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Abstract. We determine the coribbon structures of some finite dimensional braided Hopf
algebras generated by 2 × 2-matrix coalgebras constructed by S. Suzuki. As a consequence, we
see that such a Hopf algebra has a coribbon structure if and only if it is of Kac-Paljutkin type.

1. Introduction. Finite dimensional Hopf algebras with some additional structures
such as R-matrices, braidings and ribbon elements are closely related to the topology of
knots, links and 3-manifolds. For example, it is shown by Kauffman [6] that many basic
knot invariants including the Alexander-Conway polynomial and the Jones polynomial
are derived from spin-preserving R-matrices R : M2(k) ⊗ M2(k) → M2(k) ⊗ M2(k),
where M2(k) is the 2 × 2 matrix algebra over a field k. Another type of R-matrices
R : M2(k) ⊗M2(k) → M2(k) ⊗M2(k) are classified and investigated by Takeuchi and
Tambara [14], Radford [9] and S. Suzuki [11] (see also [13]). In particular, S. Suzuki [11]
introduced a family of cosemisimple Hopf algebras of finite dimension, and determined
the (co)quasitriangular structures of those Hopf algebras, by classifying and investigating

R-matrices of type
(

0 0 0 α
0 β 0 0
0 0 β 0
α 0 0 0

)
, where α, β ∈ k with α, β 6= 0. The family includes

Hopf algebras K which fit into a Hopf algebra extension 1→ (kC2)∗ → K → kD2L → 1,
where C2 is the cyclic group of order 2 and D2L is the dihedral group of order 2L (see
[4, 7, 8, 11] for more precise information). So, such a Hopf algebra K can be said to be
of Kac-Paljutkin type, as a generalization of the 8-dimensional Hopf algebra [5] defined
by them.

Reshetikhin and Turaev [10] introduced the notion of a ribbon Hopf algebra to give
applications to knot and 3-manifold theory. The notion of a coribbon Hopf algebra was
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introduced by Hayashi [3] as a dual notion to that of a ribbon Hopf algebra. He classifies
the braidings and ribbon structures on quantized classical groups and on some Hopf face
algebras which are closely related to the SU(N)L-topological quantum field theories.

In this article, using the universal property of quadratic bialgebras [1] with respect to
coribbon structures, we determine the coribbon structures of the braided cosemisimple
Hopf algebras constructed by Suzuki. As a consequence, we see that such a Hopf algebra
has a coribbon structure if and only if it is of Kac-Paljutkin type (see Theorem 5).

This article consists of three sections. In Section 2, we review definitions and results
about braided bialgebras and quadratic bialgebras due to Doi [1], and show that any
central element of a Yang-Baxter coalgebra (C, σ) can be extended to a coribbon element
of the quadratic bialgebra M(C, σ). In Section 3, we determine the coribbon structures
of the cosemisimple Hopf algebras constructed by Suzuki.

For a Hopf algebra A, ∆, ε and S denote the comultiplication, the counit and the
antipode of A, respectively. We use Sweedler’s notation ∆(x) =

∑
x(1) ⊗ x(2) for x ∈ A

[12]. We work over a fixed field k, and set k× := k − {0}. For f ∈ Homk(C,A), where
C is a coalgebra and A is an algebra, we denote by f−1 the inverse with respect to the
convolution product, and call it the inverse of f , simply. For a finite dimensional vector
space V , the dual vector space Homk(V,k) is denoted by V ∗.

2. Coribbon structures of quadratic bialgebras. Doi [1] showed that any Yang-
Baxter form σ on a coalgebra C can be uniquely extended to a braiding σ̃ of the quadratic
bialgebra M(C, σ). Such a universal property holds for a central element of the Yang-
Baxter coalgebra (C, σ). More precisely, any central element of a Yang-Baxter coalge-
bra (C, σ) can be uniquely extended to a coribbon element of the braided bialgebra
(M(C, σ), σ̃). In this section, we show such a universal property.

Definition 1. Let B be a bialgebra over k and σ : B ⊗B → k an invertible bilinear
form. The bilinear form σ is said to be a braiding on B if the following three conditions
are satisfied:

(i)
∑
σ(x(1), y(1))x(2)y(2) =

∑
y(1)x(1)σ(x(2), y(2)) for all x, y ∈ B.

(ii) σ(xy, z) =
∑
σ(x, z(1))σ(y, z(2)) for all x, y, z ∈ B.

