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Abstract. The theory of matched pairs of groups is surveyed with special interest in appli-

cations to braided groups and quasitriangular structures on the bi-smash product Hopf algebra.

Introduction. In 1981, I introduced the notion of a matched pair of groups (S,B)

and defined the bi-smash product Hopf algebra (kS)∗ ⊗ kB over a field k, when S is

a finite group [T], motivated by W. M. Singer’s work [Si] on Hopf algebra extensions.

Later, S. Majid [Mj] extended and applied this work in the study of quantum groups.

Further, the cohomology theory of matched pairs of Hopf algebras was studied by I. Hof-

stetter [H] and A. Masuoka [Ms1], [Ms2]. During this research, Masuoka found out that

the notion of a matched pair of groups had been obtained essentially by G. I. Kac [K]

in 1968 and that the cohomology theory of matched pairs of groups had been studied

there.

Recently, some interesting progress in the study of matched pairs of groups has been

made by two groups of algebraists, ESS (Etingof, Schedler, Soloviev) and LYZ (Lu, Yan,

Zhu), during their study of set-theoretical solutions of the Yang-Baxter equation. Es-

pecially, the group ESS [ESS] has obtained some deep results on classification of finite

braided sets. In this survey, I give an elementary and diagrammatic approach to the

introductory part of the ESS-LYZ theory. This will enable the reader to appreciate

their deeper results (which are not discussed here) more easily. On the other hand, the

latter group LYZ has obtained some interesting construction of quasitriangular struc-

tures on the bi-smash product Hopf algebra H(S,B) = (kS)∗ ⊗ kB [LYZ2]. I also

give a natural categorical explanation of this construction, based on Masuoka’s observa-

tion [Ms3].

In §1, we review the notion of a matched pair of groups (S,B) and matched product

B ./ S, and explain the matched pair condition by means of diagrams of the form
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B
�
��

BS
@@
@@
S

motivated by [LYZ1]. This idea is used throughout the paper.

We describe the structure of H(S,B) in terms of jigsaw puzzle pieces
s

b′

b

s′
with

edges decorated by elements in S and B.

In §2, we introduce the notion of a braided group as the group version of a braided

set. It is a matched pair of groups of the form (G,G) and appears implicitly in [LYZ1].

The works [ESS], [So] are written in terms of 1-cocycle data which are equivalent to our

braided groups. We briefly review the equivalence of these two notions.

In §3, we review the construction of the structure group GX of a braided set X,

and interpret the results of [LYZ1] to show that GX becomes a braided group. Let

(GX , NX , πX) be the 1-cocycle datum corresponding to this braided group. Soloviev [So]

has presented the group NX by generators and relations. We give an elementary proof

of this presentation.

In §4, we define an LYZ pair ξ, η : S → B for a matched pair of groups (S,B). LYZ

pairs are characterized by:

(a) ξ and η can be extended to group homomorphisms

ξ̄, η̄ : B ./ S → B

which are identity on B,

(b) every element of Ker(ξ̄) commutes with every element of Ker(η̄).

If (ξ, η) is an LYZ pair for (S,B), it induces a braided group structure on S (Theorem 4.5),

and this enables us to combine the study of LYZ pairs with our previous consideration

of braided groups, especially leading to the construction of the universal LYZ pair and

study of minimal LYZ pairs in §5.

Let S be a braided group. We show (Proposition 5.1) that there is a unique matched

pair structure on (S, S ./ S) such that the injections

in2, in1 : S → S ./ S

form an LYZ pair. Further this pair (in2, in1) enjoys some universality.

We call an LYZ pair (ξ, η) minimal if they are group isomorphisms S
∼−→ B, because

if this is the case (and the groups are finite), the corresponding quasitriangular Hopf

algebra H(S,B) is minimal. To study minimal LYZ pairs, it is enough to assume S = B

and η = id. This leads to the notion of a ξ-braided group which means a pair of a braided

group S and its group automorphism ξ such that (ξ, id) is an LYZ pair for (S, S). This

condition is easy to describe and admits to define the notion of a ξ-braided set (X, ξ) as

its set version. We generalize some of the previous results on braided sets and groups to

ξ-braided sets and groups.

In §6, we review the construction of a quasitriangular structure on H(S,B) from an

LYZ pair (ξ, η) [LYZ2]. We give some nice categorical interpretation to the braiding
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structure on the category of right H(S,B) modules MH(S,B) associated to the LYZ pair

(ξ, η). The original idea is due to Masuoka [Ms3]. The monoidal category MH(S,B)

is monoidally equivalent to some category G
BMB , with G = B ./ S. Masuoka has

constructed a natural braiding on G
BMB from a pair of group projections ξ̄, η̄ : G → B

whose kernels commute with each other element-wise. The LYZ braiding is simply the

transport of the Masuoka braiding through the monoidal equivalence.

1. Matched pairs of groups

Definition 1.1 ([T]). A matched pair of groups means a triple (S,B, σ) where S and

B are groups and

σ : S ×B → B × S, (s, b) 7→ (s ⇀ b, s ↼ b)

is a map satisfying the conditions

s ⇀ (t ⇀ b) = st ⇀ b,(1.1)

st ↼ b = (s ↼ (t ⇀ b))(t ↼ b),(1.2)

(s ↼ b) ↼ c = s ↼ bc,(1.3)

s ⇀ bc = (s ⇀ b)((s ↼ b) ⇀ c)(1.4)

for s, t ∈ S, b, c ∈ B.

The product B × S forms a group with product

(1.5) (b, s)(c, t) = (b(s ⇀ c), (s ↼ c)t).

This group is denoted by B ./ S. Conversely, if B and S are subgroups of a group G

such that the product map B × S → G is bijective, then (S,B) forms a matched pair

with structure σ(s, b) = (s ⇀ b, s ↼ b) defined by sb = (s ⇀ b)(s ↼ b).

The structure map σ of a matched pair (S,B) is bijective. The triple (B,S, σ−1)

forms a matched pair, called the opposite of (S,B). The group S ./ B is isomorphic to

B ./ S by (s, b) 7→ (1, s)(b, 1).

Let s, s′ ∈ S and b, b′ ∈ B. We denote the relation

(1.6) (b′, s′) = σ(s, b)

by the diagram

(1.7)

b′
�
��

bs
@@
@@
s′

or

s
��
��
s′b′

@
@@

b

.

The structure map σ : S × B → B × S is non-degenerate in the sense of [ESS], [LYZ1].

Hence if we choose (s, b) (resp. (s, b′), resp. (b′, s′), resp. (b, s′)), then the rest elements

(b′, s′) (resp. (b, s′), resp. (s, b), resp. (s, b′)) are determined by diagram (1.7).



308 M. TAKEUCHI

Characterization of matched pairs of groups by group factorizations yields that (1.7)

implies

(1.8)

b
�
��

b′s−1

@@
@@

(s′)−1

,

(b′)−1
�
��

b−1s′

@@
@@
s

,

(s′)−1
��
��
s−1b−1

@
@@

(b′)−1

.

The diagrammatic notation yields the following simple expression of conditions (1.1)–

(1.4) (cf. [LYZ1], (4), (5)).

