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Abstract. Jozef Przytycki introduced skein modules of 3-manifolds and skein deformation

initiating algebraic topology based on knots. We discuss the generalized skein modules of Walker,

defined by fields and local relations. Some results by Przytycki are proven in a more general

setting of fields defined by decorated cell-complexes in manifolds. A construction of skein theory

from embedded TQFT-functors is given, and the corresponding background is developed. The

possible coloring of fields by elements of TQFT-modules is discussed for those generalized skein

modules. Also an approach of defining skein modules from studying compressions of fields is

described.

1. Motivation and questions. J. Przytycki defined skein modules of 3-manifolds as a

kind of universal target of knot invariants satisfying skein relations [P1], [P2]. The skein

modules define functors from categories of 3-manifolds and diffeomorphisms (actually

codimension-0 embeddings) into module categories. The skein module of a 3-manifold is

defined by taking the quotient of a free module with basis the set of isotopy classes of

links in the 3-manifold by a submodule generated by local relations. The skein modules

with the actions by diffeomorphisms thus almost define modular functors in the sense of

Turaev [T] (usually missing is the finite type projectivity of skein modules). We define a

skein theory to be the collection of skein modules with the diffeomorphism actions and

gluing structures.

Interesting skein modules are always based on skein relations that interact in a non-

trivial way with the action of diffeomorphisms on embeddings. Besides classical skein

relations like the Kauffman bracket or Homflypt relations, Przytycki considered skein

relations he called deformations of homotopy and homology via the action of diffeomor-

phisms on the set of framed links in 3-manifolds. The theory of skein modules and the
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field of algebraic topology based on knots have since then developed into an indepen-

dent field of study related to important questions in quantum topology like the volume

conjecture [L].

Recently K. Walker [W] defined generalizations of skein modules for n-manifolds based

on a subtle categorical axiomatics of fields in dimensions ≤ n, local relations in dimen-

sion n and a sophisticated system of gluing axioms. His generalized skein modules are

quotients of vector spaces of fields by subspaces generated by local relations. Walker’s

motivation is to give a geometric construction of (extended) topological quantum field

theory (TQFT). He proves that under the assumptions that (i) the definition of fields

can be consistently extended to (n+1)-manifolds, (ii) there exist natural positive definite

pairings on skein modules of the n-ball defined by gluing, and (iii) the skein modules of

all n-manifolds are finite-dimensional, then skein theory defines an (n + 1)-dimensional

TQFT. Walker explains how (n + 1)-dimensional TQFT theory naturally induces skein

modules of n-manifolds using supposed properties of a Feynman path integral structure on

fields. But (n+1)-dimensional TQFT also is related with skein relations for (n+1)-fields.

This consequence of finite-dimensionality of TQFT modules has probably first been ob-

served by Witten for n = 2.

It is the goal of this paper to review relations between skein modules and TQFT-

structures by discussing two general constructions of generalized skein theories. Our hope

is that this initiates a study of interesting generalized skein modules on a more concep-

tual basis. The question of finite-dimensionality of the TQFT modules, which is essential

for TQFT theory, is not of our concern here, see [AU] for related discussions. Most of

the classical skein theories a priori do not define finite-dimensional skein modules for

3-manifolds. According to Walker, (2 + 1)-dimensional TQFT theory is naturally defined

from skein modules of 1-complexes on surfaces, with the skein relations projected from

skein relations of links embedded in the cylinder over the surface. The power of these

natural skein relations is that there are corresponding polynomial invariants of links

in S3. On the other hand, skein modules of links in 3-manifolds are naturally associated

with (3 + 1)-dimensional TQFT via Walker’s approach. It seems that at this point con-

nections between 3- and 4-dimensional topology are not understood in full detail. It is

well-known that this problem is at the heart of Khovanov theory. For a discussion of the

categorification of the Jones or Kauffman bracket polynomial see [P3], for a discussion

of a categorification of skein modules of I-bundles over surfaces see [APS]. Note that

recently, Gaiotto and Witten [GW] have been studying Jones and Khovanov theory for

links in 3-manifolds M through differential equations for fields on M×[0,∞) with bound-

ary conditions on M × {0} defined by links in M . The compression functors in the last

section of this paper could possibly be related in some way with this study of physical

fields on cylinders over 3-manifolds.

The calculation of skein modules is difficult in general. The questions below indicate

some directions in which to study the generalized skein theories of Walker. Recall that for

each skein theory in dimension n one can naturally study the skein modules of cylinders

over (n−1)-balls with fixed boundary fields on top and bottom. In this way skein modules

appear as morphism sets of certain categories generalizing the Jones algebroid of Jones
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skein theory, see [Wa]. Motivated by the examples in classical skein theory, see [P1], we

suggest the following definitions. We will assume throughout that the set of fields is an

R-module, for R a commutative unital ring, with basis a collection of base fields.

1.1. Definitions

(i) A skein theory is consistent if the skein algebra R of the 3-ball with empty boundary

field is naturally isomorphic to a subalgebra of a localization of R at a multiplicative set

determined by the skein relations, and R ⊃ R with R corresponding to the empty field,

see Remarks 1.2(i) below for an example.

(ii) A skein theory is strongly consistent if all morphism modules of the Jones algebroid

as above are finitely generated free modules over the algebra R (see the Remarks below

for an explanation of the R-module structure).

(iii) A skein theory is finitely skein generated if the skein relations are generated by a

finite set (in the sense of generating a gluing ideal, for details see Definition 2.9 below

and [W]).

1.2. Remarks

(i) If R = k a field (so the set of fields is a k-vector space) consistency reduces to R ∼= k.

Consistency requires that the n-ball, which represents trivial n-dimensional manifold

topology, is represented in skein theory in an essentially trivial way. On the other hand,

non-triviality of skein modules of manifolds should detect non-trivial manifold topology.

A typical example of R is for the skein module of oriented links in 3-manifolds, defined

over R = Z[q±1, z, h], by

q−1 ??__
− q

??__
= w

??__

(q−1 − q)∅ = h©

with w = z, respectively w = h, for a crossing of different components, respectively for a

self-crossing. In this case R = Z[q±1, z, h, q
−1−q
h ], see [P1] and [K1]. The extension R ⊃ R

results from relating unlinks to the empty link, which requires to localize at h. It is a

consequence of non-invertibility of ring elements involved in the skein relations that the

vacuum, i.e. the empty link, does not generate the skein module of the ball.

(ii) Usually skein modules of n-manifolds are modules over the ring R in a natural way.

This follows if the inclusion of a punctured manifold (by which we mean the complement

of an open ball in the manifold) into the manifold induces an isomorphism of skein

modules.