(iii) σ(x, yz) =
∑
σ(x(1), z)σ(x(2), y) for all x, y, z ∈ B.

We call such a pair (B, σ) a braided bialgebra.

Definition 2. Let C be a coalgebra over k and σ : C ⊗C → k an invertible bilinear
form. The bilinear form σ is said to be a Yang-Baxter form if for all x, y, z ∈ C, the
following equation holds:

∑
σ(x(1), y(1))σ(x(2), z(1))σ(y(2), z(2)) =

∑
σ(y(1), z(1))σ(x(1), z(2))σ(x(2), y(2)).

We call such a pair (C, σ) a Yang-Baxter coalgebra.

Let C be a coalgebra over k and σ ∈ (C ⊗C)∗ be invertible. We define the coideal Iσ
of the tensor bialgebra T (C) [12] by

Iσ := {
∑

σ(x(1), y(1))x(2)y(2) −
∑

y(1)x(1)σ(x(2), y(2)) | x, y, z ∈ C}.



CORIBBON STRUCTURES OF BRAIDED HOPF ALGEBRAS 335

Then, we get a bialgebra M(C, σ) := T (C)/〈Iσ〉. This bialgebra is called the quadratic
bialgebra associated with (C, σ).

In the theory of braided bialgebras, the following result due to Doi [1] is fundamental.

Theorem 1 (Doi). Let (C, σ) be a Yang-Baxter coalgebra over k. Then there is a
unique k-linear form σ̃ : M(C, σ)⊗M(C, σ)→ k such that

(i) (M(C, σ), σ̃) is a braided bialgebra.
(ii) σ̃(x, y) = σ(x, y) for all x, y ∈ C.

Here, we naturally identified x ∈ C and its image under the canonical injection C →
M(C, σ).

The notion of a coribbon Hopf algebra is due to Hayashi [3].

Definition 3. Let (A, σ) be a braided bialgebra over k. An invertible element θ ∈ A∗
is said to be a coribbon element of (A, σ) if the following three conditions are satisfied.

(i)
∑
θ(x(1))x(2) =

∑
x(1)θ(x(2)) for all x ∈ A.

(ii) θ(1) = 1.
(iii) θ(xy) =

∑
σ−1(x(1), y(1))θ(x(2))θ(y(2))σ−1(y(3), x(3)) for all x, y ∈ A.

We call such a triple (A, σ, θ) a balanced braided bialgebra. When A is a Hopf algebra, we
require the following condition in addition to the above conditions.

(iv) θ ◦ S = θ.

We call the triple (A, σ, θ) satisfying the conditions (i), (ii), (iii) and (iv) a balanced
braided Hopf algebra or a coribbon Hopf algebra.

Remark. If the dimension of a Hopf algebra A is finite, then under the identification
(A⊗A)∗ ∼= A∗⊗A∗, a braiding σ is a universal R-matrix of A∗ [2] and a coribbon element
θ is a ribbon element of (A∗, σ) in the sense of Reshetikhin and Turaev [10].

As an analogue of Theorem 1, we have the following theorem.

Theorem 2. Let (C, σ) be a Yang-Baxter coalgebra over k and θ ∈ C∗ an invertible
element. If θ satisfies the equation

∑
θ(x(1))x(2) =

∑
x(1)θ(x(2)) for all x ∈ C,

then there is a unique k-linear form θ̃ : M(C, σ)→ k such that

(i) (M(C, σ), σ̃, θ̃) is a balanced braided bialgebra.
(ii) θ̃(x) = θ(x) for all x ∈ C.

Here, σ̃ is the braiding of M(C, σ) as in Theorem 1.

Proof. The Yang-Baxter operator σ can be extended uniquely to σ : T (C)⊗T (C)→ k
such that

σ(xy, z) =
∑
σ(x, z(1))σ(y, z(2)), ∀ x, y, z ∈ T (C)

σ(x, yz) =
∑
σ(x(1), z)σ(x(2), y), ∀ x, y, z ∈ T (C).

This linear form σ : T (C)⊗ T (C)→ k induces a braiding on M(C, σ) [1]. Hence, for
x, y, z ∈ T (C), we have
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∑
σ(x(1), y(1))σ(x(2), z(1))σ(y(2), z(2)) =

∑
σ(y(1), z(1))σ(x(1), z(2))σ(x(2), y(2)).