Proposition 1.2. Conditions (1.1)–(1.4) are equivalent to:

b′
��
��
�
bs

@@

s′

t

@@
t′

⇒
b′
�
��

bst
@@
@@
s′t′

,(1.9)

s

HH

s′b′
�
��

b

c′
�
��

c

⇒
b′c′
�
��

bcs
@@
@@
s′

.(1.10)

Proof. The assumption of (1.9) implies b′ = s ⇀ (t ⇀ b), s′ = s ↼ (t ⇀ b), t′ = t ↼ b.

Hence (1.9) is equivalent to (1.1) and (1.2). Similarly, (1.10) is equivalent to (1.3) and

(1.4).

Let k be a field and let (S,B) be a matched pair of groups where S is a finite group.

Let H = kB be the group Hopf algebra and K = (kS)∗ the dual group Hopf algebra.

The right action S ↼ B induces a left action of B on K, making a left H module algebra

K. The left action S ⇀ B makes H into a right K comodule coalgebra. The pair (H,K)

becomes an abelian matched pair of Hopf algebras in the sense of [T, 1.1], hence the

smash product algebra and the co-smash product coalgebra structures on K ⊗ H give

rise to a Hopf algebra called the bi-smash product [T, 1.4]. We denote this bi-smash

product Hopf algebra by H(S,B). This is denoted as k(S) IC kB by Majid [Mj, 6.2.1].

The structures on H(S,B) are described as follows (cf. [Mj, Fig. 6.2 and 6.3]). We

prepare the set S of jigsaw puzzle pieces

(1.11)
s

b′

b

s′
where

s

s′b′
�
�
b

with s, s′ in S, b, b′ in B.

Each piece has 4 edges decorated by 2 elements in S and 2 elements in B as above. The

decoration is determined by decorating any two adjacent edges freely. In other words,

there are four canonical bijections between S and S × B. In this sense, we may drop

decoration of some edges as follows:

s

b′

b

s′
=

s b
=

s

b′
= · · · etc.



MATCHED PAIRS OF GROUPS 309

Two pieces
s

b′

b

s′
and

t

c′

c

t′
are called S-composable if s′ = t. If this is

the case,
s

b′c′

bc

t′
is a piece in S by (1.10), called the S-composition. Similarly, the

B-composition of two B-composable pieces is defined by using (1.9).

Conversely, given a piece
s

b′

b

s′
in S, we may consider the set of B-composable

pairs of pieces whose B-composition is
s

b′

b

s′
. Such a pair is called a B-decomposition

of
s

b′

b

s′
. A B-decomposition of

s

b′

b

s′
is in 1-1 correspondence with a decom-

position s = tu in S or a decomposition s′ = t′u′ in S as follows. If s = tu, the pair of

pieces in S
t

b′
,

u b

is a B-decomposition of
s

b′

b

s′
. Similarly, if s′ = t′u′, then the pair

b′ t′
,

b

u′

is a B-decomposition.

With these preliminaries, we describe the Hopf algebra structure of H(S,B) as follows.

(1.12) H(S,B) has a basis S over k.

The algebra structure.(1.13)

s

b′

b

s′
·
t

c′

c

t′
=





s

b′c′

bc

t′
if s′ = t,

0 otherwise,

the unit =
∑

s∈S

s

1

1

s
.

Note that
s

1

1

s
, s ∈ S, give rise to orthogonal idempotents.
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The coalgebra structure.(1.14)

∆

(
s

b′

b

s′

)
=
∑

s=tu

t

b′
⊗

u b
=

∑

s′=t′u′ b′ t′
⊗

b

u′
,

the sum over all B-decompositions of
s

b′

b

s′
,

ε

(
s

b′

b

s′

)
= δs,1 = δs′,1.

The antipode.(1.15)

S

(
s

b′

b

s′

)
=

(s′)−1

b−1

(b′)−1

s−1
.

The above description will be used in §6.

2. Braided groups

Definition 2.1. A braided group means a pair (G, σ) where G is a group and σ :

G×G→ G×G is a map such that

the triple (G,G, σ) forms a matched pair of groups,(2.1)

if (y′, x′) = σ(x, y), then y′x′ = xy for x, y, x′, y′ ∈ G.(2.2)

Obviously, (2.2) is equivalent to saying that

mult : G ./ G→ G, (x, y) 7→ xy

is a group homomorphism.

Remark 2.2 ([LYZ1], Theorem 1). (a) In order for the pair (G, σ) to be a braided

group, conditions (1.1), (1.3) (for S = B = G) and (2.2) are sufficient, i.e., the rest

conditions (1.2) and (1.4) follow from them.

(b) If (G, σ) is a braided group, then σ is a braid operator on G × G. Thus (G, σ)

forms a non-degenerate braided set in the sense of [ESS].

If the braided set (G, σ) is symmetric, we call (G, σ) a symmetric group. This condition

is expressed diagrammatically:

(2.3)

y′
�
��

yx
@@
@@
x′

⇒
x
�
��

x′y′

@@
@@
y

or

y′
��
��
yx

@
@@

x′

for x, y, x′, y′ in G.

Example 2.3 (of trivial braided groups). (a) G is arbitrary and σ is defined by

xyx−1
�
��

yx
@@
@@
x

, x, y ∈ G.
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(b) G is abelian and σ is defined by

y
�
��

yx
@@
@@
x

, x, y ∈ G.

Proposition 2.4. A braided group G is symmetric if and only if

(2.4) (x ↼ y)−1 = y−1 ⇀ x−1 for all x, y in G.

Proof. By (1.8) and (2.3), G is symmetric if and only if

(2.5)

y′
�
��

yx
@@
@@
x′

⇒
(x′)−1
�
��

x−1y−1

@@
@@

(y′)−1

for x, y, x′, y′ ∈ G.

Under the assumption of (2.5), we have x′ = x ↼ y and y′ is determined by data x, y,

x′ as y′x′ = xy. This implies immediately the equivalence of (2.4) and (2.5).

Definition 2.5 ([ESS], Def. 2.2). A 1-cocycle datum means a triple (G,N, π) where

G and N are groups such that G acts on N on the right as group automorphisms

N ×G→ N, (a, x) 7→ a / x

and π : G→ N is a bijective 1-cocycle, i.e.,

(2.6) π(xy) = (π(x) / y)π(y), x, y ∈ G.
Braided groups and 1-cocycle data correspond categorically ([LYZ1], Theorem 2). If

G is a braided group, we put

(2.7) N = Ker(mult : G ./ G→ G)

We let G act on N by:

(2.8) a / x = (x−1, 1)a(x, 1), a ∈ N, x ∈ G.
We define the 1-cocycle π : G→ N by:

(2.9) π(x) = (x−1, x), x ∈ G.
Then (G,N, π) is a 1-cocycle datum. We have

(2.10) π(x ↼ y) = π(x) / y, x, y ∈ G,
as is easily checked.

Conversely, let (G,N, π) be a 1-cocycle datum. Then the following map is bijective:

(2.11) G×G→ GnN, (x, y) 7→ (xy, π(y)).

Transport the group structure of GnN to G×G along this bijection. Then a matched

pair structure on (G,G) is defined. Since we have a commutative diagram

(2.12)

G ./ G -∼ GnN
HHHHHjmult

G

������ projection

the multiplication is a group homomorphism. Hence G becomes a braided group.
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Proposition 2.6 ([LYZ1], Prop. 4). Under the above correspondence, the braided

group G is symmetric if and only if N is abelian.

Proof. Assume we have

y′
�
��

yx
@@
@@
x′

, x, y, x′, y′ ∈ G.