(iii) Strong consistency holds for the usual skein modules of links or surfaces in 3-mani-

folds, but for quite different reasons. For skein modules of links it follows from consistency

of a TQFT respectively the existence of link polynomials like the Jones of Homflypt

polynomials in the background of those theories. For skein modules of surfaces in the

sense of [K2] it follows from the complete compressibility of surfaces embedded in the

3-ball and the consistency of abstract TQFT for surfaces.

The above definitions suggest the following questions.
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1.3. Questions. For which skein relations is a skein theory (strongly) consistent? When

is a skein theory finitely skein generated?

It seems interesting to study what general assumptions have the consequence that

consistency implies strong consistency, or when finite generation holds in cases when the

skein module is not already given by the local relation. Interestingly, if skein modules are

directly defined by skein relations, the skein theories are obviously finitely skein generated

but it is often not easy to establish consistency (usually this follows from the existence of

a topological invariant like a quantum link invariant). On the other hand, in Section 3 we

will define skein theories, which are by construction consistent, but finite skein generation

does not seem easy to establish.

In Section 2 we review the definition of generalized skein modules following [W] with

details referred to [W] and [MW]. We will pay attention to orientations, and reprove

some classical observations of Przytycki in a more general setting, emphasizing that

many techniques in classical skein theory are based on transversality, which often works

for fields defined by decorated embedded complexes in manifolds. Because we are not

primarily interested in TQFT we work over a commutative unital ringR not necessarily an

algebraically closed field or C. In fact, it is known from classical skein theory that torsion

in skein modules often is nicely related with the topology of the manifolds. In Section 3

we define consistent n-dimensional skein theories from so called base field functors in

dimension n and discuss the idea of extending the functor by colorings. (This is related

to Question 1.3 above because it is difficult for a skein theory defined in this way to

actually determine a generating set of skein relations.) This requires to define a category

of base fields on n-cubes resembling Turaev’s ribbon tangle category. In Section 4 we

discuss the definition of skein modules through compression and co-limits, extending the

approach in [K3] for the case of Bar-Natan modules.

2. Generalized skein modules. We work in the smooth (C∞-) category with cor-

ners because our examples are usually smooth embeddings or immersions. Details about

straightening corners are not discussed here, see [CF]. We assume that manifolds are

equipped with straightening of the corners. Thus for M a smooth manifold, the bound-

ary ∂M is a smooth manifold. We let int(M) = M \ ∂M be the interior of M . We

let Diff(M), respectively Diff(M,∂M), denote the group of all diffeomorphisms of M ,

respectively diffeomorphisms of M which restrict to the identity on ∂M .

Generalized skein modules are defined by extending Przytycki’s idea of tangle re-

placements [P1], see Examples 2.10 below. For more general objects and possibly higher

dimensions it becomes important to base the skein theory on objects satisfying strong

functoriality and gluing properties.

Following [W] a system of fields for n-manifolds is a sequence of symmetric monoidal

functors

Cj :Mj → S, 0 ≤ j ≤ n,
where S is a symmetric monoidal category and Mj is a symmetric monoidal category

with objects smooth compact j-dimensional manifolds with corners and morphisms de-

fined by diffeomorphisms. The functor has to satisfy a list of properties with respect to
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taking boundary and gluing, see [W] or [MW] for a complete discussion and below for

an incomplete one. (We will usually assume thatMj is the category of compact oriented

manifolds. For an oriented manifold M we let M denote the manifold with opposite

orientation. The orientation of ∂M is given by the outward normal last convention.)

It turns out that in all of our discussions it will be sufficient to have fields defined for

n−2 ≤ j ≤ n. But Walker’s assumption is essential because it implies that the generalized

skein modules are computable from the relative skein modules of In, the gluing properties

and locality of fields and skein relations.

In this paper we usually do not work in all the generality of [W]. Throughout we fix

a commutative unital ring R and define C(M) = Cj(M) by assigning the free R-module

with basis a set of base fields F(M) on M , 0 ≤ j ≤ n. We will discuss the corresponding

functors Fj from Mj into the symmetric category of sets.

2.1. Definition. A system of base fields for n-manifolds is a sequence of symmetric

monoidal functors Fj :Mj → S for 0 ≤ j ≤ n.

Note that F(M t N) = F(M) × F(N) for M,N two j-manifolds and j ≤ n, and

F(∅) = {∅} because the functors are monoidal. We assume that there is a unique empty

field, the vacuum, ∅ ∈ F(M) for each manifold M . Moreover, a system of base fields has

to satisfy the following list of properties.

(i) There is defined a boundary map

∂ : F(M)→ F(∂M)

mapping ∅ to ∅.
(ii) We assume F(M) = F(M) in a natural way. Thus for each diffeomorphism f :

M → N (not necessarily orientation preserving) there is defined the induced map f∗ :

F(M) → F(N) such that ∂f∗ = f∗∂, where the second f∗ : F(∂M) → F(∂N) really is

the map induced by the restriction of f to the boundary. If a diffeomorphism f : M →M

is isotopic to the identity diffeomorphism then the field f∗(c) is called isotopic to c.

(iii) There is defined an involution F(M) 3 c 7→ ĉ ∈ F(M) such that ∂̂c = ∂ĉ and

f∗(ĉ) = f̂∗(c). (This involution can very well be the identity.) Moreover, ∅̂ = ∅.
(iv) Let N ⊂ M be a codimension-0 submanifold. Then for an open dense subset of

f ∈ Diff(M) there is a restriction map

F(M)→ F(f(N))

(in particular for almost all diffeomorphisms in a neighborhood of the identity). Whenever

we consider codimension-0 submanifolds we usually require that restriction of fields to

the submanifold is defined.

(v) There is defined a cylinder functor assigning to each field on a manifold N of

dimension ≤ n − 1 the field c × I on the manifold N × I. If the field c is closed then it

satisfies ∂(c × I) = ĉ × {0} t c × {1}. Note that ∂N × I = N × {0} t N × {1}. Here

t denotes the disjoint union of fields on a manifold or the disjoint union of manifolds,

see the following remark. If the field is not closed then the boundary of c× I is given by

gluing the bottom and top field over the cylinder over ∂c.
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2.2. Remarks

(a) We will often use the disjoint union of two disjoint fields on a manifold M : Given

c1, c2 on M such that there exist disjoint codimension-0 submanifolds M1,M2 such that

the restriction of ci to M \ int(Mi) is the empty field. Then it follows easily from Walker’s

gluing axioms that the field c1 t c2 is defined on M .