Using this equation, we see that θ and its inverse θ−1 can be extended uniquely to
θ : T (C)→ k and θ−1 : T (C)→ k such that

θ(xy) =
∑

σ−1(x(1), y(1))θ(x(2))θ(y(2))σ−1(y(3), x(3)), ∀ x, y ∈ T (C),

θ−1(xy) =
∑

σ(y(1), x(1))θ−1(x(2))θ−1(y(2))σ(x(3), y(3)), ∀ x, y ∈ T (C).

These linear forms on T (C) are inverses of each other, and satisfy θ(Iσ) = θ−1(Iσ) = 0.
Therefore, θ : T (C)→ k induces an invertible linear form θ̃ : M(C, σ)→ k. Since

∑
y(1)x(1)σ̃−1(y(2), x(2)) =

∑
σ̃−1(y(1), x(1))x(2)y(2) for x, y ∈M(C, σ),

we see that the linear form θ̃ satisfies the equation
∑

θ̃(x(1))x(2) =
∑

x(1)θ̃(x(2)), for all x ∈M(C, σ).

It is clear that θ̃ satisfies the conditions (ii) and (iii). Thus, (M(C, σ), σ̃, θ̃) is a bal-
anced braided bialgebra.

Since the bialgebra M(C, σ) is generated by C, any coribbon element on M(C, σ) is
uniquely determined on C. It follows that a coribbon element of (M(C, σ), σ̃) is unique.
This completes the proof.

Corollary 3. Let (A, σ) be a braided bialgebra over k. Suppose that A is generated
by sub-coalgebra C as an algebra, and θ ∈ C∗ is an invertible element such that

∑
θ(x(1))x(2) =

∑
x(1)θ(x(2)) for all x ∈ C

Then the following are equivalent.

(i) There exists a coribbon element θ′ ∈ A∗ such that θ′|C = θ.
(ii) θ̃(Kerι̃) = 0, where θ̃ is the coribbon element of the braided bialgebra (M(C, σ|C⊗C),

˜σ|C⊗C).

Here, ι̃ : M(C, σ|C⊗C)→ A is the bialgebra homomorphism induced from the inclusion
ι : C ↪→ A. Under the above situation, we have

θ′ ◦ ι̃ = θ̃.

Proof. (i) ⇒ (ii): Let θ′ ∈ A∗ be a coribbon element of (A, σ) such that θ′|C = θ. It
is enough to show that θ′ ◦ ι̃ = θ̃. This follows from the following commutative diagram.

A

C

k

M(C, σ|C⊗C)

θ′

θ

θ̃ι̃

ι

i

-

�����
?









�
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�
�
�
�
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Here, i : C →M(C, σ|C⊗C) is the canonical injection.
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(ii) ⇒ (i): Since θ̃(Kerι̃) = 0, there exists a k-linear form θ̄ on M(C, σ|C⊗C)/Kerι̃
such that θ̃ = θ̄ ◦ π, where π : M(C, σ|C⊗C) → M(C, σ|C⊗C)/Kerι̃ is the natural pro-
jection. Since ι̃ is a bialgebra homomorphism, Kerι̃ is a bi-ideal of M(C, σ|C⊗C). Thus,
θ̃−1(Kerι̃) = 0, and whence θ̄ : M(C, σ|C⊗C)/Kerι̃ → k is invertible with respect to the
convolution product.

Let τ : M(C, σ|C⊗C)/Kerι̃⊗M(C, σ|C⊗C)/Kerι̃→ k be the k-linear form such that

τ ◦ (π ⊗ π) = ˜σ|C⊗C .
Then M(C, σ)/Kerι̃ is a braiding, and θ̄ is a coribbon element of (M(C, σ|C⊗C)/Kerι̃, τ).
Since A is generated by C, ι̃ is surjective. Thus,

M(C, σ|C⊗C)/Kerι̃ ∼= A as bialgebras.

Regarding θ̄ : M(C, σ|C⊗C)/Kerι̃ → k as a linear mapping from A to k through the
above isomorphism, we have a linear form θ′ : A→ k such that θ′ ◦ ι̃ = θ̃.

Since σ ◦ (ι̃⊗ ι̃) = σ̃, the bilinear form on A⊗A corresponding to τ coincides with σ.
Hence, θ′ is a coribbon element of (A, σ).