Since xy = y′x′, we have

(2.13) π(xy) = π(y′x′) = π(x ↼ y)π(y) = π(y′ ↼ x′)π(x′).

Here, note that x′ = x ↼ y. Hence, if N is abelian, we have y = y′ ↼ x′. This implies

we have

x
�
��

x′y′

@@
@@
y

hence G is symmetric by (2.3). Conversely, if G is symmetric, we have y = y′ ↼ x′.
Hence (2.13) implies

π(x′)π(y) = π(y)π(x′).

Since we can choose x′, y arbitrarily, this implies N is abelian.

Corollary 2.7. If G is symmetric, we have

(x−1, 1)a(x, 1) = (1, x−1)a(1, x), x ∈ G, a ∈ N.
The correspondence between symmetric groups and abelian 1-cocycle data is implicit

in [ESS] and fully studied there.

Let G be a braided group. Let Γr (resp. Γl) be the kernel of the right action ↼ (resp.

left action ⇀), i.e.,

(2.14)

Γr =



 g ∈ G

∣∣∣∣∣∣
xgx−1
�
��

gx
@@
@@
x

for all x ∈ G



 ,

Γl =



 g ∈ G

∣∣∣∣∣∣
x
�
��

xg
@@
@@
x−1gx

for all x ∈ G



 .

Put Γ = Γr ∩ Γl. If G is symmetric, Γr = Γl by Proposition 2.4.

Lemma 2.8. Γr × {1}, {1} × Γl / G ./ G.

Proof. (2.14) implies

(1, x)(g, 1) = (xgx−1, x), x ∈ G, g ∈ Γr.

Hence

(1, x)(g, 1)(1, x−1) = (xgx−1, 1).

This implies Γr × {1} / G ./ G. Similarly, {1} × Γl / G ./ G.
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Proposition 2.9. (a) Γ is an abelian normal subgroup of G

(b) The matched pair structure σ : G×G→ G×G induces a map G/Γ×G/Γ→ G/Γ×
G/Γ which makes G/Γ into a braided group, i.e., G/Γ is a quotient braided group of G.

Proof. (a) (2.14) implies we have

y
�
��

yx
@@
@@
x

x, y ∈ Γ,

hence Γ is abelian.

(b) Similarly to Lemma 2.8, we have Γ×{1}, {1}×Γ/G ./ G, hence Γ×Γ/G ./ G. The

quotient (G ./ G)/(Γ×Γ) factors as a product of subgroups G/Γ×{1}, {1}×G/Γ yielding

a matched pair structure on (G/Γ, G/Γ). This structure is obviously induced by σ.

Soloviev’s Theorem 2.6 [So], which is stated in terms of cocycle data, is equivalent to

the above proposition.

Corollary 2.10. The braided group Ḡ = G/Γ corresponds to the 1-cocycle datum

(Ḡ, N̄ , π̄) where N̄ = N/NΓ with

(2.15) NΓ = {(g−1, g) | g ∈ Γ}

and π̄ is induced by π. NΓ is central in N .

Proof. If g ∈ Γ, x ∈ G, then

(x, 1)(g, 1)(x−1, 1) = (1, x)(g, 1)(1, x−1)

by the proof of Lemma 2.8. Hence (g, 1) commutes with (x−1, x). Similarly (1, g) com-

mutes with (x−1, x). Hence NΓ is central in N . The rest is obvious.

3. The braided group GX . Let (X,σ) be a non-degenerate braided set. We write

(3.1) σ : X ×X → X ×X, (x, y) 7→ (x ⇀ y, x ↼ y).

This is bijective satisfying the braid relation, and the actions x ⇀ and ↼ y are bijections

of X onto itself. We use the symbol as in §1:

(3.2)

y′
�
��

yx
@@
@@
x′

or

x
��
��
x′y′

@
@@

y

to mean the relation (y′, x′) = σ(x, y).

Definition 3.1 ([ESS], 2.1). Let GX be the group defined by generators X and

relations

(3.3) y′x′ = xy if (y′, x′) = σ(x, y), x, y ∈ X.

Theorem 3.2 ([LYZ1], Theorem 9). GX has a unique structure of a braided group

such that the canonical map X → GX preserves the braiding.
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The matched actions g ⇀ h, g ↼ h, g, h ∈ GX are constructed as follows (see [LYZ1]

for details):

Step 1. The braid relation for σ implies

(3.4)

y′
�
��

yx
@@
@@
x′

⇒
{

x ⇀ (y ⇀ z) = y′ ⇀ (x′ ⇀ z),

(u ↼ x) ↼ y = (u ↼ y′) ↼ x′

where x, y, x′, y′, z, u ∈ X. Hence the actions y ⇀ and ↼ y extend to group actions

(3.5)
GX ×X → X, (g, x) 7→ g ⇀ x,

X ×GX → X, (x, g) 7→ x ↼ g.

Step 2. By means of actions (3.5), we put

(3.6) x ⇀ g = xg(x ↼ g)−1, g ↼ x = (g ⇀ x)−1gx, x ∈ X, g ∈ GX .
One can prove that (i) the actions x ⇀ and ↼ x are bijections of GX onto itself, (ii)

condition (3.4) is valid for these actions with z, u ∈ GX . Hence these actions extend

to left and right group actions of GX on GX . One can prove that the extended actions

satisfy the compatibility condition

(3.7) gh = (g ⇀ h)(g ↼ h), g, h ∈ GX .
Thus GX becomes a braided group by Remark 2.2.

Let (GX , NX , πX) be the 1-cocycle datum corresponding to the braided group GX ,

Soloviev [So], Theorem 2.5 has obtained a presentation of the group NX by generators

and relations. We review his presentation below.

If (G,N, π) is a 1-cocycle datum, it follows from (2.6) and (2.10) that we have

(3.8)

y′
�
��

yx
@@
@@
x′

⇒ π(xy) = π(x′)π(y), x, y, x′, y′ ∈ G.

This implies:

(3.9)
�
��

yx
@@
@@

x′′
�
��

x′y′

@@
@@
y′′

in G⇒ π(x′)π(y) = π(y′′)π(x′).

Let AX be the group defined by generators X and the following relation:

(3.10) x′ · y = y′′ · x′ if
�
��

yx
@@
@@

x′′
�
��

x′y′

@@
@@
y′′

in X.
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Theorem 3.3 ([So], Theorem 2.5). The map πX : X → NX induces a group isomor-

phism AX
'−→ NX .

Comparison of (3.9) and (3.10) shows immediately that πX induces a group homo-

morphism π̃X : AX → NX . We show that π̃X is an isomorphism.

Lemma 3.4. The right action X ↼ GX (3.5) extends to a right action AX ↼ GX as

group automorphisms.

Proof. It is enough to show that

(x′ ↼ g) · (y ↼ g) = (y′′ ↼ g) · (x′ ↼ g), g ∈ GX
with the assumption of (3.10). In fact, the braid relation implies that we have

�
��

yx
@@
@@

x′′
�
��

x′y′

@@
@@
y′′

g′

@@

x′′1

@@
y′′1

��
���

g

=

y′
�
��

yx
@@
@@
x′

@@ @@

x′′1
�
��

x′1y′1
@@
@@
x′′1g′

���

g

=

x y

@@ @@

�
��

y1x1

@@
@@

x′′1
�
��

x′1y′1
@@
@@
y′′1g′

��
���

g

This diagram means that

x′1 · y1 = y′′1 · x′1 and x′1 = x′ ↼ g, y1 = y ↼ g, y′′1 = y′′ ↼ g.