(b) Note that oriented gluing of fields requires care: Suppose there are given fields on

Mi for i = 1, 2. If Ni ⊂ ∂Mi are codimension-0 submanifolds such that the given fields

on Mi restrict to fields ci on Ni then if for an orientation preserving diffeomorphism

h : N1 → N2 we have h∗(c1) = ĉ2 (where we use F(N2) = F(N2)), there is defined the

field c1 ∪h c2 on the oriented manifold M1 ∪h M2. (This is actually the case of gluing

possibly with corners. If ∂Ni = ∅ then we have the usual gluing without corners.)

(c) Let M be a manifold of dimension ≤ n − 1. Let PDiff(M) denote the path space

of Diff(M) of paths starting at the identity diffeomorphism, where Diff(M) is equipped

with the usual strong C∞-topology. It follows from axioms (ii) and (v) that for each

α ∈ PDiff(M) and each closed field c on M there is defined a field α](c) defined on M × I
by applying the trace diffeomorphism M × I → M × I, (x, t) 7→ (αt(x), t) to the field

c× I on M × I. Then ∂α](c) = ĉ× {0} t α(1)∗(c).

(d) The condition F(M) = F(M) will not always hold for the general definition of

fields given by Walker. For example if the set F(M) is the set of tight positive contact

structures then there exist manifolds with F(M) 6= ∅ but F(M) = ∅, see [LS].

(e) Systems of base fields defined by vector spaces of functions on M often seem to be

related to base fields of complexes in M by using Pontrjagin–Thom type constructions.

It should be interesting to study whether corresponding skein theories can be related in

a natural way.

In the following we usually assume that base fields are properly embedded complexes

in M of codimension k, possibly decorated with orientation or coloring of strata, and

satisfying some transversality conditions. Moreover, we will also assume that the complex

underlying ĉ is the same as the complex underlying c. Thus the hat operation is really an

operation on decorations. We will not axiomatize the notion of decoration here. The right

viewpoint of course is through a functor on a suitable cobordism category of complexes,

see [We] for an introduction to the axiomatic of cobordism categories. We will not go into

details about this at this point, even though in particular in relation with mapping space

topology this is an important point. The consideration of embedded complexes as basic

examples of fields has been suggested by Walker. It is justified by important examples like

the recent webs and spiders but also because embedded complexes behave very similar

to embedded submanifolds when it comes to the action of the diffeomorphisms of the

manifolds on the set of embeddings, see [M] and [G]. See also the work by Forman [F] on

Witten–Morse theory for cell complexes.

2.3. Definition. Two fields c1, c2 on M are cell isotopic if the underlying cell complexes

in M are isotopic relative to the boundary.
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2.4. Example. Let base fields c on M be codimension-k embedded oriented submani-

folds. Then usually ĉ is defined by changing the orientation of c. For n = 3 and k = 2 we

have oriented tangles in 3-manifolds bounding oriented points in the boundary surfaces.

In this case ĉ will be the 1-manifold c with all orientations reversed. Thus an invertible

knot is an example of a base field c isotopic to the field ĉ. If decoration is framing without

orientation then we have banded tangles in 3-manifolds bounding arcs on surfaces. In this

case the involution is trivial. In both cases the corresponding fields on 1-dimensional and

0-dimensional manifolds are empty because of the codimension. More interesting decora-

tions can be defined by letting the complexes underlying base fields be defined by images

of immersions in codimension k, and the decoration be given by an actual immersion with

image the complex, possibly up to diffeomorphisms of the domain manifold. The study

of skein theory in 3-manifolds based on PL-maps of circles into the 3-manifold and their

singularities has been initiated by Kalfagianni and Lin, see [K] and [KL]. The choice of

map with a given complex as image here can be understood as the decoration.

For c ∈ F(∂M) let F(M, c) := ∂−1(c) ⊂ F(M). This is the set of base fields bounding

the field c on ∂M . If f : M → N is a diffeomorphism then it follows from (ii) that

f∗ maps F(M, c) into F(N, f∗(c)). Then F(M, ∅) is the set of closed base fields. The

corresponding R-modules of base fields are defined by taking free R-modules. Elements

of those R-modules are called fields in [W].

2.5. Remarks

(a) The gluing properties express the locality of fields: This means that base fields

on n-dimensional manifolds are determined by (i) their restrictions to the handles of a

handle-decomposition of the manifold, and (ii) the homomorphisms induced from the

gluing diffeomorphisms of the handles. We will see that these properties transfer to skein

modules and their calculation.

(b) It is cobordism problem whether boundary operators are onto. Usually there are

fields on ∂M that do not bound a field on M . But the empty field ∅ on ∂M always bounds

the empty field on M .

2.6. Examples

(a) Define base fields on a surface by disjoint embeddings of framed oriented points in

the interior of the surface. The fields in 3-manifolds then are oriented ribbon tangles, i.e.

framed oriented arcs and circles are the basis fields on a 3-manifold. (It is also possible

to include coupons.) The ribbon tangles can be generalized to ribbon graphs and finally

the graphs can be colored by elements of some abstract ribbon category, see [RT]. Note

there is a unique basis field in 0-dimensional and 1-dimensional manifolds, namely the

empty field.

(b) Consider proper oriented codimension-k submanifolds in n-manifolds satisfying ob-

vious transversality with respect to boundary and corners. For n = 3 and k = 2 this is

the classical setting of Przytycki. If we consider possibly non-orientable codimension-k

submanifolds and consider n = 3 and k = 1 with decorations of the surfaces given by

coloring the components by elements of a Frobenius algebra then we are in the situation

of [K2]. Note that in this case base fields on surfaces are properly 1-manifolds, and base

fields on 1-manifolds are just disjoint collections of points.
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(c) Another example of fields are uni-trivalent graphs embedded in a surface with triva-

lent vertices in the interior and univalent vertices in the boundary of the surface defining

the fields in 1-manifolds. Again there is only the empty field on 0-manifolds.

Let R = (R(d))d∈B be sequence of relation subsets R(d) ⊂ C(Bn, d), where d runs

through a set B of representatives of isotopy classes of fields on the boundary ∂Bn of

the n-ball Bn. Let B be an n-ball and let h : Bn → B be an (oriented) diffeomorphism.

Then the diffeomorphism induces a homomorphism C(Bn, d)→ C(B, h∗(d)), which maps

elements r ∈ C(Bn, d) to skein relations in C(B, h∗(d)). Next given an n-manifold M

and a fixed base field c ∈ C(∂M). Let RM denote the submodule of C(M, c) which is

generated by (i) all elements resulting from gluing relations in C(B, h∗(d)) to fields on

M \ intB with boundary h∗(d̂) as above, for arbitrary n-balls B ⊂ int(M) and (oriented)

diffeomorphisms h : Bn → B, and (ii) relations b−b′ for b, b′ ∈ F(M, c), which are isotopic

relative to the boundary. RM is called the module of skein relations on M relative to c.

