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Abstract. The behavior of the essential spectrum and the essential norm under (complex/real)

interpolation is investigated. We extend an example of Albrecht and Müller for the spectrum

by showing that in complex interpolation the essential spectrum σe(S[θ]) of an interpolated

operator is also in general a discontinuous map of the parameter θ. We discuss the logarithmic

convexity (up to a multiplicative constant) of the essential norm under real interpolation, and

show that this holds provided certain compact approximation conditions are satisfied. Some

evidence supporting a counterexample is presented.

Introduction. This note is concerned with the behaviour of the essential spectrum

of an operator under complex interpolation and that of the essential norm under real

interpolation. Let (E0, E1), (F0, F1) be Banach interpolation couples and T ∈ L(E0 +E1,

F0 + F1) a compatible bounded linear operator, that is, the restrictions T0 : E0 → F0

and T1 : E1 → F1 are bounded operators. Let (E0, E1)θ,p be the corresponding real

interpolation space, where 0 < θ < 1 and 1 ≤ p ≤ ∞. Then the restriction of T defines a

bounded operator Tθ,p : (E0, E1)θ,p → (F0, F1)θ,p that satisfies the logarithmically convex

bound

‖Tθ,p‖ ≤ ‖T0‖
1−θ‖T1‖

θ. (1)

Estimate (1) also holds for T[θ] : (E0, E1)[θ] → (F0, F1)[θ] between the corresponding

complex interpolation spaces for 0 < θ < 1. We refer to e.g. [BL], [BS] or [KM] for the

definitions and the basic properties of real and complex interpolation.
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Let K(E, F ) denote the compact operators E → F , where E, F are Banach spaces.

The essential norm

‖S‖e = dist(S, K(E, F )), S ∈ L(E, F ),

is the quotient norm in L(E, F )/K(E, F ). If E is a complex Banach space, then the

essential spectrum of S ∈ L(E) is

σe(S) = σ(S + K(E)),

the spectrum of S + K(E) in the Calkin algebra L(E)/K(E).

Recently Albrecht and Müller [AM] gave an example of a couple (X0, X1) and a

compatible operator T ∈ L(X0 + X1) for which the map θ 7→ σ(T[θ]) is discontinuous at

an interior point θ ∈ (0, 1) in complex interpolation. It is important to have an analogous

example for the essential spectrum, which is a useful subset of the spectrum of a bounded

operator that is related to Fredholm theory. It turns out (Proposition 1 below) that the

example of Albrecht and Müller already exhibits a similar discontinuity for the essential

spectrum.

We also study the logarithmic convexity (up to a multiplicative constant) of ‖Tθ,p‖e

under real interpolation, and establish positive results under certain compact approxi-

mation conditions. One purpose of this note is to draw attention to the intriguing open

problem whether ‖Tθ,p‖e is logarithmically convex in general. We discuss some facts sup-

porting a counterexample, and include some examples of the surprising behaviour of ‖·‖e

under isometric embeddings and metric surjections.

Discontinuity of the essential spectrum in complex interpolation. We start by

recalling the required details from [AM, pp. 808–809]. The spaces (Xj , ‖ · ‖j) for j = 0, 1

are the (weighted) Hilbert spaces consisting of the scalar sequences x = (aj)j∈Z for which

‖(aj)‖0 =
( ∑

j∈Z

2−2j |aj |
2
)1/2

< ∞ and ‖(aj)‖1 =
( ∑

j∈Z

22j |aj |
2
)1/2

< ∞.

Let (en)n∈Z be the unit coordinate basis, so that ‖en‖0 = 2−n and ‖en‖1 = 2n for n ∈ Z.

The complex interpolation spaces (X0, X1)[θ] are the (weighted) Hilbert spaces consisting

of the scalar sequences x = (aj) =
∑

j∈Z
ajej , for which

∥∥∥
∑

j∈Z

ajej

∥∥∥
[θ]

=
( ∑

j∈Z

r2j
θ |aj |

2
)1/2

< ∞,

where rθ = 2−(1−θ)2θ = 22θ−1. Note that r1/2 = 1, so that (X0, X1)[1/2] = ℓ2(Z). Let

H0 = ℓ2(Z, X0) and H1 = ℓ2(Z, X1) be the vector-valued direct ℓ2-sums indexed by Z.

