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Abstract. Criteria for strong U-points, compactly locally uniformly rotund points, weakly com-
pactly locally uniformly rotund points and locally uniformly rotund points in Musielak-Orlicz
sequence spaces equipped with the Luxemburg norm are given.

1. Introduction. Throughout this paper, X denotes a Banach space and X* denotes
its dual space. By B(X) and S(X) we denote the closed unit ball and the unit sphere
of X, respectively.
DEFINITION 1. A point 2 € S(X) is said to be an extreme point if for every y, z € S(X)
with z = ygz7 we have y = 2z = x.

A Banach space X is said to be rotund (X € (R) for short) if every point on S(X) is
an extreme point.

DEFINITION 2. A point z € S(X) is said to be a strong U-point (SU-point for short) if
for any y € S(X) with [ly + z| = 2 we have z = y.
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It is obvious that a Banach space X is rotund if and only if every z € S(X) is a
SU-point.

DEFINITION 3. A point z € S(X) is said to be a locally uniformly rotund point (LUR-
point for short) if for any sequence {z,}2; in S(X) with lim,, . ||, + 2|| = 2, we have
lim,, o0 ||zn, — || = 0.

DEFINITION 4. A point z € S(X) is said to be a weakly compactly locally uniformly rotund
point (WCLUR-~point for short) if for any sequence {x,,}22 ; in S(X) with lim,, o ||z, +2||
=2, there exist an 2’ € S(X) and a subsequence {z},} of {z,} such that z] convergent
to 2’ weakly (z!, =™ z’ for short).

DEFINITION 5. A point x € S(X) is said to be a compactly locally uniform rotund point
(CLUR-point for short) if for any sequence {z,}52; in S(X) with lim,, o ||z, + 2| = 2,
the sequence {z,} is compact in B(X).

DEFINITION 6. A Banach space X is said to have H-property if the weak convergence
and the convergence in norm coincide in S(X).

For these geometric notions and their role in mathematics we refer to the monographs
[1] and [2].

The function sequence M = (M;)2, is called a Musielak-Orlicz function provided
that for any i € N, M; : (—o0,+00) — [0,+00) is even, convex, left continuous on
[0,400), M;(0) = 0 and there exists u; > 0 such that M; (u;) < co. By N = (N;)2, we
denote the Musielak-Orlicz function conjugate to M = (M;) in the sense of Young, i.e.

Ni(u) = sup{ju v = Mi(v)}

for each u € R and ¢ € N. Furthermore, P = (p;) is the right derivative of M = (), i.e.
p; is the right derivative of M; for every i € N.

By {° we denote the space of all sequences z = (z (i));-, of reals. For a given Musielak-
Orlicz function M = (M;) we define the Musielak-Orlicz sequence space Iy by

Iy = {z €l’: ppr(Ax) < oo for some A > 0},

where
o0

oy (x) = ZMl(:c(z)) for any x = (z (1)) € I°.
i=1

This space equipped with the Luzemburg norm
|z = inf{A > 0: ppsr(z/X) <1}
or with the Orlicz norm

o = sup { 3wy ) : o) < 1} = Juf 21+ pas (k)

is a Banach space (see [3]).
By har we denote the subspace of [, defined by

har = {x € lar ¥ A >0, T such that 3 M;(Aa(i)) < oo}.

>0
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To simplify notations, we put ly; = (Ias, ||-||) and 19, = (Iar, ||-]|°).

We say that the Musielak-Orlicz function M = (M;) satisfies the d2-condition (M € 02
for short) if there exist a > 0, k > 0, ig € N and a sequence (¢;)$2, ., in [0, +00) with
D ies i < 0o such that

for every i € N and u € R satisfying M;(u) < a (see [3]).

We say that the Musielak-Orlicz function M = (M;) satisfies the do-condition (M € &3
for short) if its complementary function N = (NN;) satisfies the Jo-condition.

For convenience, we introduce the following notions. For every x € [y and i € N, we
put

&(z) = inf {)\ > 0: there exists iy such that Z M;(z(i)/X) < oo},
i>10

e(i) = sup{u > 0 : M;(u) = 0},

B(i) = sup{u >0: M;(u) < co}.

For every ¢« € N, we say that a point x € R is a strictly convex point of M, if
M;(4E2) < 2(M;(u) + M;(v)) whenever z = “£2 and u # v. We write then 2 € SCly,.
An interval [a,b]® is called a structurally affine interval for M; (or simply SAI of M;)
provided that M; is affine on [a,b]”) and it is not affine on [a — &,b]@or [a,b + €]@ for
any € > 0. Let SAI(M;) = {[an,b,]P}52,. Tt is obvious that SCps, = R\ Uy, [an, bu]?,
where [a,,b,]® € SAI(M;) forn=1,2,....

For every ¢ € N, denote

SCyy, = {u € SChy, : 3 € > 0 such that M; is affine on [u, u + €]},
SCJT/[i ={u € SCy; : I &> 0such that M; is affine on [u — €, ul},
SCYy, = SCu,\(SCH; USCy,).

