertible.

Using the universal property again, we see that the chain of natural maps N\ M, —
Efl./\/'/\/ln — Z;lNMn — K composes to j, hence all the maps in the chain are 1-1. m

The free triangular matriz Hopf algebra N'B(n,k) can be obtained directly in analogy
with NGL(n, k). The only difference is that the coalgebra (bialgebra) generators t; fori <
jof C = M.(n,k) (NM(n, k) respectively) are set to zero before taking the construction.
Alternatively, one can start with NGL(n,k) and consider the 2-sided ideal generated by
(t;)r forall r =0,1,2,... and all ¢ < j. This biideal is obviously S-stable, hence induces
a quotient map of Hopf algebras 7 : NGL(n,k) — NB(n, k) whose image is isomorphic
to a free triangular matrix Hopf algebra. In the latter setup, we call N'B(n,k), or, more
precisely, the pair (MB(n, k), ), the noncommutative Borel subgroup in NGL(n, k).

Given a permutation o on n letters, and an n X n matrix G, denote by G¢ the matrix
(G7)s = G‘j’(i). Let K be the quotient skewfield of G = NGL(n,k). We introduce the
following matrices over K and subalgebras of K:

e T is the copy of the matrix of generators T' € M, (C) in the image of M, (C,) in
M, (H(O)), ie. (,T)% = (t}),. By permuting rows, we also obtain 7.

® i, : G — W, is the Cohn invertive localization of G which is universal with respect
to the inversion of the multiplicative set of matrices generated by all the lower right
square (= principal) submatrices of .77 for all r even and all upper left square (=
coprincipal) submatrices of .77 for all r odd. Writing G is an inductive limit of
Cohn localizations of A’M,,, and representing the localization i, by inductive limit
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too, the same argument as in the proof of Proposition 6, proves that ¢ is 1-1 and
hence W, can be viewed as a subalgebra in K.

e The Gauss decomposition of a matrix 7' = UA in Wyq exists and is unique in
an appropriate Cohn localization of A/M,,. The localization 7;q is 1-1, hence this
decomposition implies decompositions .17 = U, A, if r is even and T = A, U, if
r is odd, as matrices over Wiq. Here U, = ((ur);
Ay = ((ar)j) a lower triangular matrix. If r is omitted, we mean r = 0. This
straightforwardly generalizes to o # id.

o Let U, be the subalgebra of W, generated by the entries of U, , for all r. Let A,
be the subalgebra of W, generated by the entries of all A, ,.

) is an upper unitriangular and

THEOREM 7. 1. W, is generated by U, and A, and the natural map Wy — K is 1-1.
2. The Cohn localization map i, : G — Wy is 1-1 and N'B(n,k)-coaction compatible.
3. b;- — (ag)§- extends to a 1-1 homomorphism of the algebras v, .

4. Vo is a NB(n,k)-comodule map.

5. U, is a strict subalgebra of the algebra of localized coinvariants in W, .

CONJECTURE. The set of n! Cohn localizations i, : G — W, covers G.

REMARKS. A) The quantum analogue (Theorems 9-11) does not follow from Theorem
7. Namely, quantum subgroups of N'GL(n,k) are obtained by taking big Hopf ideals,
which are not a priori compatible with all the structure contained in the theorem. The
quantum case is much harder, particularly for o # id. See below.

B) Bruhat decomposition for matrices might have some geometrical role here, but we
did not consider it. Algebraically, existence of Bruhat decomposition for matrices over
any skewfield is an easy classical fact [11].

Proof [78] of Theorem 7 (sketch): Perform left row operations following familiar Gauss
elimination procedure, and observe that, at each step, we can extend the coaction to all
the inverses which appear in the localization corresponding to that step. We introduce a

cd
induction procedure, d has size 1x1, and T'[i] = T when we forget the partitioning. At each

block matrix T[i] = (“ b) where i X7 is the size of the submatrix d. At the beginning of the