It follows that (H0, H1)[θ] = ℓ2(Z, (X0, X1)[θ]) for 0 < θ < 1.

Let S : Xj → Xj be the (weighted) right shift operator Sek = ek+1 for k ∈ Z and

j = 0, 1. Note that ‖Sx‖0 = 1
2‖x‖0 for x ∈ X0 and ‖Sx‖1 = 2‖x‖1 for x ∈ X1. Thus

S[θ] : (X0, X1)[θ] → (X0, X1)[θ] is defined by the same condition, and ‖S[θ]x‖[θ] = rθ‖x‖[θ]

for x ∈ (X0, X1)[θ] and 0 < θ < 1. Define T ∈ L(H0 + H1) by

T (xj) = (. . . , Sx−2, Sx−1, (S − I)x0, Sx1, . . .),
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where Sx−1 is the 0-th coordinate. It was verified in [AM, Example 1] that σ(T[θ]) =

{λ ∈ C : |λ| = rθ} for 0 < θ < 1 and θ 6= 1
2 , and that σ(T[1/2]) = {λ ∈ C : |λ| ≤ 1}.

The aim of this section is to show that there is a similar discontinuity for the essential

spectrum.

Let E, F be Banach spaces. Recall that S ∈ L(E, F ) is a Fredholm operator, denoted

by S ∈ Φ(E, F ), if its kernel Ker(S) is finite dimensional and its image Im(S) has finite

codimension in F . We will use the basic fact that σe(S) = {λ ∈ C : λ − S /∈ Φ(E)} for

S ∈ L(E). We first state the following simple fact:

Lemma 1. Let 0 < θ < 1. Then

ej /∈ Im(rθ − S[θ]), j ∈ Z,

so that rθ − S[θ] /∈ Φ((X0, X1)[θ]).

Proof. Let n ∈ Z and suppose that (aj) ∈ (X0, X1)[θ] satisfies (rθ − S[θ])(aj) = (rθaj −

aj−1)j∈Z = en. Thus

rθam − am−1 = 0 for m 6= n, rθan − an−1 = 1. (2)

We get by iteration from (2) that an+k = r−k
θ an for k = 1, 2, . . . . Since∑∞

k=1 r
2(n+k)
θ |an+k|

2 = |an|
2
∑∞

k=1 r2n
θ is finite we must have 0 = an = an+k for all

k = 1, 2, . . .. By substituting an = 0 into (2) we get that an−k = −rk−1
θ for k = 1, 2, . . . .

This yields a contradiction since

∞∑

k=n+1

r
2(n−k)
θ |an−k|

2 =

∞∑

k=n+1

r
2(n−k)
θ r

2(k−1)
θ = ∞.

Proposition 1. σe(T[θ]) = {λ ∈ C : |λ| = rθ} for 0 < θ < 1 and θ 6= 1
2 , and σe(T[1/2]) =

{λ ∈ C : |λ| ≤ 1}. Hence the map θ 7→ σe(T[θ]) is discontinuous at θ = 1
2 .

Proof. Case θ = 1
2 . Suppose first that 0 < |λ| ≤ 1. Let en ∈ (X0, X1)[1/2] = ℓ2(Z) be

the n-th (non-normalized) unit coordinate vector for n ∈ Z. Assume that n ∈ Z and

(xj) ∈ (H0, H1)[1/2] = ℓ2(Z, (X0, X1)[1/2]) satisfies

(λ − T[1/2])(xj) = (. . . , λx0 − Sx−1, λx1 − (S − I)x0, λx2 − Sx1, . . .)