Hence we are done.

Now, Theorem 3.3 is proved in several steps.

Step 1. We can form the semidirect product GX nAX . The map

(3.11) X → GX nAX , x 7→ (x, x)

extends to a group homomorphism

(3.12) f : GX → GX nAX .

In fact, with the assumption of (3.10), we have in GX nAX

(x, x)(y, y) = (xy, (x ↼ y) · y) = (xy, x′ · y),

(y′, y′)(x′, x′) = (y′x′, (y′ ↼ x′) · x′) = (y′x′, y′′ · x′).
Hence they coincide.

Further, the map

(3.13) f̃ : GX ./ GX → GX nAX′ , (g, h) 7→ (g, 1)f(h)

is a group homomorphism.



316 M. TAKEUCHI

In fact, it is enough to show that

h′
�
��

hg
@@
@@
g′

in GX ⇒ f(g)(h, 1) = (h′, 1)f(g′).

It is easy to see we can assume g, h, g′, h′ are in X. If this is the case, the claim follows

directly from the definition of f .

Step 2. We have a commutative diagram

GX ./ GX -f̃
GX nAX

HHHHHjmult.

GX

������ projection

Hence f̃ induces a homomorphism f̃ : NX → AX . On the other hand, we have a

homomorphism π̃X : AX → NX . Since f̃(x−1, x) = (x−1, 1)(x, x) = (1, x), x ∈ X, we

have f̃ ◦ π̃X = id. On the other hand, π̃X is surjective by the next lemma. Hence we

have proved Theorem 3.3.

Lemma 3.5. Let G be a braided group with generators X such that X ↼ G ⊂ X.

Then the corresponding group N is generated by (x−1, x), x ∈ X.

Proof. Let M be the subgroup of N (⊂ G ./ G) generated by (x−1, x), x ∈ X. The

assumption implies that M is normalized by G×{1} and GnM contains {1}×G. Hence

GnM = G ./ G = GnN

yielding M = N .

Corollary 3.6 ([ESS], Proposition 2.5). If (X,σ) is a symmetric set, then NX is a

free abelian group with basis (x−1, x), x ∈ X. In particular, the canonical map X → GX
is injective.

One can refine the construction G/Γ in §2 in case of GX . Let Γr (resp. Γl) be the

kernel of the right action ↼ (resp. left action ⇀) of GX on X (3.5). These are smaller

than the Γr and Γl defined in §2. If (X,σ) is symmetric, they coincide since X ⊂ GX .

Put Γ = Γl ∩ Γr. Similarly as Proposition 2.9, we have

Proposition 3.7. (a) Γ is an abelian normal subgroup of GX .

(b) GX/Γ is a quotient braided group of GX .

Corollary 3.8 ([So], Theorem 2.6). If (X,σ) is a finite non-degenerate braided set,

then GX/Γ is a finite braided group.

4. LYZ pairs. Let (S,B) be a matched pair of groups. If S is a finite group, we

have the bi-smash product Hopf algebra H(S,B) (§1). When k = C, Lu-Yan-Zhu [LYZ2]

describe all positive quasitriangular structures on H(S,B) by means of homomorphisms

(4.1) ξ, η : S → B

satisfying some curious conditions. We would like to call such pairs LYZ pairs and study

more in §§4–5.
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Definition 4.1. A pair of group homomorphisms (ξ, η) (4.1) is called an LYZ pair

if the following conditions are satisfied:

(4.2)

b′
�
��

bs
@@
@@
s′

⇒
{

ξ(s)b = b′ξ(s′)

η(s)b = b′η(s′)
, s, s′ ∈ S, b, b′ ∈ B,

Let s, t ∈ S. Define s′, t′ ∈ S by the diagrams(4.3)

t′
��
��
tξ(s)

@
@@ , �

��
η(t)s

@@
@@
s′

.

Then t′s′ = st.

Condition (4.2) implies ξ, η extend to group homomorphisms

(4.4) ξ̄, η̄ : B ./ S → B

which are identity on B.

(4.2) and (4.3) imply

(4.5)

t′
��
��
tξ(s)

@
@@
ξ(s′)

,

η(t′)
�
��

η(t)s
@@
@@
s′

with notations in (4.3) ([LYZ2], Lemma 2.4).

We put

(4.6)
Nξ = Ker(ξ̄), Nη = Ker(η̄),

πξ(s) = (ξ(s)−1, s), πη(s) = (η(s)−1, s), s ∈ S.

Lemma 4.2. Under condition (4.2), we have

(4.3)⇔ πξ(s)πη(t−1) = πη(t−1)πξ(s).

Proof. With notations in (4.3), we have

�
��
ξ(s)−1

t−1

@@
@@

(t′)−1

, �
��

η(t)s
@@
@@
s′

.

Hence

πξ(s)πη(t
−1) = (ξ(s)−1, s)(η(t), t−1) = ( , s′t−1),

πη(t−1)πξ(s) = (η(t), t−1)(ξ(s)−1, s) = ( , (t′)−1s).
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If these are equal, then s′t−1 = (t′)−1s or t′s′ = st yielding (4.3). Conversely, if (4.3) is

true, we have

ξ(s′)−1
�
��
ξ(s)−1

t−1

@@
@@

(t′)−1

,

η(t′)
�
��

η(t)s
@@
@@
s′

by (4.5). Hence

πξ(s)πη(t
−1) = (ξ(s)−1η(t′), s′t−1),

πη(t−1)πξ(s) = (η(t)ξ(s′)−1, (t′)−1s)

which coincide since ξ(s)η(t) = η(t′)ξ(s′) by (4.2).

Since Nξ = {πξ(s) | s ∈ S}, we have

Proposition 4.3. A pair of group homomorphisms (ξ, η) (4.1) is an LYZ pair if and

only if

(a) they extend to homomorphisms (ξ̄, η̄) in (4.4),

(b) every element in Nξ commutes with every element in Nη.

Example 4.4. If G is a symmetric group, (id, id) is an LYZ pair for the matched pair

(G,G). This follows from Propositions 2.6 and 4.3.

Define a map

S × S → S × S, (s, t) 7→ (t′, s′)

by condition (4.3). We illustrate this map as usual by diagram

(4.7)

t′
�
��

ts
@@
@@
s′

.

Theorem 4.5. The above map makes S into a braided group.

Proof. Since condition (2.2) is satisfied by (4.3), we check that (S, S) becomes a

matched pair of groups by the above map. By Proposition 1.2, we have only to check

conditions (1.9) and (1.10) for (S, S). But they follow from the corresponding conditions

for (S,B) through homomorphisms ξ and η, since (4.7) is equivalent to (4.5).

The equivalence of (4.5) and (4.7) means that

(id, η) : (S, S)→ (S,B), (ξ, id) : (S, S)→ (B,S)

are homomorphisms of matched pairs of groups. This and an easy observation yield the

following:

Proposition 4.6. Let (ξ, η) be an LYZ pair for (S,B).