step, using left row operations, change T'[¢] into A[i] = (“_bgilc 2). Performing these
left row operations amounts to the left multiplication by an upper unitriangular matrix
Uli]. The block-entry in the left upper corner is simply the (1,1)-quasideterminant of
the partitioned matrix T[i] (observe, using heredity, which quasiminors of the underlying
n X n matrix do not change in this procedure). Only the matrix d has been inverted at
the current step. The algebra generated by (genuine, not block) entries of A[i] contains
all entries of d~! (use invertibility of T), and it is equal to the Cohn localization of the
algebra at the submatrix d of the algebra at the previous step. If P is the basis matrix for
the noncommutative Borel subgroup N'B,, (or, in a strengthened version of this argument,
for the appropriate parabolic NP, (4)), then we write P as a partitoned matrix (of the
same partition type as T[i]) P = (7). Then p(d) = d ® 9, hence it is invertible in the
localization tensored with A'B,,, because 0 is invertible in N'B,,, by the simple fact that
a triangular matrix is invertible iff each diagonal entry is. Coaction therefore extends to
the localization. Moreover,
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pla—bd 'c)=a@a+b@c— (b)) (d '@ H(c@at+td®c)=(a—bd 'c)®a
Hence p(A[i]) = A[i]®P (matrix multiplication with ® between the entries). This coaction

is identical to the coaction on the matrix T'[i], hence the correspondence 4" : (T[i])}

(A[i])} extends to an NB(n,k)-comodule map on the k-span of set of entries of T'[i].
We start with free generators, and gradually impose relations, hence v*" extends to an
NB(n,k)-comodule algebra map ~*. Repartition A[i], making d of size i + 1, call the
resulting matrix T'[i + 1], and continue the procedure. Notice that the composition of the

resulting maps 7 has the same kernel as the map defining a Borel subgroup (one inclusion

—

follows from the procedure and another from generalities on smash products). These
arguments essentially show 1-4. To prove 5. just use the Gauss decomposition formula
for generators of U, as a fraction of two flag quasideterminants uju, 1 and observe that
po(ur) =u1 ®b and py(ug) = us @b for the same b € NB(n, k), and conclude that ulugl
is a coinvariant. m

14. Quantum matrix groups [62, 50, 49, 38, 31, 66]. Let ¢ € k, ¢ # 0. The quantum
matrix bialgebra M,(n,k) = O(My(n,k)) is the free matrix bialgebra N M (n, k) with
basis T' = (t3) modulo the smallest biideal I such that the following relations hold in the
quotient:

a=p0,v<d (same row) tSt§ = qt§ts,
a < f, y=4 (same column) ti‘tﬁ = qtgtﬁ,
a#pB and y#0 [t £5] = (g — g~ )ES(6(5 > 7) — b(ar > B)),

where f(true) = 1, f(false) = 0, and [,] stands for the ordinary commutator.

Mg(n, k) is a domain. There are other versions, including the multiparametric case
Mpo(n, k), cf. [51, 85, 76]. Some of the results below generalize to M p g(n, k).

The quantum determinant D € M,(n,k) is defined by any of the formulas

D D D DI o i Rt
oceX(n) oc€eX(n)
where X(n) is the permutation group on n letters and [ the standard length function on
¥(n) and 7 € X(n) is a fixed permutation (say identity), the choice being irrelevant.

D is a central element in M,(n,k). D can alternatively be defined using canonical
coactions on the quantum exterior algebra [62, 76].

Selecting m rows and columns out of n clearly singles out a subalgebra in Mg(n, k)
isomorphic to My (m, k). Quantum minors are the corresponding quantum determinants
DX for the selected row and column m-multilabels K and L. Quantum minors do not
necessarily commute with elements which do not belong to the subalgebra M,(m, k)
generated by selected entries of Tf . Numerous authors found, often independently, a
large number of useful commutation relations, identities and computational principles
involving quantum minors, cf. e.g. [62, 31, 41, 76]. The starting point is

LAPLACE EXPANSION. For any pair of ordered m-multiindices K, L (labels: 1 to n),
KD = ¥,(-q) "DEDE =¥, (~q)*DLD]
= ZJ(_Q)L_JD§D§ = ZJ(—Q)L_JDiD%
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where J runs over m-multiindices; the name of a multiindex in exponent denotes the sum
of labels, and " denotes the ordered complement with respect to the set of labels {1,...,n}.