= (. . . , 0, en, 0, 0, . . .),

where en occupies the 1-st coordinate in ℓ2(Z, (X0, X1)[1/2]). Here we put S = S[1/2] for

notational simplicity. Hence we get

λxj − Sxj−1 = 0 for j 6= 1, λx1 − (S − I)x0 = en. (3)

By iteration in (3) starting from x2 = λ−1Sx1 we get xk+1 = λ−kSkx1 for k = 1, 2, . . . .

Thus ‖xk+1‖ = |λ|−k‖x1‖ ≥ ‖x1‖ since the right shift operator S is an isometry on

ℓ2(Z). This yields that x1 = 0, so that xj = 0 for j ≥ 1. Hence we are left with the

condition (S − I)x0 = −en in (3). However, this is not possible according to Lemma 1.

This means that the image Im(λ−T[1/2])(ℓ
2(Z, (X0, X1)[1/2]) has infinite codimension in

ℓ2(Z, (X0, X1)[1/2]), and λ ∈ σe(T[1/2]) whenever 0 < |λ| ≤ 1. The case λ = 0 is obvious,

since (3) yields directly that (S − I)x0 = −en.
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Case θ 6= 1
2 . Suppose that |λ| = rθ and let (en)n∈Z be the (non-normalized) coordinate

basis in (X0, X1)[θ]. Let n ∈ N and assume that (xj) ∈ (H0, H1)[θ] = ℓ2(Z, (X0, X1)[θ])

satisfies

(λ − T[θ])(xj) = (. . . , λx0 − S[θ]x−1, λx1 − (S[θ] − I)x0, λx2 − S[θ]x1, . . .)

= (. . . , 0, en, 0, 0, . . .),

with en in the 1-st coordinate in ℓ2(Z, (X0, X1)[θ]). Hence,

λxj − S[θ]xj−1 = 0 for j 6= 1, λx1 − (S[θ] − I)x0 = en. (4)

The facts that xk+1 = λ−kSk
[θ]x1 for k = 1, 2, . . . by (4), and ‖S[θ]x‖[θ] = rθ‖x‖[θ] for

x ∈ (X0, X1)[θ], yield that ‖xk+1‖[θ] = |λ|−krk
θ‖x1‖[θ] = ‖x1‖[θ]. Hence x1 = 0 and

(S[θ] − I)x0 = −en for n ∈ Z in (4). Thus λ − T[θ] /∈ Φ(ℓ2(Z, (X0, X1)[θ])) by Lemma 1

for |λ| = rθ. This implies the claim, since σ(T[θ]) ⊂ {λ ∈ C : |λ| = rθ} for θ 6= 1
2 by [AM,

Example 1].

By following the outline of [AM, Thm. 2] one may prove the following stronger dis-

continuity property for σe(T[θ]) (the details are left to the interested reader):

Fact. Let M ⊂ (0, 1) be a dense Gδ-set. Then there is a couple (H0, H1) consisting of

non-separable Hilbert spaces and T ∈ L(H0 + H1) so that M is the set of continuity of

the map θ 7→ σe(T[θ]).

Log-convexity of the essential norm in real interpolation. Cwikel [C] showed,

solving a longstanding problem, that Tθ,p is a compact operator (E0, E1)θ,p → (F0, F1)θ,p

whenever T0 : E0 → F0 or T1 : E1 → F1 is compact. Recently, Cobos, Fernandez-Martinez

and Martinez [CMM] established a quantitative strengthening of his result. Let

γ(S) = inf{ε > 0 : SBE ⊂ D + εBF , D ⊂ F compact}

be the measure of non-compactness of S ∈ L(E, F ), where BE is the closed unit ball

of E. They showed [CMM, Thm. 1.2] that γ(Tθ,p) is logarithmically convex up to a

multiplicative constant, that is,

γ(Tθ,p) ≤ 16δ · γ(T0)
1−θγ(T1)

θ (5)

for T ∈ L(E0 +E1, F0 +F1), where δ = δ(θ) = 2θ

3−2θ−21−θ . The constant 16δ in (5) cannot

be replaced by 1, see [CMM, Example 1.1]. Note also that δ(θ) → ∞ as θ → 0+.