3. The coribbon structures of AνλNL. Suzuki [11] introduced a family of cosemisim-
ple Hopf algebras of finite dimension, and determined the (co)quasitriangular structures
of those Hopf algebras. In this section, first of all, we review Suzuki’s results, and then
determine the coribbon structures of those Hopf algebras. Throughout this section, k
denotes an algebraically closed field of char(k) 6= 2.

Let C be the dual coalgebra of the 2× 2-matrix algebra M2(k). Then, C has a basis
{X11, X12, X21, X22} such that

∆(Xij) = Xi1 ⊗X1j +Xi2 ⊗X2j , ε(Xij) = δij (i, j = 1, 2).

We define the coideal I of the tensor bialgebra T (C) by

I = k(X2
11 −X2

22) + k(X2
12 −X2

21) +
∑

i−j 6≡l−m (mod 2)

k(XijXlm),

and denote by B the quotient bialgebra obtained from T (C) divided by the bi-ideal 〈I〉
generated by I. We write xij for the image of Xij under the natural projection T (C)→ B.

Let N ≥ 1, L ≥ 2 and ν, λ = ±1. Then, we have a coideal JνλNL of B defined by

JνλNL : = k(x2N
11 + νx2N

12 − 1) + k(x11x22x11 · · · · · ·︸ ︷︷ ︸
L

−x22x11x22 · · · · · ·︸ ︷︷ ︸
L

)

+ k(−λx12x21x12 · · · · · ·︸ ︷︷ ︸
L

+x21x12x21 · · · · · ·︸ ︷︷ ︸
L

).

Here,

x11x22x11 · · · · · ·︸ ︷︷ ︸
L

=

{
(x11x22)

L
2 if L is even,

(x11x22)
L−1

2 x11 if L is odd,

and so on. We set

AνλNL := B/〈JνλNL〉.
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The quotient bialgebra AνλNL has a unique Hopf algebra structure such that C is a sub-
coalgebra. We write the image of xij under the natural projection π : B → AνλNL by the
same notation. Then the set

{xs11

t︷ ︸︸ ︷
x22x11x22 · · · · · ·, xs12

t︷ ︸︸ ︷
x21x12x21 · · · · · · | 1 ≤ s ≤ 2N, 0 ≤ t ≤ L− 1}

is a basis over k of AνλNL [11]. Therefore, we see that dimAνλNL = 4NL.

Remark. The Hopf algebras Aνλ1L (ν, λ = ±1) fit into a Hopf algebra extension

1→ (kC2)∗ → Aνλ1L → kD2L → 1,

where C2 is the cyclic group of order 2 and D2L is the dihedral group of order 2L (See
[4, 7, 8, 11] for more precise information). So, the Hopf algebra Aνλ1L can be regarded as
a generalization of the 8-dimensional Hopf algebra introduced by Kac and Paljutkin [5].
(The Hopf algebra A+−

12 coincides with the 8-dimensional Kac-Paljutkin Hopf algebra.)

Theorem 4 (S. Suzuki). (1) If L ≥ 3, then the set of braidings of AνλNL is

{σαβ | α, β ∈ k×, (αβ)N = ν, (αβ−1)L = λ}.
Here, σαβ(x, y) is defined as in the following table.

x\y x11 x12 x21 x22

x11 0 0 0 0
x12 0 α β 0
x21 0 β α 0
x22 0 0 0 0

(2) If L = 2, then the set of braidings of AνλN2 is

{σαβ | α, β ∈ k×, (αβ)N = ν, (αβ−1)2 = λ} ∪ {τλαβ | α, β ∈ k×, α2 = β2, α2N = 1}.
Here, σαβ(x, y) and τλαβ(x, y) are defined as in the following tables. (The left-hand side
corresponds to σαβ and the right-hand side corresponds to τλαβ.)

x\y x11 x12 x21 x22

x11 0 0 0 0
x12 0 α β 0
x21 0 β α 0
x22 0 0 0 0

x\y x11 x12 x21 x22

x11 α 0 0 β

x12 0 0 0 0
x21 0 0 0 0
x22 λβ 0 0 α

Remark. Let ν, λ,N be as above. We consider a coideal Iλ of T (C) defined by

Iλ := k(X11X22 −X22X11) + k(X12X21 − λX21X12) +
∑

i−j 6≡l−m
kXijXlm.

We set
Bλ := T (C)/〈Iλ〉.

Let JνN be the coideal of Bλ defined by

JνN := k(x2
11 − x2

22) + k(x2
12 − x2

21) + k(x2N
11 + νx2N

12 − 1).