Define SL,(n, k) = O(SLy(n,k)) = M,(n,k)/L where L is the biideal generated by
(D —1). Similarly define GL,(n,k) = O(GL4(n,k)) as the localization of Mg4(n, k) at
the central element D. In the multiparametric case GLp o(n, k) is more interesting than
SLp g (n, k) because the latter typically degenerates. SLq(n, k) and GL,(n, k) are Hopf
algebras. The following formula for the antipode on the generators is forced by Laplace
expansion formulas: . o N
St; = (—¢)"'D~'Dl.
Antipode gives the inverse of a matrix T in the matrix ring over GL,(n, k) by St; =
(T_l)é and this, in turn, gives formulas for all the quasideterminants of T. Namely,
|G| Z-_jl = (G7');; whenever both sides are defined. Hence

(Tl = (S()) ™" = (~gy " D(D}) .
Thus one can use all we know about quasideterminants to study quantum determinants,

and in particular one can write down formulas for Gauss decomposition of a matrix T
and matrices obtained from T by permutation of rows in terms of quantum determinants.

THEOREM 8 [76]. Every set of quantum minors multiplicatively generates a 2-sided
Ore set in Mgy(n,k). This Ore localization is isomorphic to Cohn localization at the
set of corresponding submatrices of T'. The localization map is 1-1. An analogue holds
for GLy(n, k), SLs(n, k) and for (strong) multiparametric deformations Mpg(n,k) and
gL‘p,Q (’I’L7 k) .

The proof is easy when, for each of the quantum minors involved, the selected rows
are adjacent (without gaps) and the selected columns of T are adjacent too. The gen-
eral case (with gaps) has been proved [76] using several reductions to special cases and
an induction using rather nontrivial commutation relations involving quantum minors.
“Strong” denotes a usually imposed condition on deformation parameters [1, 15, 76].

From now on, G will denote either GL,(n,k) or SL,(n, k).

The quantum Borel subgroup B = By(n,k) is the quotient of G by the biideal I
generated by t;'- with ¢ < j. I is a Hopf ideal, hence B is a Hopf algebra.

Let I be a subset I C {1,...,n— 1} and Iy,..., I, be its connected components
ordered in such a way that i < j implies every element of I; is smaller than every element
of I;. Denote I,j =I;U{i+1:i€ I} for all 1 <k < m. Then the ideal J; generated by
t;'- where i < j and (i, j) & Upl;} x I ,j is a Hopf ideal. If I is nonempty, the quotient Hopf
algebra G/Jg is called the quantum parabolic subgroup P'. For I = () we obtain P! = B
and for I = {1,...,n — 1} we obtain P! = G. Notice that I;” x I, is the set of labels of
all boxes in a rectangle with two of the corners at the main diagonal. Hence there is a
natural partition of 7" into square submatrices such that the anihilated ideal is generated
by the elements in the strictly upper block triangular part of 7. The dimensions of the
blocks are determined by the combinatorics of the set I. For a given ring R, equip the
matrices in the matrix ring M, (R) with that same block partition, and let MI(R) be
the resulting ring of block-matrices. The identity map surely gives the ring isomorphism
between M,,(R) and M!(R), but the notions like upper triangular, unidiagonal etc. differ.
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For I = () we obtain P = B and for I = {1,...,n — 1} we obtain P = G.

If I' C I then J; C Jp/, hence there is a natural Hopf algebra surjection 7y s : Pl —
PI" generalizing 7 : G — B and 77 : G — PL.

For a permutation o € ¥(n), let w, be the corresponding permutation matrix, i.e.
for every matrix G we have (w,'G)} = g;(i). Consider now the noncommutative Gauss
decomposition in M} (IC(PT)), where K(PT) is the quotient skewfield of PT:

(13) m1(T) = weUys Ay

where U,, is upper unitriangular and A, lower triangular in ML (K(PT)), i.e. in the sense
of I'-blocks.
Let (us)% be the (4,j)-th entry of U,, but now taken as a matrix without block
partition and similarly for (a,)j.
For a subset X in some algebra, denote by (X) the subalgebra generated by X. Denote
Us = ((uo)}) C K(P),
(14) A, = <(a0)§'> C K(Pl)v
Wy = Uy, As) C K(PT).

The permutation group X(n) plays here a role of the Weyl group of SL,,. If we consider
only the case of the Borel subgroup, then the different permutations in %(n) give different
subalgebras U, in G. If we consider other parabolics, those permutations for which the
notion of being upper I’-block triangular agrees, lead only to permutations among the
generators (ug); and hence yield identical subalgebras in G. Thus for general parabolics
one may consider the relative Weyl group to avoid repetitions.