Equation (5) raises the problem whether the essential norm is also logarithmically

convex in real interpolation. Here γ(S) ≤ ‖S‖e for any S, but ‖ · ‖e and γ(·) are not

equivalent in general, see [AT, Thms. 2.3 and 2.5] and [T2, Thm. 1.2]. We note also that

re(Tθ,p) ≤ re(T0)
1−θre(T1)

θ for 0 < θ < 1 by [CMM, Cor. 1.3], where re(S) = max{|λ| :

λ ∈ σe(S)} is the essential spectral radius of S ∈ L(E). We refer to e.g. [LS], [AT],

[T2] and [A] for further results related to measures of non-compactness and the essential

spectral radius.

We show that there is an analogue of (5) for ‖Tθ,p‖e provided that certain compact

approximation conditions are satisfied. A Banach space X is said to have the inner

compact approximation property (abbreviated inner CAP) if there is a constant C < ∞

so that
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inf{‖U − UV ‖ : V ∈ K(X), ‖I − V ‖ ≤ C} = 0

for any compact operator U ∈ K(X, Z) (where Z is an arbitrary Banach space). Moreover,

X has the bounded compact approximation property (BCAP) if there is a constant C < ∞

so that for any compact subset D ⊂ X and ε > 0 there is a compact operator V ∈ K(X)

satisfying

sup
x∈D

‖x − V x‖ < ε and ‖I − V ‖ ≤ C.

The preceding compact approximation properties differ from the standard approximation

properties defined in terms of finite rank operators. For instance, Willis [W] constructed

a space X so that X has the BCAP but X fails to have the approximation property AP.

There is also a space Y having a Schauder basis which fails to have the inner CAP, see

[GW, 4.3], [T2, Example 2.5] or [CJ, Thm. 2.5]. We refer e.g. to [GW], [S], [CJ] or [T2]

for further examples of this kind.

Let E, F be Banach spaces. It is convenient to put

β(S) = inf{ε > 0 : ‖Sx‖ ≤ ‖Ux‖ + ε‖x‖ for all x ∈ E,

U ∈ K(E, Z), Z an arbitrary Banach space},

for S ∈ L(E, F ). It is known [GM] that β(S) = γ(S∗) for S ∈ L(E, F ). We will need the

estimates
1

2
γ(S) ≤ β(S) = γ(S∗) ≤ 2γ(S), S ∈ L(E, F ), (6)

due to Goldenstein and Markus (see e.g. [T2, Prop. 2.3.(i)]).

Theorem 1. Let p ∈ [1,∞] be fixed. Assume that (E0, E1) and (F0, F1) are interpolation

couples, so that either

(i) the interpolation spaces (F0, F1)θ,p have the BCAP with a uniformly bounded constant

C for 0 < θ < 1, or

(ii) the interpolation spaces (E0, E1)θ,p have the inner CAP with a uniformly bounded

constant C for 0 < θ < 1.

Then,

‖Tθ,p‖e ≤ 32Cδ · ‖T0‖
1−θ
e ‖T1‖

θ
e (7)

for T ∈ L(E0 + E1, F0 + F1) and 0 < θ < 1, where δ = δ(θ) > 0 is the constant from (5).

Proof. (i) If (F0, F1)θ,p has the BCAP with constant C, then ‖S‖e ≤ C ·γ(S) for any S ∈

L(Z, (F0, F1)θ,p) and any Z, see [LS, Thm. 3.6]. By applying this to Tθ,p : (E0, E1)θ,p →

(F0, F1)θ,p we get from (5) that

‖Tθ,p‖e ≤ C · γ(Tθ,p) ≤ 16Cδ · γ(T0)
1−θγ(T1)

θ ≤ 16Cδ · ‖T0‖
1−θ
e ‖T1‖

θ
e

for T ∈ L(E0 + E1, F0 + F1).