Then the quotient bialgebra Bλ/JνN is isomorphic to AνλN2.
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Theorem 5. (1) The braided Hopf algebra (AνλNL, σαβ) has a coribbon element if and
only if N = 1.

Furthermore, the set of coribbon elements of (Aνλ1L, σαβ) is {θα, θ−α}, where θα and
θ−α are defined as in the following table.

x x11 x12 x21 x22

θα α 0 0 α

θ−α −α 0 0 −α
(2) The set of coribbon elements of the braided Hopf algebra (AνλN2, τ

λ
γδ) is {θω | ω ∈

k is a 2N -th root of unity}, where θω is defined by

θω(x11) = θω(x22) = ω, θω(x12) = θω(x21) = 0.

We need some lemmas to prove Theorem 5.

Lemma 6 (S. Suzuki). Let α, β be elements in k×.

(1) Let σαβ be the Yang-Baxter form on C defined as in the following table.

x\y x11 x12 x21 x22

x11 0 0 0 0
x12 0 α β 0
x21 0 β α 0
x22 0 0 0 0

Then σαβ can be extended uniquely to a braiding on B. We denote the braiding on B by
σαβ again.

(2) Let τλαβ be the Yang-Baxter form on C defined as in the following table.

x\y x11 x12 x21 x22

x11 α 0 0 β

x12 0 0 0 0
x21 0 0 0 0
x22 λβ 0 0 α

Then τλαβ can be extended uniquely to a braiding on Bλ. We denote the braiding on Bλ

by τλαβ again.

Lemma 7. Let ω be an element in k×. We define a k-linear form θω : C → k by

θω(xij) = δijω, i, j = 1, 2.

(1) Let σαβ be the braiding on B given in Lemma 6. Then θω can be extended uniquely
to the coribbon element of the braided bialgebra (B, σαβ). We denote the coribbon element
on B by θω again.

(2) Let τλαβ be the braiding on Bλ given in Lemma 6. Then θω can be extended uniquely
to the coribbon element of the braided bialgebra (Bλ, τλαβ). We denote the coribbon element
on Bλ by θω again.

Proof. (1) Since θω ∗ θω−1 = θω−1 ∗ θω = ε, θω is invertible. Furthermore, θω satisfies
the equation
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2∑

k=1

θω(xik)xkj = xij =
2∑

k=1

θω(xkj)xik.

Hence, by Theorem 2, θω can be extended to a coribbon element θ̃ω of the braided
bialgebra (M(C, σαβ), σ̃αβ).

We consider the bialgebra homomorphism ι̃ : M(C, σαβ) → B induced from the
inclusion ι : C ↪→ B. By Corollary 3, it is enough to show that

θ̃ω(Kerι̃) = 0.(1)

• If α2 6= β2, then ι̃ : M(C, σαβ)→ B is an isomorphism, so (1) is satisfied.
• If α2 = β2, then Kerι̃ is generated by S := {xijxlm | i − j 6≡ l −m (mod2)}. The

condition (1) is equivalent to
θ̃ω(S) = 0.

By definition of σαβ and θω, we have

θ̃ω(xijxlm) =
2∑

k,t,h,s=1

σ̃−1
αβ (xik, xlt)θ̃ω(xkh)θ̃ω(xts)σ̃−1

αβ (xsm, xhj)

= ω2σ̃−1
α,β(xi,i+1, xl,l+1)σ̃−1

αβ (xl+1,m, xi+1,j)

= ω2δlmδijσ̃
−1
αβ (xi,i+1, xl,l+1)σ̃−1

αβ (xl+1,l, xi+1,i).

If i− j 6≡ l −m (mod2), then δlmδij = 0. Therefore, we see that θ̃ω(xijxlm) = 0, and
whence θ̃ω(S) = 0.

(2) As in the proof of Part (1), we see that θω can be extended to a coribbon element
θ̃ω of the braided bialgebra (M(C, τλαβ), τ̃λαβ).

Let ι̃ : M(C, τλαβ)→ Bλ be the bialgebra homomorphism induced from the inclusion
ι : C ↪→ Bλ. Then, we have the following.

• If α2 6= λβ2, then ι̃ : M(C, τλαβ)→ Bλ is an isomorphism.
• If α2 = λβ2, then Kerι̃ is generated by S := {xijxlm | i− j 6≡ l −m (mod2)}.
• θ̃ω(xijxlm) = ω2δlmδij(τ̃

(λ)
αβ )−1(xii, xll)(τ̃λαβ)−1(xll, xii).