Equation (13) can be solved in terms of quasideterminants, applying formulas for
noncommutative Gauss decomposition to G = w, '7(T) considered as a matrix in
M,{/ (K(P1)). The general case is somewhat cumbersome. The simplest, Borel case, as
well as the decomposition where the Hopf ideals are generated by all entries in the upper
triangular part of first several rows (“fine Gauss decomposition”), were treated in some
detail in the author’s thesis. We are now going to formulate the corresponding structure
theorems for the Borel case (i.e. analogue of G/B) which give data for a locally trivial
quantum principal fibration in the sense developed in the earlier sections of this paper.

THEOREM 9 [76, 78]. Let S, be the Ore set in G = GLy(n) or G = SLy(n) generated
by all principal (= right lower corner) quantum minors of w; T .

(i) The natural coaction
pp:(ld®@moAg:G—-GRB

extends to localization making it a B-comodule algebra, i.e. S is pp-compatible.
(i) The quantum Gauss decomposition

T =w,UsAs

where U, is upper unitriangular and A, lower triangular has a unique solution for U,
and A, in matrices over the localized ring S;1G.
(iii) The natural map of S;1G into the quotient skewfield identifies S;1G with W,.
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THEOREM 10 [76, 78]. Let b = 7(t}) be the (i, j)-th generator of quantum Borel. The
correspondence b; — (ag)é extends to a homomorphism of B-comodule algebras

s B— S-1G.

This theorem is relatively easy to check for o = id, i.e. for the main cell. It is harder
to show (algebra homomorphism part) for other o, as it amounts to showing that (a,)?,
which are, up to constants, ratios of quantum minors, satisfy the relations which b
do. There is however a principle (“included row exchange principle” [76]) which enables
one to transfer certain identities among the quantum minors to identities with rows
systematically permuted. Using this principle, Theorem 10 reduces to the case o = id. In
the case o = id there is an alternative proof. Namely, one can use row operations starting
with the matrix T', performing a version of Gauss elimination procedure which ends with
a triangular matrix ((aid)é). One simply shows that at every step the required identities
among the entries are preserved modulo the ideal ker 7. However, this “natural” argument
does not apply to the case o # id. Namely, in that case, we start with the matrix w T
instead. Its entries do not satisfy the required identities modulo ker . The row operations
in that case change the identities too. In fact, the situation gets improved, and we end
with the correct identities! It works but a better explanation ought to be found.

THEOREM 11 [76, 78]. (i) U, C (S;1G)«".

(ii)) If o =id or if o = (n...21) then U, = (S;1G)<°B.

terms of quantum minors. By Theorem 9 (iii) we see that A = ~,(B) and U, geneiate
S1G. Hence (i) implies by standard arguments (cf. our discussion of higher smash prod-
ucts above) that in order to prove (ii) it is sufficient to show that U, is invariant with
respect to the B-action

Assertion (i) follows by a direct and simple computation after expressing (u.)% in

bu=Y Y (b1)uvs(Sbe)).

Furthermore, it is enough to show this on generators, i.e. that

by B (ug)f = D 70 (b2) (uo) s (S05) € Us.
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We know that aé- = O’(bé-); we can also express aé- in terms of quasideterminants (formula
for Gauss decomposition!) and then reexpress in terms of quantum determinants. Here
Sbé = Sg(bé) is equal to W(Sgté») and hence, up to a scalar, to the projection in B of a
certain quantum (cofactor) minor. Thus v, (5b3) is also a quantum minor expression but
in the algebra A,. If they commuted, say up to a constant factor, (a,)% with (u,)F, we

would obtain a scalar factor times
(“U)f Z'Va(bg)'Ya(Sbj) = 52‘“?7

where §7 is the Kronecker delta. In other words, if (a,)} and (uo)F commute up to a
number depending only on ¢, j, k,l, we obtain an answer proportional to one obtained
from a trivial action b.u = e(b)u. A natural strategy is hence to try commuting (a,)’

(or alternatively, the other, antipode part) with (u,)¥. The result depends on relative
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positions of indices i, j, k,l and it implies Theorem 11 (ii), which has been checked case
by case in the author’s thesis.

Assertion (ii) is not a sharp result: we need the exhaustive list of all n and o €
Y (n) when the statement holds. The case by case proof is brute force. For general o
extra summands appear which seem not to live in U,. This phenomenon needs further
clarification.