(a) We have the following group homomorphisms:

(4.8)
η ./ id : S ./ S → B ./ S, (s, t) 7→ (η(s), t),

id ./ ξ : S ./ S → B ./ S, (s, t) 7→ (1, s)(ξ(t), 1).
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(b) We have commutative diagrams

(4.9)

B ./ S
ξ./id←−−−− S ./ S

id./ξ−−−−→ B ./ S
yη̄

ymult

yξ̄

B
η←−−−− S

ξ−−−−→ B

(4.10)

S ./ S
�����9

η./id

B ./ S

XXXXXz
id./ξ

XXXXXzξ̄

�����9 η̄

B ./ S

B

Note that the common homomorphism S ./ S → B in (4.10) maps (s, t) to η(s)ξ(t).

Corollary 4.7. η ./ id and id ./ ξ induce the following isomorphisms:

(4.11)
Nη

η./id←−−−−−−−−∼ N
id./ξ−−−−−−−−→∼ Nξ

(η(s)−1, s) � (s−1, s) - (1, s−1)(ξ(s), 1)

Proposition 4.8. Let (ξ, η) be an LYZ pair for (S,B). There is a unique automor-

phisms F of the group B ./ S such that

F (η(s)−1, s) = (1, s−1)(ξ(s), 1), s ∈ S,(4.12)

F (b, 1) = (b, 1), b ∈ B.(4.13)

Proof. By Corollary 4.7, there is a unique isomorphism F : Nη
∼−→ Nξ defined by

(4.12). Since we have

B ./ S = B nNη = B nNξ,
it is enough to show that F preserves the conjugate action by B. Assume that

b′
�
��

bs
@@
@@
s′

, s, s′ ∈ S, b, b′ ∈ B.

Then we have

(b−1, 1)(η(s)−1, s)(b, 1) = (b−1η(s)−1b′, s′) = (η(s′)−1, s′).

Noting that

ξ(s)b = b′ξ(s′) and

b
�
��

b′s−1

@@
@@

(s′)−1

we see

(b−1, 1)(1, s−1)(ξ(s), 1)(b, 1) = (b−1, s−1)(ξ(s)b, 1)

= (b−1, s−1)(b′ξ(s′), 1) = (1, (s′)−1)(ξ(s′), 1).

Hence F preserves the conjugate action by B.
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This automorphism F was introduced in [LYZ2], Theorem 3.1.

Proposition 4.9. The automorphism F of B ./ S has the following properties:

F (1, s) = (η(s), 1)(1, s−1)(ξ(s), 1) = (ξ(s), 1)(1, s−1)(η(s), 1), s ∈ S,(4.14)

η̄ ◦ F = ξ̄, ξ̄ ◦ F = η̄,(4.15)

F (Nξ) = Nη, F (Nη) = Nξ ,(4.16)

F 2 = id.(4.17)

Proof. The first half of (4.14) follows from (4.12) and (4.13). The latter half follows

since (η(s), s−1) commutes with (ξ(s), s−1) by Proposition 4.3. Note that (4.14) means

F stays invariant relative to interchange ξ ↔ η. (4.15) follows from (4.13) and (4.14),

and this yields (4.16). We have

F 2(1, s) = (η(s), 1)F (1, s−1)(ξ(s), 1)

= (η(s), 1)(η(s−1), 1)(1, s)(ξ(s−1), 1)(ξ(s), 1) = (1, s)

yielding (4.17).

5. The universal LYZ pair and minimal LYZ pairs. Let S be a braided group.

For s, s′ ∈ S and (t, u), (t′, u′) ∈ S ./ S, we write

(5.1)

(t′, u′)
�
��

(t, u)s
@@
@@
s′

=

s

HHHH
s′t′

�
��

t

u′

��
u

.

This means a relation among relevant elements (or a subset of (S×S ./ S)×(S ./ S×S)).

If one has a pair (s, (t, u)), there is a unique pair ((t′, u′), s′) satisfying condition (5.1).

Hence the correspondence (s, (t, u)) 7→ ((t′, u′), s′) may be viewed as a map S×S ./ S →
S ./ S × S.

Proposition 5.1. (a) The above map makes (S, S ./ S) into a matched pair of groups.

(b) The injections in2, in1 : S → S ./ S, s 7→ (1, s), (s, 1) form an LYZ pair for

(S, S ./ S).

(c) The braided structure on S induced by the LYZ pair (in2, in1) coincides with the

original one.

Proof. (a) We check conditions (1.9) and (1.10). (1.9) becomes

(5.2)

r

HHH
r′t′

��
��
�
t

u′

��
�
us

HHHH
s′
⇒

rs

HHHH
r′s′t′

�
��

t

u′

��
u

which holds obviously. As for (1.10), we have to choose b, c from S ./ S. Then we can

assume b, c belong to S×{1} or {1}×S. If b is in S×{1} (resp. {1}×S), we can assume

b′ is also in S × {1} (resp. {1} × S). Thus there are 4 possibilities of the choice of b, c

(and b′, c′). Here we use the notations of (1.10). Among them, the only nontrivial choice
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is the case b = (1, t) and c = (u, 1), hence b′ = (1, t′) and c′ = (u′, 1). In this case, (1.10)

becomes

(5.3)

s
HHHH

s′t′
��

t

u′
�
��

u

⇒

s

HHHH
s′1u′1

�
��

u1

t′1

��
t1

if (1, t)(u, 1) = (u1, t1) and (1, t′)(u′, 1) = (u′1, t
′
1). Now we have

u1

�
��

ut
@@
@@
t1

and

u′1
�
��

u′t′

@@
@@
t′1

.

Hence the assertion follows from the braid relation

(5.4)

u′1
��
��
�
us

HHH
HHH

s′

t

t′1

=

u′1
��
��
�
us

HHH
HHH

s′

t

t′1

.

(b), (c). First we check condition (4.2). This means (5.1) implies

(5.5) (1, s)(t, u) = (t′, u′)(1, s′), (s, 1)(t, u) = (t′, u′)(s′, 1).

In fact, (5.1) implies there is s◦ ∈ S such that

t′
�
��

ts
@@
@@
s◦

and

u′
��
��
us◦

@
@@

s′
.

Then we have

(1, s)(t, u) = (t′, s◦u) = (t′, u′s′),

(st, u) = (t′s◦, u) = (t′, u′)(s′, 1).

To prove (b), (c), it is enough to show

(5.6)

w′
�
��

wv
@@
@@
v′

⇒
w′
��
��
w(1, v)

@
@@

(1, v′)

and

(w′, 1)
�
��

(w, 1)v
@@
@@
v′

where v, w, v′, w′ ∈ S. This follows directly from definition (5.1).

The above LYZ pair has the following universality.

Proposition 5.2. Let (ξ, η) be an LYZ pair for a matched pair of groups (S,B).

(a) The map η ∗ ξ : S ./ S → B, (s, t) 7→ η(s)ξ(t) is a group homomorphism.

(b) (id, η ∗ ξ) : (S, S ./ S)→ (S,B) is a homomorphism of matched pairs of groups.

(c) The above homomorphism transforms the LYZ pair (in2, in1) to (ξ, η).
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Proof. (a) See (4.10).

(b) Since (4.7) implies (4.5), it follows that we have

(5.7)

s

HHHH
s′t′

�
��

t

u′

��
u

⇒

s

HH

s′η(t′)
�
��
η(t)

ξ(u′)
�
��

ξ(u)

⇒
η(t′)ξ(u′)

�
��
η(t)ξ(u)s

@@
@@
s′

.