(ii) If (E0, E1)θ,p has the inner CAP with constant C, then ‖S‖e ≤ C · β(S) for any

S ∈ L((E0, E1)θ,p, Z) and any Z by [T2, Thm. 1.2]. Hence, by applying (5) to Tθ,p :

(E0, E1)θ,p → (F0, F1)θ,p and using (6) we get

‖Tθ,p‖e ≤ C · β(Tθ,p) ≤ 2C · γ(Tθ,p) ≤ 32Cδ · γ(T0)
1−θγ(T1)

θ

≤ 32Cδ · ‖T0‖
1−θ
e ‖T1‖

θ
e. (8)
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Theorem 1 is much simpler to state in special cases where one of the couples is trivial

(that is, E0 = E1 or F0 = F1). Here (5) was known earlier (see [TE, Thm. 1]) with a

uniformly bounded constant c = c(θ).

Corollary 1. Let p ∈ [1,∞] be fixed, let E be a Banach space and (F0, F1) a Banach

couple. Suppose that either

(i) (F0, F1)θ,p have the BCAP with a uniformly bounded constant C for 0 < θ < 1, or

(ii) E has the inner CAP with constant C.

Then (7) holds with a uniformly bounded constant for T ∈ L(E, F0 + F1).

Corollary 2. Let p ∈ [1,∞] be fixed, let F be a Banach space and (E0, E1) a Banach

couple. Suppose that either

(i) (E0, E1)θ,p have the inner CAP with a uniformly bounded constant C for 0 < θ < 1,

or

(ii) F has the BCAP with constant C.

Then (7) holds with a uniformly bounded constant for T ∈ L(E0 + E1, F ).

The preceding approximation assumptions on the interpolation spaces have some

drawbacks.

Remark 1. Neither the BCAP nor the inner CAP passes in general to real interpolation

spaces, so that the conditions on (E0, E1)θ,p or (F0, F1)θ,p in Theorem 1 cannot be ensured

by assuming that the spaces E0, E1 or F0, F1 have these properties. Indeed, it follows from

[DS, Thm. 1] (see also [GMS, p. 505]) that there exists a Banach couple (E0, E1) so that

E0 and E1 have the BCAP, but (E0, E1)θ,p fail to have the BCAP for any 0 < θ < 1

and 1 ≤ p ≤ ∞. Similarly, there is (E0, E1) so that E0 and E1 have the inner CAP, but

(E0, E1)θ,p fails to have the inner CAP for any 0 < θ < 1 and 1 ≤ p ≤ ∞.

Remark 2. Another convexity estimate for ‖Tθ,p‖e can be found by modifying an argu-

ment of Teixeira and Edmunds [TE, Thm. 2]. Here one assumes that the image couple

(F0, F1) satisfies a technical approximation condition (H) (we refer to [TE, p. 133] for

the definition).

Fact. Let 0 < θ < 1 and 1 ≤ p ≤ ∞. Assume that (E0, E1) and (F0, F1) are Banach

couples, where (F0, F1) satisfies condition (H) with the constants c0 and c1. Then

‖Tθ,p‖e ≤ c1−θ
0 cθ

1‖T0‖
1−θ
e ‖T1‖

θ
e

for T ∈ L(E0 + E1, F0 + F1).

We omit the details, since condition (H) appears to be quite cumbersome to verify

and its connection to Theorem 1 remains unclear. Note that at least (Lp0(0, 1), Lp1(0, 1))

and (ℓp0 , ℓp1) satisfy condition (H) for 1 ≤ p0, p1 < ∞, see [TE, p. 135].

Remark 3. The inequality ‖Sθ,p‖e ≤ c · ‖S0‖
1−θ
e ‖S1‖

θ
e cannot always hold with c = 1.

This fact is a simple modification of [CMM, Example 1].