15. Applications. Comparison with other approaches. The concept of a family
of Perelomov coherent states can be generalized for Hopf algebras [76, 79] in the framework
of this paper. We believe that in the special case of quantum groups the coherent states
of [36] essentially coincide with our construction. Under rather general assumptions a
Hopf algebraic analogue of a classical resolution of unity by coherent states has been
proved by the author in [79].

In the approaches to quantum principal bundles without localization, noncommutative
analogues of the differential calculus and of connections on fiber bundles were considered
in many earlier works, e.g. [7, 63, 29]. V. Lunts and A. Rosenberg [44, 43] properly
extended Grothendieck’s definition [27] of the rings of regular differential operators to
noncommutative rings and considered extensibility of Hopf module algebra actions given
by the regular differential operators. For a left Ore set S in a domain R, a derivation
d: R — R always uniquely extends [16, 44] to a derivation dg : S~'R — S~ R. Proving
that fact is a good exercise [77] for a newcomer to Ore localizations. If a derivation
d: R — Q'(R) takes values in an R-R-bimodule Q!(R) such that (d, Q'(R)) define a 1st
order differential calculus, then the same proof produces a unique extension dg : SR —
STIR®R QY(R) such that (ds, ST'R®p Q(R)) is again a 1st order differential calculus,
provided an additional condition is satisfied, which we may call the differential left Ore
condition. Namely, Vt € S, Vr € R, 3s € S and Jw € Q' (R), such that sdr = wt.

We are interested in gluing locally defined differential calculi over the quotient spaces,
and in the comparison of the connections defined in quantum vector bundles over different
local charts. For that purpose, a version of gauge transformations of [7] will play a role.

For a rather different concept of local triviality of noncommutative principal bundles
see [30] and references therein. An early notion of locally trivial vector bundle using
Gabriel localizations appeared in [72](Appendix 2). Sheaf-theoretic ideas and localization
were present much earlier in noncommutative geometry, namely in the study of sheaves
over noncommutative spectra [57, 90, 26].

If ¢ is a primitive root of unity, SL4(n,C) has a large center. This enables an al-
ternative approach [67] to SL4(n, C) using small noncommutative sheaves over ordinary
SL(n,C). In that case the centers of our localized algebras W, are also big, which enables
a detailed comparison of the two approaches.

Quantum flag varieties can be defined and studied using the representation theory
of quantized enveloping algebras [82, 39, 42, 45, 35] or by an Ansatz exploring quantum
minors [86]. In these approaches, the quantum flag varieties are described by a noncom-
mutative graded ring F,, or by an appropriate quotient of the category of (multi)graded
Fg-modules. In classical limit ¢ = 1, this ring can be viewed as the ring of homoge-
neous functions on the projective variety G/B, or as a ring of regular functions on the
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quasiaffine variety G/U where U is the unipotent radical of B. For type A, ring F, is
generated by quantum flag minors. In our conventions, quantum flag minors are those
quantum m-minors which always include all columns from n — m + 1 to n. The algebra
of the main unshifted cell in our construction can be obtained by taking the zero graded
part (S 1F,)o of the localization of the algebra F, at the homogeneous Ore set S gen-
erated by the principal flag minors. Several authors introduced the quantum flag and
Grassmann varieties, working only on the main cell [73, 36, 84].

We note that the Weyl group shifts W, are pairwise manifestly isomorphic for ¢ = 1
but, in general, nonisomorphic for ¢ # 1. It would be interesting, to complete the picture,
to find out whether they are Morita equivalent.

Quantum partial flag varieties, and Grassmannians in particular, can be approached
by the methods of this paper. Simple refinements of the quantum Gauss decomposition
play a role there (as parabolics correspond to block triangular matrices). This enables
induction over stages and provides examples of quantum fibre bundles between different
partial flag varieties corresponding to inclusions of parabolics.

However, we expect the example NGL,,/NB,, to be more important, as the quantum
flag varieties seem to be already pretty tamed by other approaches, and the fully noncom-
mutative case opens door to a more unknown area. We also believe in the importance of
the general foundational questions on quotients, coaction-compatible localizations and co-
homology. I hope that a reader of this paper could observe a number of obvious promising
open questions which the localization approach to quotients opens up.
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