2.7. Definition. Let M be an n-manifold and c be a field on ∂M . The skein module of

(M, c), defined by system of base fields F , the ring R, and relations R is

S(F,R,R)(M, c) := C(M, c)/RM .

In general it is difficult to understand the structure of this module. We often abbreviate

notation if the defining structures are given and write S(M, c) only, also S(M) = S(M, ∅)
is the skein module of M . If c 6= ∅ then S(M, c) is often called a relative skein module.

Note that the definition of generalized skein modules is quite technical. Thus natural

constructions of examples are important.

Note that if M is connected then any two oriented embeddings h : Bn → B ⊂M are

isotopic. In this case it is easy to see that it suffices to use a single ball B ⊂ M in the

definition above.

Let F(M, c) be the set of isotopy classes of base fields in F(M, c), and correspondingly

let C(M, c) denote the free R-module generated by isotopy classes of base fields. Then

the skein module S(M, c) is also the quotient of C(M, c) by skein relations, which are

projections of elements of RM into C(M, c). This is the classical definition, emphasizing

that skein relations are in fact relations between isotopy classes, even though defined

using representatives.

The following is immediate from the definitions and axioms:

2.8. Proposition. The skein modules defined above come with actions of the diffeomor-

phisms of the manifolds. Moreover, gluing of fields induces corresponding gluing homo-

morphisms of skein modules. Thus R defines a skein theory.

We denote the action of h ∈ Diff(M) also by h∗ .

Note that the choice of relation sequenceR is highly non-unique. In fact we can always

add further relations on balls defined by gluing together relations on balls (this is what

Walker calls generating a gluing ideal).

2.9. Definition. A skein theory is finitely skein generated if it possible to choose the

sequence (R(d))d such that (i) R(d) 6= ∅ for at most finitely many cell isotopy classes of

fields d, and (ii) for each isotopy class of field d, if the relation elements are projected to

cell-isotopy classes, the resulting sets R̃(d) are finite for all isotopy classes d.
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2.10. Examples

(a) The Kauffman bracket relations define a skein theory over R = Z[A±1] for framed

tangles in 3-manifolds. In a projection onto the equatorial disk of an oriented 3-ball the

relations are (use blackboard framing with respect to the equatorial disk):

= A + A−1

©D = (−A2 −A−2)D

for D any framed link outside the 3-ball. It is well-known that the skein theory is strongly

consistent. It is finitely skein generated by definition.

(b) The skein relations of oriented links in 3-manifolds defined from 2-tangle sequences

[P1] and corresponding sequences of elements of R, are basic examples of classical skein

theories. They are finitely skein generated by definition. In this case the boundary field

is usually the empty field ∅ or the field given by two positive and two negative points

(classical 2-tangles). Note that the boundary field has to be oriented zero-homologous to

get a non-empty set of fields. It is usually not easy to decide consistency.

(c) In particular a skein theory of oriented links in 3-manifolds can be defined by

choosing a set of elements of the group rings RBn of the n-strand braid group Bn. For

Przytycki’s standard examples these are the powers of the generating braid σ ∈ B2.

//
// //

//
//
//

//
//

//
//

//
//

Other choices of skein relations could be for example to define for a fixed n,∑
σ∈Σn

(−1)sign(σ)σ̂,

where Σn is the symmetric group of order n and σ̂ is the permutation braid assigned

to σ.

(d) The quantum deformation of homology and homotopy are skein theories defined

from basis fields given by framed oriented links.

(e) The generalized Bar-Natan modules are defined from the Bar-Natan relations on

surfaces in 3-manifolds colored by elements of a Frobenius algebra V over the ring R.

Here is a picture of the so called neck cutting relation for x ∈ V , where x′⊗ x′′ = ∆x (in

Sweedler’s notation) and ∆ is the co-product of the Frobenius algebra.

x =

x′

x′′

Bar-Natan also defines a purely geometric version. His skein relations are natural

because they involve a kind of symmetric summing over all simple zero-bordisms of the

boundary fields.

Two main principles in the theory of classical skein modules due to J. Przytycki

[P1] generalize to the setting above immediately. One that is important for the idea of

deformation is the universal coefficient theorem, which is proved as in [P1]:
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2.11. Proposition. Consider any skein theory over the ring R defined by a set of base

fields and local relations R as above. For a given boundary field c let S(M, c;R) denote the

corresponding skein module. Let ϕ : R → R′ be a homomorphism of commutative unital

rings. Then R′ is naturally an R-module. The homomorphism ϕ induces an epimorphism

C(M, c;R)⊗ϕ R′ → C(M, c,R′) and homomorphisms R → R′ and finally S(M, c;R)→
S(M, c;R′). Then

S(M, c;R′) ∼= S(M, c;R)⊗ϕ R′,

where we have abbreviated S(M, c;R′) := S(F,R′,R′)(M, c).

The second important principle in the calculation of classical modules is the handle

attachment result from [P1]. The underlying argument depends only on the codimension

of the cell complexes inM defining the fields. Let supp(c) denote the embedded complex of

M defined by the field c (recall that c could denote an immersion or embedding and carry

decoration). The following result follows immediately from transversality for complexes

in smooth manifolds.

2.12. Theorem. Consider a skein theory with base fields defined by embedded codimen-

sion-k cell complexes. Let M be an n-dimensional manifold and c be a field on M . Let

H = Dj × Dn−j be a j-handle attached to ∂M \ supp(c) by an embedding h : Sj−1 ×
Dn−j → ∂M . Let M ′ := M ∪h H. Let

i∗ : S(M, c)→ S(M ′, c)

be the homomorphism of skein modules induced by the inclusion M ⊂ M ∪h H. Then i∗
is an isomorphism if k < j − 1 and is onto if k = j. If k = j then the kernel of i∗ can be

described as follows: Let dh denote the handle slide diffeomorphism of M ′ defined by the

handle. Then elements of the form d− (hd)∗(d) generate the kernel, where d denotes the

image of d ∈ C(M, c) in S(M, c).

The statement of the theorem requires some explanation. The handle attachment

(H,h) defines an isotopy of M ′, unique up to isotopy, which isotopes the southern hemi-

sphere Dj−1
− of the core sphere Sj−1×{0} across the core disk Dj×{0} and is the identity

outside of a neighborhood of the disk in M ′, and in particularly fixes ∂M ′ point-wise.

Note that for (k+1)+j < n, skein balls and the images of isotopies of complexes will miss

the co-core of the handle by transversality. But the complement of an open neighborhood

of the co-core in M ′ is naturally diffeomorphic to M . In fact, there is an diffeotopy of

this manifold retracting it onto the submanifold M . If k + j < n then a field on M ′ can

be isotoped away from the co-core and defines a field on M . This isotopy is not natural.