Let 1 < q < ∞, θ = 1 − 1
q and consider the couples (ℓ1, ℓ1), (ℓ1, ℓ∞) and the identity

operator S = I. We need the fact that ‖I : ℓ1 → ℓ∞‖e ≤ 1
2 . Indeed, define the rank-1

operator U : ℓ1 → ℓ∞ by Ux = 1
2 (

∑∞
j=1 xj)(1, 1, . . .) for x = (xj) ∈ ℓ1, and note that
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‖Ix − Ux‖∞ = supn∈N
|xn − 1

2

∑∞
j 6=n xj | ≤

1
2 for x = (xk) ∈ Bℓ1 . Since Corollary 1

applies to these couples, the estimates in [CMM, pp. 27–28] yield then that

1 = ‖I : ℓ1 → ℓq‖e ≤ c · θ−(1−θ)‖I : ℓ1 → ℓ∞‖θ
e ≤ c · θ−(1−θ)2−θ, (9)

where c < ∞. By letting q → ∞ in (9) we see that c > 1.

Theorem 1 raises the problem whether the compact approximation conditions are

essential for the logarithmic convexity of ‖Tθ,p‖e. The proof of (5) in [CMM, Thm. 1.2]

uses (among other things) the facts that

γ(SQ) = γ(S) and
1

2
γ(S) ≤ γ(JS) ≤ γ(S), S ∈ L(E, F ), (10)

where Q : X → E is a linear metric surjection (that is, QBX = BE) and J : F → Y is

an isometric embedding. In addition, a couple of crucial estimates from the argument in

[CMM, Thm. 1.2] would also work in the case of ‖ · ‖e provided that the seminorms γ(·)

and ‖ · ‖e are uniformly comparable between suitable sequence spaces.

The equivalence of γ(·) and ‖ · ‖e is closely tied to the BCAP or the inner CAP, see

[AT, Thm. 2.5] and [T2, Thm. 1.2] . The same remark also applies to the analogues of

(10) for ‖ · ‖e (see the next section). The preceding facts suggest the following intriguing

possibility, which in part motivated this note.

Question. Find Banach couples (E0, E1), (F0, F1) and a sequence of operators (Tn) ⊂

L(E0 + E1, F0 + F1) so that

lim
n→∞

‖(Tn)0‖
1−θ
e · ‖(Tn)1‖

θ
e

‖(Tn)θ,p‖e
= 0

holds for any 0 < θ < 1 (or, for some 0 < θ < 1). Here p ∈ [1,∞] is fixed.

Behaviour of ‖·‖e under isometric embeddings and metric surjections. Results

in [AT] and [T2] imply that the essential norm may behave quite strangely under isometric

embeddings and metric surjections. The preceding compact approximation properties are

crucial tools for this, but these facts are poorly documented in the literature. Some non-

explicit examples are contained in [AT, Thm. 3.5 and Cor. 3.6] (see also [T3, Example

1.5]). The unpublished thesis [T1, pp. 4–5] contains simpler versions of Examples 2 and

3 below, but other variants are also possible. Hence we take the opportunity to include

these results here. Put SE = {x ∈ E : ‖x‖ = 1}.

Example 2. Let F be a separable Banach space that fails to have the BCAP. Fix a

countable subset Λ = {x∗
n : n ∈ N} ⊂ SF∗ so that Λ norms F , and let J : F → ℓ∞

be the isometry Jx = (x∗
n(x)), x ∈ F . We claim that there is a space E and a sequence

(Sn) ⊂ L(E, F ) for which

‖Sn‖e = 1 for n ∈ N and ‖JSn‖e → 0 as n → ∞. (11)

Indeed, [AT, Thms. 2.3 and 2.5] provide a Banach space E and a sequence (Sn) ⊂ L(E, F )

for which ‖Sn‖e = 1 and γ(Sn) < 1
n for n ∈ N. Let J∞ : F → ℓ∞(BF∗) be the isometry

J∞x = (x∗(x))x∗∈BF∗
for x ∈ F . It is known that ‖J∞S‖e = γ(S∗) for S ∈ L(E, F ) by
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[As, Cor. 5.6]. Hence it follows from (6) that

‖J∞Sn‖e = γ(S∗
n) ≤ 2 · γ(Sn) <

2

n
, n ∈ N.