(c) is obvious.

Example 5.3. Let (X,σ) be a finite non-degenerate braided set. We have a finite

braided group S = GX/Γ by Corollary 3.8. Hence we have a quasitriangular Hopf algebra

H(S, S ./ S).

We turn to minimal LYZ pairs. A quasitriangular Hopf algebra (H,R) is called

minimal if H is the only Hopf subalgebra containing R.

Proposition 5.4. Let (ξ, η) be an LYZ pair for a matched pair of finite groups (S,B).

If ξ an η are isomorphisms S
∼−→ B, then H(S,B) is a minimal quasitriangular Hopf

algebra.

This follows immediately from the description of the quasitriangular structure R in

[LYZ2], Theorem 2.3 (see (6.4)).

Example 5.5. Let G be a finite symmetric group. Then (id, id) is an LYZ pair for

(G,G) by Example 4.4. Hence it gives a minimal quasitriangular structure on H(G,G).

Since we have

G ./ G = GnA with A = Ker(mult),

the Hopf algebra H(G,G) is quasi-isomorphic to H(A,G) = (kA)∗# kG [LYZ2, Prop.

4.1], [EG, Thm. 4.2]. If k is an algebraically closed field of characteristic 0, then (kA)∗ '
kA∗, so that (kA)∗# kG is isomorphic to the group Hopf algebra k(A∗ o G). Thus

H(G,G) is a twist of the group Hopf algebra k(A∗ oG). Minimal quasitriangular Hopf

algebras of this form are studied in [EG].

We may call the LYZ pair (ξ, η) minimal if ξ and η are group isomorphisms S
∼−→ B.

In this case, we can assume S = B and η = id by the following:

Proposition 5.6. (a) Let S be a braided group and ξ a group automorphism of S.

Then (ξ, id) is an LYZ pair for (S, S) if and only if we have

(5.8)

t′
�
��

ts
@@
@@
s′

⇒
t′
��
��
tξ(s)

@
@@
ξ(s′)

, s, t, s′, t′ ∈ S.

(b) Let (ξ, η) be a minimal LYZ pair for the matched pair of groups (S,B). Then

(ξη−1, id) is a minimal LYZ pair for the pair (S, S).

Proof. (a) (5.8) is part of (4.5). Condition (4.2) is automatically satisfied.

(b) This is obvious, since we have an isomorphism of matched pairs (id, η) : (S, S)
∼−→

(S,B).

Definition 5.7. A pair of a braided group S and its group automorphism ξ is called

a ξ-braided group if condition (5.8) is satisfied.
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If (S, ξ) is a finite ξ-braided group, we have a minimal quasitriangular Hopf algebra

H(S, S) with structure induced by the LYZ pair (ξ, id).

Proposition 5.8. Let (S, ξ) be a ξ-braided group.

(a) ξ is an automorphism of the braided group S.

(b) We have Γl = Γr = Γ and Γ = ξ(Γ) with the notations in (2.14) (for G = S).

(c) Every element in Γ commutes with ξ(s)s−1, s−1ξ(s), s ∈ S.

(d) S/Γ is a ξ-braided group.

Proof. (a) (5.8) yields

t′
�
��

ts
@@
@@
s′

⇒
ξ(s)
�
��
ξ(s′)t′

@@
@@
t

⇒
ξ(t′)
�
��
ξ(t)ξ(s)

@@
@@
ξ(s′)

hence ξ preserves the braiding.

(b) If g ∈ Γr and x ∈ S, we have

g
�
��
x−1gxx

@@
@@
x

since x−1gx ∈ Γr. By (5.8), this yields

(5.9)

ξ(x)
�
��
ξ(x)g

@@
@@
x−1gx

.

Since ξ is bijective, this means g ∈ Γl. Hence Γr ⊂ Γl. If g ∈ Γl and x ∈ S, we have

similarly

(5.10)

ξ(xgx−1)
�
��
ξ(g)x

@@
@@
x

.

This means ξ(g) ∈ Γr. Hence ξ(Γl) ⊂ Γr. On the other hand, we have ξ(Γr) = Γr and

ξ(Γl) = Γl, since ξ preserves the braid structure by (a). Hence Γl = Γr = Γ.

(c) (5.9) and (5.10) imply

gξ(x) = ξ(x)x−1gx and xξ(g) = ξ(x)ξ(g)ξ(x)−1x

if g ∈ Γ and x ∈ S. The assertion follows from this.

(d) is obvious.

We consider the set version of ξ-braided groups.

Definition 5.9. A ξ-braided set means a triple (X,σ, ξ) where (X,σ) is a non-

degenerate braided set and ξ is a bijection of X onto itself satisfying condition (5.8)

for S = X.
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Theorem 5.10. Let (X,σ, ξ) be a ξ-braided set. Then ξ extends to a group automor-

phism ξ̄ of GX . (GX , ξ̄) is a ξ-braided group.

Proof. Similarly to Proposition 5.8 (a), ξ is an automorphism of the braided set

(X,σ). Hence it induces an automorphism ξ̄ of the braided group GX . Condition (5.8)

for S = GX can be deduced easily from (5.8) for S = X by using Proposition 1.2.

Corollary 5.11. We have Γl = Γr = Γ and ξ̄(Γ) = Γ with the notations of §3 (above

Proposition 3.5).

This can be proved similarly to Proposition 5.8 (b).

If (X,σ, ξ) is a finite ξ-braided set, we have a finite ξ-braided group GX/Γ yielding a

minimal quasitriangular Hopf algebra H(GX/Γ, GX/Γ).

6. Quasitriangular structures on H(S,B). Let H be a Hopf algebra over a field

k. Recall that a quasitriangular structure on H is given by an invertible element R in

H ⊗H satisfying the following conditions:

(∆⊗ id)(R) = R13R23,(6.1)

(id⊗∆)(R) = R13R12,(6.2)

∆op(x) = R∆(x)R−1, x ∈ H.(6.3)

If (H,R) is a quasitriangular Hopf algebra, the category of right H modulesMH has

the following structure of a braided category. For two right H modules V , W , the map

τ : V ⊗W →W ⊗ V, τ(v ⊗ w) = (w ⊗ v)R

is a right H linear isomorphism. This natural isomorphism τ satisfies the hexagon axiom

making MH into a braided category.

Let (S,B) be a matched pair of groups where S is finite. Let (ξ, η) be an LYZ pair

for (S,B). We define an element in H(S,B)⊗H(S,B):

(6.4) Rξ,η =
∑

s,t∈S

s′

η(t′)−1

η(t)−1

s
⊗

t′

ξ(s)

ξ(s′)

t
,

where we use the braided structure

s

s′t′
�
�
t

(4.7) on S. Note that

(6.4.1)

t′
�
��

ts
@@
@@
s′
⇒

η(t′)
�
��
η(t)s

@@
@@
s′

and

ξ(s)
�
��
ξ(s′)t′

@@
@@
t

, hence

η(t′)−1
�
��
η(t)−1

s′

@@
@@
s

.

Theorem 6.1 ([LYZ2], Theorem 2.3). Rξ,η is a quasitriangular structure on H(S,B),

and we have

Rη,ξ = tw(R −1
ξ,η )

where tw(a⊗ b) = b⊗ a.
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In fact, Lu, Yan and Zhu characterize these quasitriangular structures as positive ones

when k = C. It is possible to check that the Rξ,η (6.4) satisfies conditions (6.1)–(6.3)

by direct calculations. But in the following, we would like to give a natural categorical

explanation of this fact, suggested by Masuoka [Ms3].