But any two choices will differ by an application of dh.

2.13. Example. The result above includes the classical results: (i) that for links in a

3-manifold M , the inclusion M \ int(B) ⊂ M with B ⊂ M a 3-ball, induces an isomor-

phism of skein modules, and (ii) the 2-handle attachment result of Przytycki [P1].

2.14. Remark. If k > j (e.g. for k = 2 and j = 1) then the inclusion M →M ′ will not

induce a surjective homomorphism in general. For n = 3, k = 2 and j = 1 this includes

the case of attaching 1-handles to a 3-ball with result a handle-body, often having a rich

skein module of links. In general M ′ is defined from M t H by gluing the submanifold
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Sj−1×Dn−j ⊂ ∂H to its image in ∂M under h. Each codimension-k field c on M ′ can be

assumed transversal to the co-core Dn−j . The intersection is a codimension-k field c′ on

the interior of Dn−j , such that c is the result of gluing the iterated cylinder field Ij × c′
along the boundary field ∂(Ij × c′) ⊂ Sj−1 ×Dn−j via the diffeomorphism h to ∂M . It

suffices to sum over representatives of all possible isotopy classes of fields in the interior

of Dn−j to get a surjective homomorphism:⊕
c′

S(M, c t (Ij × c′))⊗ S(Dn−j , c′)→ S(M ′, c).

Of course it is usually difficult to determine the kernel of this epimorphism.

3. Skein theories from base field functors. Throughout we assume that n ≥ 3 and

a system of base fields F for n-manifolds is given with n ≥ 3. We will study base fields

on In = In−1× I. Walker [W] points out that in this case 2-categories are defined but we

will not discuss those 2-category structures here. Instead we are interested in generalizing

some of the ideas of ribbon tangle categories and functors on these, see [RT] and [T].

We want to consider fields on In, which restrict to the empty field on ∂In−1×I ⊂ ∂In.

The basic idea of Morse theory is to slice the field horizontally into simple pieces. In terms

of complexes we would be interested in elementary changes of the topology of the complex

in each slice. In the case of embedded submanifolds we could arrange that the projection

In → I onto the last coordinate restricts to a Morse function on the submanifold, and

correspondingly cut the interval I into subintervals containing only one critical point.

Then using isotopy of the fields on the interesting boundaries In−1 × {s} of slices we

can arrange to consider elementary fields between a set of representatives in the isotopy

classes of fields on In−1. In principle may restrict to consider single representatives of

the isotopy classes of fields on In−1. But in fact this would obscure some interesting

structures that are present.

We begin by constructing the monoidal structure emerging from the product structure

of In−1. Two base fields c1, c2 on In−1, both with empty boundary fields, can be glued

together to a field on In−2× [0, 2], which then can be naturally re-parametrized to In−1.

Let c1 ⊗ c2 denote the resulting field. The product of a field c with the empty field ∅ is

defined by the field c itself. Let r : In → In be defined by the reflection r(x1, . . . , xn) =

(x1, . . . , xn−2, 1−xn−1, xn). This restricts to reflections, also denoted by r, of In−1×{1}
and In−1 × {0} about In−2 × {1

2}. Note that r∗(c1 ⊗ c2) = r∗(c2)⊗ r∗(c1). We will also

need a reflection r : In → In defined by reflection about In−1 × { 1
2}. This reflection

restricts to the exchange map on In−1 × {0, 1}. Note that if d is a field on In such that

∂d = ĉ0 t c1 then ∂r∗(d̂) = r∗∂d̂ = r∗(c0 t ĉ1) = ĉ1 t c0. (In the following we often omit

×{j} for j = 0 or j = 1 if it is obvious.) We let r ◦ r = t denote the turnover map. It

follows that ∂t∗(d̂) = r∗(ĉ1) t r∗(c0). Let d! := t∗(d̂). We also let c! = r∗(ĉ) for fields

on In−1. Since r ◦ r = id and c 7→ ĉ is an involution, c 7→ c! is an involution.

3.1. Definition. A base field on In−1 with empty boundary is called simple if it is not

isotopic to a field obtained by gluing two non-empty fields as above.

Now fix a set of representative base fields c, one for each isotopy class of simple field

on In−1 with empty boundary. This can be done in such a way that we first fix a set
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of representative complexes and then add decorations in such way that we get a list

of non-isotopic simple fields. Thus if two fields differ only by decoration they will be

represented in this list by fields only differing by decoration. Next we extend this list of

fields by adding for each field c the companion fields ĉ, r∗(c) and r∗(ĉ). Some of these

fields could be isotopic to c or to each other, then our list of basic simple fields Fbasic will

usually contain isotopic fields. If possible we will choose c such that r∗(c) = c (equality

as fields). Note that the set of basic simple fields is closed with respect to the hat or

!-operation.

Let S0 be the set of representatives of fields on In−1 defined by ⊗ from the set of

basic simple fields. Note that ⊗ as above is not a strict monoidal structure. But it is

easy to introduce natural coherence structures defined by obvious isotopies of In−1. But

it should be mentioned that S0 contains a set of representatives for all isotopy classes of

elements of F(In−1). Also c1 ⊗ c2 is isotopic to c2 ⊗ c1, even though both are different

elements of S0.

As indicated, S0 is the set of objects of a monoidal category S = S(F). For given

c0, c1 ∈ S0 let the morphisms Mor(c0, c1) be defined by isotopy classes, relative to the

boundary, of fields d on In such that ∂d = ĉ0 t c1. We write d : c0 → c1. Composition of

morphisms is defined by gluing fields using the Walker’s gluing axioms, see [W]. To show

that the composition is well-defined the diffeomorphisms defining the isotopies have to

be glued. In this way, for each object c the identity morphism idc : c → c is defined by

the cylinder on c. (This all requires also natural identification of In−1 × [0, 2] ∼= In.)

3.2. Example. Let n = 4 and closed base fields on I3 be defined by oriented links,

the involution defined by orientation reversal. Then for an invertible link c the link ĉ

is isotopic to c. Base fields on I4 are oriented surfaces properly embedded in I4 with

boundary in I3 ×{0, 1}. Note that for a base field c on I3 defined in this way the field c!

is the concordance inverse, and (c⊗ c!)×{0} = ∂d, where d is a cylinder embedded in I4

in the obvious way.

Recall that fields are represented by decorated complexes in codimension k. The

morphisms from c to c for which the complex underlying the field d is a product can

in fact all be realized by isotopies of In−1, at least up to decoration. This follows from a

result of Mazur [M]. Moreover, if k ≥ n
2 + 1 any two such isotopies are isotopic to each

other, and thus the morphisms are just the identity.