We factorize J∞ = J0 ◦ J , where J0 is a suitable linear isometry ℓ∞ → ℓ∞(BF∗), by

viewing ℓ∞ = ℓ∞(Λ) ⊂ ℓ∞(BF∗) as a closed one-complemented subspace. Recall that

there is a norm one projection P : ℓ∞(BF∗) → J0(ℓ
∞) by the extension property of ℓ∞.

Thus ‖JSn‖e = ‖PJ∞Sn‖e < 2
n → 0 as n → ∞, which yields (11).

Example 3. Let E be a separable Banach space that fails to have the inner CAP. Fix

a countable dense subset {xn : n ∈ N} of SE , and let Q : ℓ1 → E be the quotient map

defined by Q(
∑∞

n=1 anen) =
∑∞

n=1 anxn for
∑∞

n=1 anen ∈ ℓ1. By [T2, Thm. 1.2] there is

a space F and a sequence (Sn) ⊂ L(E, F ) so that ‖Sn‖e = 1 and β(Sn) < 1
n for n ∈ N.

The fact that Q is a quotient map implies that ‖SQ‖e = γ(S) for S ∈ L(E, F ), see [As,

Thm. 3.8 and Cor. 3.9]. Hence it follows from (6) that ‖SnQ‖e = γ(Sn) ≤ 2 · β(Sn) → 0

as n → ∞.

Conversely, compact approximation properties guarantee that ‖SQ‖e (or ‖JS‖e) is

uniformly comparable to ‖S‖e.

Proposition 2. (i) Let E, F and Z be Banach spaces, and J : F → Z a fixed linear

isometric embedding. Then, there is c > 0 so that

c‖S‖e ≤ ‖JS‖e, S ∈ L(E, F ),

provided one of the following conditions are satisfied:

(a) E has the inner CAP, (b) F has the BCAP, or (c) there is a bounded linear projection

P : Z → JE.

(ii) Let E, F and Z be Banach spaces, and Q : Z → E a fixed linear metric surjection.

Then, there is c > 0 so that

c‖S‖e ≤ ‖SQ‖e, S ∈ L(E, F ),

provided one of the following conditions are satisfied:

(a) E has the inner CAP, (b) F has the BCAP, or (c) there is a bounded linear projection

P : Z → Ker(Q).

Proof. (i) Suppose that either F has the BCAP or that E has the inner CAP. It follows

from [LS, Thm. 3.6], respectively [T2, Thm. 1.2] and (6), that there is c > 0 so that

‖S‖e ≤ c ·γ(S) ≤ 2c ·γ(JS) ≤ 2c · ‖JS‖e for S ∈ L(E, F ). Let P be a bounded projection

Z → JE and assume that λ > ‖JS‖e. Pick R ∈ K(E, Z) so that ‖JS − R‖ < λ. Then

J−1PR defines a compact operator E → F satisfying

‖S − J−1PR‖ = ‖JS − PR‖ = ‖P (JS − R)‖ < ‖P‖λ.

Thus ‖S‖e ≤ ‖P‖ · ‖JS‖e for S ∈ L(E, F ).

(ii) The argument for the cases (a) and (b) is similar to that of the first part of (i),

since γ(SQ) = γ(S) for S ∈ L(E, F ).
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Put M = Im(I−P ), where P : Z → Ker(Q) is a projection. Suppose that λ > ‖SQ‖e

and pick R ∈ K(Z, F ) satisfying ‖SQ − R‖ < λ. Note that Q̃ = Q|M : M → QM = E

has a bounded inverse Q̃−1 : E → M . If J : M → Z denotes the inclusion map, then

‖S − RJQ̃−1‖ = ‖SQJQ̃−1 − RJQ̃−1‖

≤ ‖SQ − R‖ · ‖Q̃−1‖ < λ · ‖Q̃−1‖,

where RJQ̃−1 ∈ K(E, F ).
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