By using these facts, by the same argument as in the proof of Part (1), we can prove
Part (2). This completes the proof.

Lemma 8. Let α, β, ω be elements in k×.

(1) Let θω be the coribbon element of (B, σαβ) given in Lemma 7(1). We suppose
that (αβ)N = ν and (αβ−1)L = λ. Then θω induces a coribbon element of the bialgebra
(AνλNL, σαβ) if and only if N = 1, ω = ±α.

(2) Let θω be the coribbon element of (Bλ, τλαβ) given in Lemma 7(2). We suppose that
α2 = β2 and α2N = 1. Then θω induces a coribbon element of the bialgebra (AνλN2, τ

λ
αβ) if

and only if ω2N = 1.

Proof. (1) We suppose that (αβ)N = ν and (αβ−1)L = λ. Then we have:

θω induces a coribbon element of (B/〈JνλNL〉, σαβ) ⇔





(i) θω(x2N
11 + νx2N

12 − 1) = 0,
(ii) θω(χL1 − χL2 ) = 0,
(iii) θω(−ληL1 + ηL2 ) = 0.
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Since
∆(xmij ) = xmi1 ⊗ xm1j + xmi2 ⊗ xm2j

for m ≥ 1 and i, j = 1, 2, we have

θω(xm11) = σ−1
αβ (xm−1

12 , x12)θω(xm−1
22 )θω(x22)σ−1

αβ (x21, x
m−1
21 ),

θω(xm22) = σ−1
αβ (xm−1

21 , x21)θω(xm−1
11 )θω(x11)σ−1

αβ (x12, x
m−1
12 ),

θω(xm12) = σ−1
αβ (xm−1

12 , x12)θω(xm−1
21 )θω(x21)σ−1

α,β(x12, x
m−1
12 ) = 0.

If m is even, then

σ−1
αβ (xm−1

12 , x12) = σ−1
αβ (x21, x

m−1
21 ) = α−

m
2 β−(m2 −1).

If m ≥ 3 is odd, then

σ−1
αβ (xm−1

21 , x21) = σ−1
αβ (x12, x

m−1
12 ) = 0.

Thus, we have

θω(x2N
11 + νx2N

12 ) = ωα−2Nβ−(2N−2)θω(x2N−1
22 ) =

{
0 if N ≥ 2,
ω2α−2 if N = 1.

It follows that
(i) ⇔ N = 1 and ω2 = α2.

Now, we suppose N = 1. For m ≥ 1 we consider the following elements in B.

χm11 := x11x22x11 · · · · · ·︸ ︷︷ ︸
m

, χm22 := x22x11x22 · · · · · ·︸ ︷︷ ︸
m

,

χm12 := x12x21x12 · · · · · ·︸ ︷︷ ︸
m

, χm21 := x21x12x21 · · · · · ·︸ ︷︷ ︸
m

.

Then the following formulae hold for i, j = 1, 2.

∆(χmij ) = χmi1 ⊗ χm1j + χmi2 ⊗ χm2j ,(2)

σ−1
αβ (χm11, xij) = σ−1

αβ (χm22, xij) = σ−1
αβ (xij , χm11) = σ−1

αβ (xij , χm22) = 0,(3)




σ−1
αβ (χm12, xij) = δj,m+iα

−m(j−1)β−m(2−j),
σ−1
αβ (χm21, xij) = δj,m+iα

−m(2−j)β−m(j−1),

σ−1
αβ (xij , χm12) = δi,m+jα

−m(2−i)β−m(i−1),

σ−1
αβ (xij , χm21) = δi,m+jα

−m(i−1)β−m(2−i).

(4)

Here, we consider the indices of the Kronecker deltas modulo 2.
Using these equations, we have

θω(χm11) = θω(x11χ
m−1
22 )

=
∑

i,j=1,2

σ−1
αβ (x1i, χ

m−1
21 )θω(xij)θω(χm−1

11 )σ−1
αβ (χm−1

12 , xj1)

= ω
∑

i=1,2

θω(χm−1
11 )δ1,i+m−1β

−(m−1)δ1,i+m−1β
−(m−1)

= ωθω(χm−1
11 )β−2(m−1),
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θω(χm12) = ω
∑

i=1,2

θω(χm−1
12 )δ1,i+m−1β

−(m−1)δ2,i+m−1β
−(m−1)

= 0.