In general, the situation is of course much more involved. Let Diff(n − 1) denote

the space of all diffeomorphisms of In−1, which are the identity morphism restricted

to ∂In−1. Then for each ` ∈ π1(Diff(n − 1), id) and all basic simple fields c there is

defined a morphism `] : c → c, by using Remarks 2.2(c). It is called a twist morphism,

more precisely the twist morphism of c corresponding to `. The homotopy class of the

trivial loop is represented by the identity morphism c → c. Note that this construction

is compatible with other diffeomorphisms of In−1 in the sense that for f ∈ Diff(n),

`](f∗(c)) = (f × id)∗(`](c). The construction above does also apply to fields, which are

not simple but we will not call those morphisms twist morphisms. Note that there there

are defined braid morphisms defined by exchanging two fields β(c1 ⊗ c2) = c2 ⊗ c1.
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These can be defined using In−1 ∼= Bn−1 and suitable isotopies of Bn−1. But in higher

dimensions these braiding morphisms will have order 2, which essentially follows from

π1SO(n− 1) ∼= Z2 for n ≥ 4. The braid morphisms are compatible with twist morphisms

in the usual way:

β(c1 ⊗ c2) ◦ (idc1 ⊗`](c2)) = (`](c2)⊗ idc1) ◦ β(c1 ⊗ c2).

For the definition of duality in monoidal categories, see for example [T], 1.3.

3.3. Theorem. The category S has duality compatible with twists of its objects.

Proof. We define the dual object for each basic field c to be the field c!. There are obvious

isotopies of In (not restricting to the identity on the boundary), which isotope the cylinder

field for a simple field c to morphisms b : c! ⊗ c→ ∅ respectively ∅ → c⊗ c!.

Let MR be the category of free finitely generated R-modules, equipped with duality.

3.4. Definition. An n-dimensional base field functor F is a monoidal duality preserving

functor from the category S into the category MR for R a commutative unital ring.

A choice of diffeomorphisms In ∼= Bn defines a surjective map S0 → B, which maps

d′ to d, where B is a set of representatives of isotopy classes of fields on ∂Bn, compare

Definition 2.7. For each d pick some element d′ in S0.

3.5. Proposition. Each n-dimensional base field functor extends to a linear functor

from the linearized category RS, which has the set of objects S0 but with the morphism

sets replaced by the free R-modules with bases the morphism sets of S. Let d′ ∈ S0 be

the element chosen for d ∈ B above. Then a generating set of the kernel of the linear

morphism defined by the field functor on Mor(d′, ∅) defines a relation subset R(d′). The

resulting sequence R(d′) ⊂ C(Bn, d′) defines a skein theory over R.

3.6. Definition. The quotient category of the category RS with morphism sets defined

by taking the quotients by the kernels of the base field functor F is called the Jones

algebroid of the functor F . It is determined by the category S and the skein theory

induced from the functor.

Proof of Proposition 3.5. There are natural bijections (and induced isomorphisms of

the linearized category) Mor(c t d!, ∅) ∼= Mor(c, d) and the corresponding isomorphisms

Hom(V ⊗ W ∗, R) = (V ⊗ W ∗)∗ ∼= V ∗ ⊗ W ∼= Hom(V,W ). Thus the skein modules

determine the corresponding morphism sets. Also note that isotopies between fields induce

isomorphisms of the corresponding skein modules. Thus the skein modules of the skein

theory determine the morphism sets of the quotient category.

3.7. Theorem. Suppose that submodules of finitely generated free R-modules are finitely

generated free. Then the skein theory induced by a base field functor is strongly consistent.

Proof. This is immediate from the definitions. The skein modules are isomorphic to sub-

modules of free R-modules and thus are free R-modules. The monoidality of the functor

implies that the empty field morphism between empty fields maps to the identity of

Hom(R,R) ∼= R and thus the corresponding skein module for empty boundary fields is

isomorphic to R.
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3.8. Examples

(a) In [K2] the author discussed the above construction for the case of codimension-1

embedded manifolds and n = 3. The base field functor in this case has been defined by

forgetting the embeddings and application of an abstract (1+1)-dimensional TQFT. It is

shown in [K2] that the base field functor extends to a category with the components of the

surfaces, which are the morphisms, colored by elements of the Frobenius algebra defining

the TQFT. These elements are interpreted as R-homomorphisms of the Frobenius algebra

defined by multiplication. This extension is possible because all TQFT-morphisms not

changing connectedness commute with the multiplication morphisms.

(b) The colored ribbon tangle category of Turaev has morphisms defined by oriented

framed 1-manifolds embedded in the 3-ball I2 × I with boundaries properly embedded

in I2 × {0, 1}. The 1-manifolds are colored by elements of an abstract ribbon category

V with duality and compatible twist and braiding. Objects are standardly framed arcs

in I2 colored by elements of V. Moreover, the objects also can contain embedded coupons

colored by homomorphisms of V with input and output arcs. The functor of Reshetikhin

and Turaev into V is an example of a base field functor if the abstract ribbon category V

is a category of finite-dimensional R-modules. But the more interesting procedure here

might be to extend the objects by colorings. In Turaev’s case this is based on forming

parallels of the 1-manifolds using the framings. In general, if base fields are defined by

embedded framed submanifolds such extensions should be possible.

We briefly discuss some idea how to extend (a) above to the more general case of base

field functors. The idea is to replace homomorphisms F (d) for topologically complicated

fields d by more simple fields using colorings by homomorphisms. In this way extensions

could be helpful in simplifying the skein relations induced by the base field functor. This

could open the way to construct finitely skein generated theories like in the Bar-Natan

case [K2].

3.9. Definitions

(a) A bulb in the field c on M is an oriented ball B ⊂ int(M) with a base point ∗ ∈ ∂B
and a choice of element x ∈ Hom(F (d)), where d is the field defined by restricting c to ∂B.

We assume that d coincides with the empty field on a compact (n− 1)-ball containing ∗,
and d is simple. The element x is called the bulb color.

(b) An F -colored field is a field with a finite number of disjoint bulbs. Isotopy of

F -colored fields is defined in the obvious way by applying the isotopies to the bulbs.

We define a category SF with the same objects as S but with the morphism sets

defined by R-linear combinations of isotopy classes of F -colored fields on In. We will

introduce the following skein equivalence between F -colored fields: Suppose that for two

bulbs B1, B2 there exists an oriented embedded connecting handle H = Bn−1× I, where

Bn−1 is the (n−1)-ball intersecting the first bulb inBn−1×{1} ⊂ ∂B1 and the second bulb

in Bn−1×{0} ⊂ ∂B2. Let c0, c1, c2 be the restrictions of c to H, B1, B2. Let F (∂c0) = V .