We begin by describing the category of right H(S,B) modules MH(S,B) explicitly.

Define the category SMB as follows. An object is an S-graded vector space over k,

V = (Vs)s∈S which is also a right kB module in such a way that

(6.5) Vsb ⊂ Vs↼b, s ∈ S, b ∈ B,

where we use the right action S ↼ B. Morphisms in SMB are kB linear maps preserving

the S-gradation. If V and W are two objects in SMB , the tensor product V ⊗W has

S-gradation

(6.6) (V ⊗W )s =
⊕

s=tu

Vt ⊗Wu.

Define a right B action on V ⊗W as follows:

(6.7) (v ⊗ wu)b = v(u ⇀ b)⊗ wub, v ∈ V, wu ∈Wu, b ∈ B,

where we use the left action S ⇀ B. This structure makes V ⊗W into an object in
SMB , and SMB becomes a tensor category with this tensor product.

Proposition 6.2. The tensor categories MH(S,B) and SMB are identified with each

other as tensor categories.

Proof. Let V be a right H(S,B) module. We put

(6.8) Vs = V ·
s

1

1

s
, s ∈ S.

Since
s

1

1

s
, s ∈ S are orthogonal idempotents, we have V =

⊕
s∈S Vs. Thus V is

S-graded. Define a right B action by

(6.9) vsb = vs ·
s

b′

b

s′
, vs ∈ Vs, s ∈ S, b ∈ B,

where

s

s′b′
�
�
b

. We claim V is an object in SMB . Since

s

b′

b

s′
·
s′

1

1

s′
=

s

b′

b

s′

we have

(vsb) ·
s′

1

1

s′
= vsb.
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This means (6.5), since s′ = s ↼ b. Assume we have

b′
�
��

bs
@@
@@
s′

c′
�
��

c
@@
@@
s′′

, c ∈ B.

Then we have

(vsb)c = vs ·
s

b′

b

s′
·
s′

c′

c

s′′
= vs ·

s

b′c′

bc

s′′
= vs(bc)

and vs1 = vs. Hence V becomes an object in SMB . Conversely, if V is an object in
SMB , we define a right H(S,B) action on V as follows. Let v = (vs)s∈S be an element

in V = ⊕s∈SVs. We put

(6.10) v ·
s

b′

b

s′
= vsb.

we leave the reader to check that V becomes indeed a right H(S,B) module. In this way,

we can identifyMH(S,B) = SMB as categories. We also leave it the reader to check that

the diagonal action on V ⊗W is described by (6.6) and (6.7).

Let G be a group and B a subgroup of G. Define a category G
BMB as follows. An

object is a G-graded vector space M = (Mg)g∈G which is a kB bimodule in such a way

that

(6.11) bMgc ⊂Mbgc, b, c ∈ B, g ∈ G.

Morphisms are kB bimodule maps preserving the G-gradation. If M and N are objects

in G
BMB , we have a kB bimodule M ⊗kB N , which has the following G-gradation:

(M ⊗kB N)g = the span of mf ⊗ nh for all mf ∈Mf , nh ∈ Nh with fh = g.

It is easy to check that M ⊗kB N becomes an object in G
BMB . Thus G

BMB is a tensor

category.

Proposition 6.3. The tensor categories SMB and B./S
B MB are canonically equiva-

lent as tensor categories.

Proof. Let V be an object in SMB . We make kB ⊗ V into an object in B./S
B MB .

Define the B ./ S-gradation by

(6.12) (kB ⊗ V )(b,s) = b⊗ Vs, (b, s) ∈ B ./ S.

Define the kB bimodule action by

a(b⊗ vs)c = ab(s ⇀ c)⊗ vsc, a, b, c ∈ B, vs ∈ Vs, s ∈ S.
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One can easily check that the above structures make kB ⊗ V into an object in B./S
B MB .

If V,W ∈ SMB , we have a left kB linear isomorphism

(6.13)
(kB ⊗ V )⊗kB (kB ⊗W ) ' kB ⊗ V ⊗W

(a⊗ vs)⊗ (b⊗ wt) ↔ (a⊗ vs)b⊗ wt.
Both elements above have grade (a, s)(b, t) in B ./ S. Hence the isomorphism preserves

the B ./ S-gradation. We claim that it is right kB linear. We write

b′
�
��

bs
@@
@@
s′

c′′
�
��

c′

@@
@@
s′′

�
��

ct
@@
@@

t′ , s, t ∈ S, b, c ∈ B.

Then we have

b′c′′
�
��
bc′s

@@
@@
s′′

and

c′′
�
��

cs′t
@@
@@
s′′t′

.

It follows from the left diagram above that the element

(6.13.1) (a⊗ vs)⊗ (b⊗ wt)c = (a⊗ vs)⊗ (bc′ ⊗ wtc)
corresponds to

(6.13.2) (a⊗ vs)bc′ ⊗ wtc = ab′c′′ ⊗ vsbc′ ⊗ wtc.
It follows from the right diagram that we have

((a⊗ vs)b⊗ wt)c = (ab′ ⊗ vsb⊗ wt)c(6.13.3)

= ab′c′′ ⊗ (vsb⊗ wt)c = ab′c′′ ⊗ vsbc′ ⊗ wtc.
Hence the isomorphism (6.13) is right kB linear.

We have established a monoidal functor

(6.14) V 7→ kB ⊗ V, SMB → B./S
B MB .

We show this is a categorical equivalence. Let M be in B./S
B MB . Through the projection

B ./ S → B, we may view M as a left kB Hopf module. Hence, if we put

(6.15) V = coBM =
⊕

s∈S
M(1,s),

we have an isomorphism

(6.16) kB ⊗ V →M, b⊗ v 7→ bv.

If we give the S-gradation on V by Vs = M(1,s), then it follows that M(b,s) = b ⊗ Vs. If

s

s′b′
�
�
b

, we have

M(1,s)b ⊂M(b′,s′),
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since (1, s)(b, 1) = (b′, s′). Hence Vsb ⊂ b′⊗Vs′ . We define a new multiplication ·b : Vs →
Vs′ by putting

(6.17) vsb = b′ ⊗ vs · b, vs ∈ Vs.
We leave it to the reader to check that these structures make V into an object in SMB ,

and that the isomorphism (6.16) is a morphism in B./S
B MB . Hence the functor M 7→

V = coBM gives a quasi-inverse to the functor (6.14).

Let B be a subgroup of a group G, and let ξ, η : G → B be group homomorphisms

which are identity on B and such that

(6.18) Ker(ξ) and Ker(η) commute with each other element-wise.

Masuoka [Ms3] has constructed a braiding τ̄ = τ̄ξ,η on the tensor category G
BMB as

follows.

Proposition 6.4 ([Ms3], cf. also [Sch], 6.3 Theorem). (a) Let M,N be two objects in
G
BMB. There is an isomorphism τ̄M,N : M ⊗kB N ∼−→ N ⊗kB M in G

BMB such that

τ̄M,N (mf ⊗ ng) = η(f)ngξ(g)−1 ⊗ η(f)−1mfξ(g), mf ∈Mf , ng ∈ Ng with f, g ∈ G.