By a similar calculation, we have

θω(χm22) = ωθω(χm−1
22 )β−2(m−1), θω(χm21) = 0.

Thus, the condition (iii) is trivially satisfied. Since

θω(χL11) = ωβ−2(L−1)θω(χL−1
11 ) = ω2β−2{(L−1)+(L−2)}θω(χL−2

11 ) = · · · · · ·
= ωL−1β−2{(L−1)+(L−2)+···+1}θω(χ1

11)

= ωLβ−L(L−1),

θω(χL22) = ωLβ−L(L−1),

the condition (ii) is also trivially satisfied.
(2) We suppose that α2 = β2 and α2N = 1. Then we have:

θω induces a coribbon element of (Bλ/〈JνN 〉, τλαβ) ⇔





(i) θω(x2N
11 + νx2N

12 − 1) = 0,
(ii) θω(x2

11 − x2
22) = 0,

(iii) θω(x2
12 − x2

21) = 0.

Since

θ̃ω(x2
ij) = (τ̃λαβ)−1(xii, xii)θ̃ω(xij)θ̃ω(xij)(τ̃λαβ)−1(xjj , xjj) = θ̃ω(xij)2β2,

the conditions (ii) and (iii) are automatically satisfied. Since

(τλαβ)−1(xm−1
jj , xjj) = (τλαβ)−1(xjj , xm−1

jj ) = αm−1

for j = 1, 2 and m ≥ 1, it follows that

θω(xm11) = (τλαβ)−1(xm−1
11 , x11)θω(xm−1

11 )θω(x11)(τλαβ)−1(x11, x
m−1
11 )

= ωγ2(m−1)θω(xm−1
11 )θω(xm22),

θω(xm22) = (τλαβ)−1(xm−1
22 , x22)θω(xm−1

22 )θω(x22)(τλαβ)−1(x22, x
m−1
22 )

= ωα2(m−1)θω(xm−1
22 ),

θω(xm12) = (τλαβ)−1(xm−1
11 , x11)θω(xm−1

12 )θω(x12)(τλαβ)−1(x22, x
m−1
22 )

= 0.

By induction on m, we have

θω(xm11) = θω(xm22) = ωmα2((m−1)+(m−2)+···+1) = ωmαm(m−1).

Therefore, we have

(i) ⇔ ω2Nα2N(2N−1) = 1 ⇔ ω2N = 1.

This completes the proof.

Proof of Theorem 5. Let θ ∈ (AνλNL)∗ be a coribbon element of (AνλNL〉, σαβ), where
α, β ∈ k× satisfy (αβ)N = ν, (αβ−1)L = λ, and σαβ is the braiding given in Theorem 4.
Since L ≥ 2,

{x11, x12, x21 = νx2N
12 x21, x22 = x2N

11 x22}
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is a system of linearly independent vectors in AνλNL. Hence, comparing the equations

θ(x11)x11 + θ(x12)x21 = θ(x11)x11 + θ(x21)x12

and
θ(x11)x12 + θ(x12)x22 = θ(x12)x11 + θ(x22)x12,

we see that
θ(x12) = θ(x21) = 0, θ(x11) = θ(x22).

We put ω := θ(x11) = θ(x22). Then ω 6= 0, since θ is invertible. Moreover, θ = θω ◦ π,
where θω is the coribbon element of (B, σαβ), and π : B → B/〈JνλNL〉 is the natural
projection. By Lemma 8, it follows that N = 1 and ω = ±α.

Next, let θ ∈ (AνλNL)∗ be a coribbon element of (AνλNL, τ
λ
αβ), where α, β ∈ k× satisfy

α2 = β2, α2N = 1, and τλαβ is the braiding given in Theorem 4. With the same argument
as in the proof of the first part, we see that

θ(x12) = θ(x21) = 0, θ(x11) = θ(x22).

We put ω := θ(x11) = θ(x22). Then ω 6= 0, since θ is invertible. Moreover, θ = θω ◦ π′,
where θω is the coribbon element of (Bλ, τλαβ), and π′ : Bλ → Bλ/〈JνN 〉 ∼= AνλN2 is the
natural projection. Therefore, by Lemma 8, it follows that ω2N = 1.

Since any coribbon element θ = θω satisfies θ ◦ S = θ, it is a coribbon element for a
braided Hopf algebra. This completes the proof.
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