We assume that the fields ∂ci on ∂Bi are empty outside of their intersections with H for

i = 1, 2, the field c restricts to the empty field on ∂H \ (B1 ∪ B2), and the field c0 is a

cylinder field under the natural diffeomorphism H ∼= In−1 × I. In particular d2 = d̂1 for
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the fields in ∂Bi. In this case we replace the F -colored field by an F -colored field with

two fewer bulbs by setting the field c′ to be the empty field on the ball B = B1 ∪H ∪B2,

and equal to c outside of int(B). We multiply c′ by the element of R, which is the image

of the unit under the homomorphism

R→ V ⊗ V ∗ x1⊗x2−−−−→ V ⊗ V ∗ F (c1)⊗F (c2)−−−−−−−−→ R⊗R ∼= R,

where xi are the bulb colors of the two bulbs, the first homomorphism is given by applying

the functor F to the duality of S given by d1⊗d!
1 → ∅. Also, bulbs colored by the identity

can just be omitted.

3.10. Example. The above deletion of pairs of bulbs in particular applies when the field

c restricts to the empty field on ∂B. In this case the bulb color is a homomorphism from

R to R. But RMor(∅, ∅) → R is onto anyway since the empty field ∅ → ∅ maps to the

identity homomorphism R→ R. The interesting cases are when c does not restrict to the

empty field.

3.11. Theorem. The functor F extends to a monoidal duality preserving functor on the

category SF .

Proof. We can isotope the bulb balls Bi such that the outer normals to ∂Bi at ∗i are

parallel to {0} × I. Then we apply the functor F to the field on In but replace for each

bulb the corresponding morphism F (ci) : F (di)→ R, where di the restriction of c to ∂Bi
and ci is the restriction of c to Bi, by F (ci) ◦ xi where xi is the color of the i-th bulb.

4. Skein theories from compression functors. We assume now that there is given

a system of base fields for (n + 1)-manifolds, i.e. sets Fj(N) for N smooth manifolds of

dimension j ≤ n + 1, as in Section 2. Throughout this section we say just field for a

base field. Moreover, for each base field c on the n-manifold M consider the set Fc(M)

of fields which restrict to ĉ on M × {0} and to the cylinder field ∂c× I on M × I. Then

the set of compression fields for c, Fcomp(M, c) ⊂ Fc(M), is a subset satisfying certain

conditions with respect to gluing, which are described below following Definition 4.1. We

assume that cylinder fields c× I on M × I and more general traces of isotopies of fields c

are compression fields.

The group Diff(M,∂M) acts on the set Fc(M). We define the group of compression

diffeomorphisms of c, denoted by Diffcomp(M, c), to be set-wise stabilizer subgroup of

Fcomp(M, c), i.e. the group of those diffeomorphisms mapping compression fields to com-

pression fields. We say that two fields d0 and d1 in Fcomp(M, c) are compression isotopic

if there is a path ft in Diffcomp(M, c) with f0 = id such that f1 ◦d0 = d1. Note that ft ◦d0

is a path in Fcomp(M, c) with respect to any reasonable topology on the spaces of fields.

Note that compression isotopy keeps ∂(M × I) point-wise fixed.

Next, for each field α on ∂M a category C(M,α) is defined as follows: The objects

of the category C(M,α) are representatives of isotopy classes of elements with ∂c = α.

The morphisms c0 → c1 are compression isotopy classes of fields in Fcomp(M, c0), which

restrict to c1 on M × {1}.
Note that we can form disjoint unions (M,α) t (N, β) = (M tN,α t β). But we can

also glue fields on manifolds using diffeomorphisms h of submanifolds of the boundaries,
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see [W] for details. We will assume that the locality of compression fields includes that

there are defined functors

C(M,α)× C(N, β)→ C(M ∪h N, γ),

where γ is the result of gluing the fields α and β using h.

Next assume that for each isotopy class of fields α ⊂ F and F a diffeomorphism class

of (n− 2)-manifolds, there is given a category of R-modules Rα⊂F . If N = Sn−2 we only

write Rα.

4.1. Definition. A compression functor G is a collection of functors, parametrized by

isotopy classes of fields α on Sn−2 = ∂Bn−1,

GBn−1,α : C(Bn−1, α)→ Rα,

extending to functors

GM,β : C(M,β)→ Rβ⊂∂M ,

compatible with gluing.

We need to explain what it means to extend compatible with gluing. First we require

the existence of an algebraic gluing functor for the categories of modules such that there

are commutative diagrams of functors:

C(M,α)× C(N, β) −−−−→ C(M ∪h N, γ)

GM,α×GN,β
y GM∪hN,γ

y
Rα⊂∂M ×Rβ⊂∂N −−−−→ Rγ⊂∂(M∪hN)

It follows from field axioms [W] that a field d on M × I is isotopic relative to the

boundary to a product of fields dn◦dn−1◦ . . .◦d2◦d1, with each field cylindrical except on

some ball Bj ⊂ M for j = 1, . . . , n. Here the composition is the categorical composition

in a category of morphism of all fields on M×I being cylindrical over ∂M×I. We require

that, by the very definition of compression fields, such a composition by gluing is defined,

and the value of the functor GM,α on a field d on M × I is determined by the values of

GBn−1,β on the fields on Bn−1 × I for suitable β.

4.2. Example. In [K3] fields are defined by embedded surfaces in 3-manifolds and the

compressions take place in cylinders over the 3-manifolds. The compression condition is

defined by requiring that the 3-manifolds embedded in M×I are defined from the surfaces

by attaching handles of only index 2 and 3. The categories C(M, c) are called Bar-Natan

categories in this case. The compression functors are called Bar-Natan functors. The

Bar-Natan functor assigns roughly to a surface F a tensor product V |F |, where |F | is the

number of components of F , equipped with a certain module structure over V |∂F |. The

functor is defined on isotopy classes of compression fields as follows: It is defined by the

coproduct morphism V → V ⊗ V respectively the handle-operator V → V for 2-handle

attachments, which are separating respectively non-separating. To a 3-handle attachment

the functor assigns the counit V → R.



CONSTRUCTIONS OF GENERALIZED SKEIN MODULES 169

4.3. Remark. The above collection of compression functors G could be described by

a 2-functor on a 2-category. But we wanted to avoid the technical language of higher

category theory in this paper.

