vl o 4 I L LIN ALV VULULVLILY 1L
BANACH CENTER PUBLICATIONS, VOLUME 68
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 2005

ASYMPTOTIC FORMULAS FOR THE ERROR IN
LINEAR INTERPOLATION

M. BESKA and K. DZIEDZIUL

Faculty of Applied Mathematics, Technical University of Gdarisk
Narutowicza 11/12, 80-952 Gdarisk, Poland
E-mail: beska@mif.pg.gda.pl, kdz@mif.pg.gda.pl

Abstract. We give the asymptotic formula for the error in linear interpolation with arbitrary
knots.

1. Main result. In this paper we calculate the asymptotic formula for the error in linear
interpolation for an arbitrary set of knots in LP norm 1 < p < co. It is considered on the
interval [0,1] only but this is not essential. The operators which were examined before
were constructed in shift invariant spaces (see [3]-[5] or [1]-[2], [6]). From the structure
of the shift invariant spaces it follows that if such an operator @ has polynomial order r,
i.e. Q(p) = p for all polynomials p, degp < r, then Q(z°)(x) — 27 is a periodic function
with period 1 for all |3 = r. Consequently, we can use the (Fejér) Mazur—Orlicz Theorem
for periodic functions, [7]. The linear interpolation for an arbitrary set of knots is not
connected with such structure.
Let I =[0,1] and 7 be a partition of I, i.e.

W:{to,tl,...,tn}

where
tj,1<tj, j=1....n, t,=0, t,=1.

Let us define a function on [
h(’l’(’,l’) = tj — tjfl, x € [tjfl,tj),

where j = 1,...,n. At x = 1 let the function h(w, x) be left continuous. The size of the
partition is denoted by

0(m) = max [t; —tj—1| = maxh(r, z).
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Let us consider a linear interpolation with knots of the set 7w, denoted by I.. It is known
that if f € C%(I), then for = € [t;_1,1;]

L@ S0 = [ / (s))dr

= 7/ dT/ ds/ I (w)du = ¥/ " (w)du, (1.1)
ti—=ti—vJo o ey s ti—tj-1 Ja,,

J

where we use the following abbreviation

/, g(u)du:/%j df/% ds/Tg(u)du. (1.2)

Let us define a positive function A(z) for = € [t;_1,t,], where j=1,...,n on I by

A(x) :/ duf/ dT/ ds/ duf i —tio1)(x —ti—1)(t; — o). (1.3)

Let 1 < p < oco. Using a change of variables for the function A it is easy to prove the
following formula:

1 b 1 ! 1
m/t |A(x)[Pdz = 2—p(tj*tj—1)/0 (z(1=2))dz = o (¢ —t;-1) B(p+1, p+1),
J J— j—1
(1.4)
where B is the beta function.
THEOREM 1. Let 1 < p < oo and f € C?(I). Then
Iﬂ'f(x) — f(x) 1 / "
—————| dx = —B 1 1) p 1.5
5(m)—0 J; h2(m, x) v (p+1.p+ £ (1.5)
and if 6(w) — 0, then
Lf=f 1"
1.
W20 12 (16)
weakly in LP(I), 1 < p < oco.
Proof. First we prove (1.5). By (1.1), (1.2)
Inf(z) — flz) /t' " g
dx = u)du| dx. 1.7
AR e R S M AR 1)
Let
n t'
1
(t;)du| dx
gz:; 17 _ta 1? p/ o !
n t; p
"(t)P du| dz.
R o7er e [ | [ ad e
By (1.4)

n

Se = z_p/o (2(1 = 2))Pdz Y (t; =ty 1) " (t5)I"-

Jj=1
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Note that

1
lim Sy =—B(p+1p+1 .
slm 5p B+ 1p+ )/I\f |

To prove (1.5) it is sufficient to show that

. I f(z) — f(z) ? —
5(Ll)nlo (S7r ey dm) =0. (1.8)

Let us fix € > 0. There is 6 > 0 such that if |u; — ug| < ¢ then
[ (1) = f"(u2)| <e.

Consequently for z € [t;_1,t;] if t; —t;_1 < ¢ then

] / RECTS / £ () du
/ dT/ ds

Let us take the partition m such that §(7) < ¢. Then using the known inequality
llalP — [b]P] < p(max{]al, [b[})P~*|a — b| (1.10)

and (1.7), (1.9), we have

[ Lf@) - @)
o / E

/ I (u (tj)du| <e(t; —t;—1)>  (1.9)

p
dx

‘Sp - <‘/ ' (u du ‘/ I/ (t;)du )dx

n 1 t; B )
Zm [ ptmaxl s @)~ e~ t0)°
j=1 J J— tj_1

<

. el
j—

xzel

= max [f ()P~ 1p52/ = max | f" (z) [P pe.

This finishes the proof of (1.5). To prove (1.6) it is sufficient to show that

I f(z) — f(z) f" (u)
/1 B2 (r7) XA(:c)d:cH/A 15 du,

where x4 is the characteristic function of the measurable set A = (a,b) C I. Note that

Lf(@) = f(z) }
/1 h2(7r,x) Z |t _tJ 1| /J L)nA /AJlf (u)dud:c.

Moreover
1 b 1!
e [ A@de =g [ G- D)t - ) = 171200 ),
[ty —ti—1® Ji,, 2 Jo

By a similar argument we get (1.6).
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