(b) The natural isomorphism τ̄ = (τ̄M,N )M,N satisfies the hexagon condition.

(c) If we write τ̄ = τ̄ξ,η, then we have

(τ̄ξ,η) −1
M,N = (τ̄η,ξ)N,M .

Proof. We show briefly that the map τ̄M,N is well-defined and that it is a morphism

in G
BMB . We leave it to the reader to verify the other properties. If b ∈ B, then

τ̄M,N (mfb⊗ ng) = η(fb)ngξ(g)−1 ⊗ η(fb)−1mfbξ(g),

τ̄M,N (mf ⊗ bng) = η(f)bngξ(bg)−1 ⊗ η(f)−1mfξ(bg).

Since η(fb) = η(f)b and ξ(bg) = bξ(g), these elements coincide in N ⊗kBM . Hence τ̄M,N

is well-defined. We have

τ̄M,N (bmf ⊗ ng) = η(bf)ngξ(g)−1 ⊗ η(bf)−1bmfξ(g)

= bη(f)ngξ(g)−1 ⊗ η(f)−1mfξ(g)

implying that τ̄M,N is left kB linear. Similarly it is right kB linear. Finally, the element

τ̄M,N (mf ⊗ ng) has grade

η(f)gξ(g)−1 · η(f)−1fξ(g) = η(f)η(f)−1f · gξ(g)−1ξ(g) = fg

by (6.18), since gξ(g)−1 ∈ Ker(ξ) and η(f)−1f ∈ Ker(η). Hence τ̄M,N preserves the G

gradation, and we conclude it is a morphism in G
BMB .

We get back to the matched pair of groups (S,B) with S finite. Let (ξ, η) be an LYZ

pair for it. Let ξ̄, η̄ : B ./ S → B be the extended group maps (4.4). The pair ξ̄, η̄

satisfies (6.18) by Proposition 4.3. Hence we have the Masuoka braiding τ̄ = τ̄ξ̄,η̄ on the

tensor category B./S
B MB . Since we have monoidal equivalences

MH(S,B) ≈ SMB ≈ B./S
B MB

we can transport the braiding τ̄ onto the category MH(S,B). Let τ be the transported

braiding structure on MH(S,B).
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Proposition 6.5 ([Ms3]). Let V,W be right H(S,B) modules. Then we have

(6.19) τV,W (v ⊗ w) = (w ⊗ v)Rξ,η , v ∈ V, w ∈W,

where Rξ,η is the LYZ element (6.4).

Proof. We may identify V,W as objects in SMB (Prop. 6.2). We use the notation of

(6.4) and (6.4.1). We only have to prove

τV,W (vt′ ⊗ ws′) = ws′η(t)−1 ⊗ vt′ξ(s′), vt′ ∈ Vt′ , ws′ ∈Ws′ .

In fact, taking M = kB ⊗ V , N = kB ⊗W , f = (1, t′), g = (1, s′) in Proposition 6.4 (a),

we have

τ̄M,N ((1⊗ vt′)⊗ (1⊗ ws′)) = η(t′)(1⊗ ws′)ξ(s′)−1 ⊗ η(t′)−1(1⊗ vt′)ξ(s′).

Since

t′

tξ(s)
�
�

ξ(s′)

(6.4.1), we have η(t′)ξ(s′) = ξ(s)η(t) and

η(t′)−1(1⊗ vt′)ξ(s′) = η(t′)−1ξ(s)⊗ vt′ξ(s′) = ξ(s′)η(t)−1 ⊗ vt′ξ(s′).

Hence

τ̄M,N ((1⊗ vt′)⊗ (1⊗ ws′)) = η(t′)(1⊗ ws′)ξ(s′)−1 ⊗ (ξ(s′)η(t)−1 ⊗ vt′ξ(s′))
= η(t′)(1⊗ ws′)η(t)−1 ⊗ (1⊗ vt′ξ(s′))
= (η(t′)η(t′)−1 ⊗ ws′η(t)−1)⊗ (1⊗ vt′ξ(s′))
= (1⊗ ws′η(t)−1)⊗ (1⊗ vt′ξ(s′)),

since we have

s′

sη(t′)−1
�
�

η(t)−1

(6.4.1). This implies that the map τV,W (6.19) corresponds to

τ̄M,N through the isomorphism (6.13).

This gives a categorical proof to Theorem 6.1.

Let G be a group with a subgroup B. Assume there are two finite subgroups S, T of

G such that

G = B ./ S = B ./ T.

Proposition 4.1 of [LYZ2] claims that the Hopf algebras H(S,B) and H(T,B) are quasi-

isomorphic. The above approach admits the following naive categorical explanation of

this fact, as noted in [Ms3].

We view T ⊂ B ./ S and write t = (t1, t2) for t ∈ T . Then the map t 7→ t2, T → S is

bijective. If t, u ∈ T , then

(6.20) (tu)1 = t1u
′
1, (tu)2 = t′2u2, where

u′1
�
��

u1t2
@@
@@
t′2

.
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We denote the jigsaw puzzle basis of H(T,B) by
t

c

b

u
with t, u ∈ T , b, c ∈ B such that

tb = cu.

Proposition 6.6 ([LYZ2], 4.1). There is an algebra isomorphism φ : H(T,B) →
H(S,B) such that

φ

(
t

c

b

u

)
=

t2

t−1
1 cu1

b

u2

.

This is easily verified.

For an object V in SMB , let V φ be the object in TMB obtained by viewing V as a

right H(T,B) module through φ, i.e., we have

(V φ)t = Vt2 , with the same B action.

Proposition 6.7. We have a commutative diagram of functors up to a natural iso-

morphism:

(6.21)

SMB
-( )φ TMB

G
BMB

@
@
@R

cano
�
�
�	

cano

Proof. It is enough to define the left kB isomorphism

kB ⊗ V ' kB ⊗ V φ by t1 ⊗ vt ↔ 1⊗ vt, t ∈ T, vt ∈ Vt2 .
One can easily check that this is right kB linear, too, preserving the G gradation.

The commutative diagram (6.21) yields a monoidal structure on the equivalence ( )φ

as follows. If V,W are two objects in SMB , we have isomorphisms in G
BMB :

kB ⊗ V φ ⊗Wφ ' (kB ⊗ V φ)⊗kB (kB ⊗Wφ) ' (kB ⊗ V )⊗kB (kB ⊗W )

' kB ⊗ V ⊗W ' kB ⊗ (V ⊗W )φ.

This induces the isomorphism in TMB :

(6.22) V φ ⊗Wφ ' (V ⊗W )φ, vt ⊗ wu ↔ vtu1 ⊗ wu, t, u ∈ T, vt ∈ Vt2 , wu ∈Wu2
.

If we put

(6.23) J =
∑

t,u∈T

t2

u′1

u1

t′2

⊗
u2

1

1

u2

∈ H(S,B)⊗H(S,B)

with the notation in (6.20), then the isomorphism (6.22) is precisely the multiplication

·J . It follows immediately that J is a Harrison cocycle on H(S,B), and the fact that ·J
is right H(S,B) linear means we have

J∆φ(x) =
∑

(φ(x1)⊗ φ(x2))J, x ∈ H(T,B).

Hence if we twist the ∆ of H(S,B) by J , it follows that φ is an isomorphism of Hopf

algebras H(T,B)
∼−→ H(S,B)J .
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