Given G as above define for each (M,α) a collection of fields FG(M,α) by the collec-

tion of pairs (c, v) where c is a field on M with ∂c = α and v ∈ G(M, c), where G(M, c)

is an object of the category Rα⊂∂M . The element v should be considered an additional

decoration. Now consider on each compression field d ∈ Fcomp(M, c0) the associated

homomorphism G(d) : G(Bn−1, c0) → G(Bn−1, c1). Note that G(d) induces homomor-

phisms G(d̃) : G(M, c̃0)→ G(M, c̃1) by the above gluing diagram, where the ci are fields

on M that differ only inside a ball Bn−1 by changing c0 to c1. Now define a skein module

S(M,α) as follows: Take the free R-module generated by the isotopy classes of the ele-

ments in FG(M,α) and take the quotient by the submodule generated by the following

two types of elements:

(i) (c, r1v1 + r2v2)− r1(c, v1)− r2(c, v2) for all r1, r2 ∈ R and v1, v2 ∈ GM,α(c);

(ii) (c̃0, v)− (c̃1, G(d̃)v) for all v ∈ G(c̃0, v).

This is a generalized skein module SG(M,α) as defined in Section 2.

Recall that the colimit of a functor H from a category C with set of objects C0 and

set of morphisms C1 into a category of R-modules is defined by taking the quotient of⊕
x∈C0

H(x)

by the submodule generated by all relations v − H(u)v for all (u : x → y) ∈ C1 and

v ∈ H(x).

4.4. Theorem. The colimit of the functor GM,α is isomorphic to SG(M,α).

Proof. Let S(M,α) = SG(M,α) and let S̃(M,α) denote the colimit module of the functor

GM,α. Thus S̃(M,α) is a quotient of W =
⊕

cGM,α(c), where c runs through the set of

objects of the category Fcomp(M,α), i.e. representatives of the isotopy classes of fields c

on M with ∂c = α. There is defined a homomorphism

η : W → S̃(M,α)

by assigning to v ∈ GM,α(c) ⊂ W the skein equivalence class [c, v] of the element (c, v).

By definition of the R-module structure on W and the definition of η we have that

η(r1v1 + r2v2) = [c, r1v1 + r2v2] = r1[c, v1] + r2[c, v2] = r1η(v1) + r2(v2) for v1, v2 ∈
GM,α(c). If vi ∈ GM,α(ci) for i = 1, 2 and c1 6= c2 then η(v1 ⊕ v2) = η(v1) + η(v2) =

[c1, v1] + [c2, v2] by definition. Moreover, it follows from the definitions above that all

elements v−GM,α(u)v for u : c1 → c2 a morphism in Fcomp(M,α) and v ∈ GM,α(c1) will

map to linear combinations of relations (ii) above. Thus η descends to a homomorphism

S̃(M,α)→ S(M,α).

Conversely it is not hard to see that assigning to [c, v] ∈ S(M,α) the image of the vector

v ∈ GM,α(c) ⊂ W in the colimit module defines a homomorphism ρ, and ρ is an inverse

homomorphism for η.
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Let Diff(M, c) denote the group of diffeomorphisms of M × I fixing (M × {0}) ∪
(∂(M × I)) point-wise, and let Diff′comp(M, c) ⊃ Diffcomp(M, c) denote the set-wise stabi-

lizer subgroup of Fcomp(M, c). Then by construction Diff′comp(M, c) acts on Fcomp(M, c).

4.5. Definition. A field c on M is called incompressible if the set Fcomp(M, c) is the

Diff′comp(M, c)-orbit of c× I.

Thus a field c is incompressible if the only fields that can be compressed from c can

be compressed by the action of compression diffeomorphisms on the cylinder field c × I
on M × I.

4.6. Example. Consider the case described in [K3]: the fields on M are surfaces c ⊂M
and compression fields are defined by attaching embedded 2-handles or 3-handles to

c×[0, ε] ⊂M×I. In the case that M is aspherical the incompressibility of the field defined

in Definition 4.5 coincides with the usual notion of incompressible in 3-manifold topology.

If M is not aspherical an incompressible surface in the sense of 3-manifold topology might

not be incompressible in the sense of Definition 4.5 because we can possibly attach a

2-handle along a trivial curve on c0 to define a surface c1 containing a non-trivial 2-sphere

component. Note that the incompressible surfaces, which are not connected sums with

homotopically non-trivial 2-spheres are incompressible in the sense of Definition 4.5.

Of course those surfaces, colored with elements of a Frobenius algebra, generate the

corresponding Bar-Natan skein module.

We briefly discuss a possible generalization of [K3] along the notions of this section.

Let fields be defined by j-dimensional submanifolds in n-manifolds. Define compression

fields of a field c by (j + 1)-dimensional properly embedded cobordisms d ⊂ M × I

of c, which are defined from c by attaching only embedded handles of index k ≥ j0 for

some fixed number j0 ≥ j+1
2 . In order to define a compression functor we have to assign

R-modules to j-manifolds, and morphisms between corresponding R-modules for each

compression c0 → c1. Suppose that both the modules and homomorphisms determined

by G only depend on (i) the indices, and possibly additionally (ii) a finite list of homology

or homotopy data of the attachments (i.e. in particular do not depend on embeddings

in M respectively M × I). We call such a compression functor free. In the case of Bar-

Natan theory for a commutative Frobenius algebra V over R in [K3], we assign V |c| to

a surface c with |c| components. Then to a separating 2-handle attachment we associate

the co-product ∆, and to a non-separating attachment we assign the handle-operator, i.e.

multiplication by µ∆(1), where µ is multiplication of the Frobenius algebra. Finally to a

3-handle attachment we associate the co-unit ε : V → R, see [K3] for further details, in

particular with respect to ordering of the tensor product factors. In general we want to

find compression functors G to associate morphisms to k-handle attachments d : c0 → c1
compatible with compression diffeomorphisms. It is this last requirement which requires

the Frobenius algebra structure, i.e. properties of product and co-product, in the Bar-

Natan case. It seems an interesting direction of study to detect the algebra necessary

for this. At this point we may just note that Bar-Natan theory can be generalized to

j-manifolds in n-manifolds with j0 := j. This is not surprising because of the Frobenius

structure present in any TQFT, see [TT]. Of course compressions in this case are very
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restricted and there does not seem to be any interesting resulting theory. But the case

j0 < j seems to be interesting and could be studied for j = 4. At this point we just note

the following consequence of the definition of a free compression functor.

4.7. Proposition. The skein theory induced from a free compression functor is finitely

skein generated.

In general it seems difficult to construct consistent skein theories using compression

functors. In the Bar-Natan skein theory consistency follows from the fact that embedded

orientable surfaces are fully compressible in the 3-ball. It seems to be an interesting

problem to study the construction of free compression functors and understand its relation

to TQFT. It is the main result of [K3] that each commutative Frobenius algebra defines

a free compression functor for n = 2 and codimension-1 embedded submanifolds.
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