We first formulate several lemmas.
LEMMA 1 ([5]). (ha)* =18, (hY,)* = In.
LEMMA 2 ([5]). ha = las (or hS, = 19,) if and only if M € &,.

LEMMA 3 ([4]). If M ¢ 6y, then there exist a sequence 0 = mg < my < mg < --- and
ul >0 (i =mp_1+1,...,my) such that M;(u}}) <1/n and

ull 1\ M;(ul) — n _
M1<2>>(1 n) i Z+1M1(ui)>1, n=1,2,....
=m 1

LEMMA 4 ([4]). M € &2 if and only if ||z|| =1 < pu(z) = 1.

LEMMA 5. If M € b, ||z]| = 1, ||zn|| <1 and ||z, + || — 2 (n — o0), then

n—oo

lim pp(z,) = lim pM<x+2x") =1.



4. . VUL UL A,

Proof. We suppose that there exists eg > 0 such that py(z,) < 1—¢p (n = 1,2,...).

Since M — 1, for any i > 0 there exists ng € N such that
1 n

when n > ng.

For any € > 0, by M € J,, there exist A\g > 1, a > 0 and ¢; > 0 (i = 1,2,...) such
that Y7, ¢; < oo and M;(Mou) < (1 +¢e)M;(u) + ¢; (Vi €N, M;(u) < a).

Take ig € N such that 3, ; ¢; <e and M( (1)) <a (i>1dp).

Take Ay >0 with 1 <\ < A such that Z 1 (My(Ax () — M (2(4)) <e (1<ALSA).
Therefore when 1 < X\ < X, it follows that

ZM (Az(z —I—ZM Az (1

< Z M;(A\z(i)) + ¢ + Z((l + &) M;(x(1)) + )
< (1 +e)pm(x)+ 2 0
(2) lim par(Az) = par ().

Combining (1) with (2) we have

1<pM<(1+77)(x+xn)_ ( . 1_771+77x)

2 1—n
1+n 1—n +n
< 1 -7
S —5pum(n) + —5 pM(ln)
1+ 1 —
< (1= 20) + (1 + o()).

Let n — 0 to get 1 < 1520 + 1. This is a contradiction. So pas(z,) — 1 (n — 00).

Using H +HM H H T+ an — 1, by the same argument as above we have
prr(5e) — 1 (n — 0)

LEMMA 6. If M € 62 and x,(i) — 0 (i =1,2...), then ||z,]| — 0 < pp(z,) — 0.

Proof. Since it is obvious that ||z,|| — 0 implies pps(z,) — 0, we only need to prove that
pum(zy) — 0 implies ||,|| — 0 (n — o00). For any € > 0, by M € d2, there exist k > 0,
a> 0,4 € Nand {¢;}2,  with 3777, ) ¢; < oo which satisfy

M;(u/e) < kM;(u) +¢; (i >0, M;(u) <a).

Since Y 72, i ¢i < 0o, there exists iy € N such that 3372, | ¢; < 1/3. By x,(i) —
0(i=1,2,...,41), there exists ng € N such that Y ;' M;(z,(i)/e) < 1/3 when n > ny.
Moreover, since pas(zy,) — 0, there exists n; € N such that pps(x,) < min{1/3k, a} when
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n > ny. Therefore, when n > max{ng,n;}, we have

u(c42)- () £ m(=2)

=1 i=i1+1
1 o0
<o S M) + e
i=11+1
1 1 1
<S4k 4=l
-3 K 3k 3

It follows that ||z,|| < e, i.e. [|[zn] — 0 (n — 00).

LEMMA 7 ([1]). If M € 62, then B(i) = cc.

2. Results

THEOREM 1. A point x € S(lpr) is a strongly U-point if and only if

(1) |z())] = B(i) (i € N) or pu(x) =1,
(2) &) <1,
(3) (1) If for any i € N, |x(i)| € SChuy,, then there do not exist i, j € N with i # j
such that |2(i)| € SCY; and |z(j)| € SCh,»
(ii) If there exists ig € N such that |z(io)| ¢ SChwm,,, then |z(j)| € SC’R/Ij for any
jerithj#io,
(4) Ife(i) >0, then e(i) < |z(3)] (i=1,2,...).
Proof. Without loss of generality, we may assume that x(i) > 0 (i € N).
We suppose (1) does not hold, then there exists ig € N such that x(ig) < B(ip) and
pm(x) < 1. Furthermore, we can find a real number A > 0 such that

M, (x(io) +A) < 1= M;(a(i)).
i#io
Put
. x(z), i#i()a . l'(l), i#zba
y(i) =9 . . 2(i) =
x(ip) + A, i = 1o,
It is obvious that y+z = 2z and y # z. But pm(y) = 32, Mi(2 (i) + M, (z(i0) +A) < 1,
hence ||y|| < 1. Similarly, we also have ||z|| < 1. Using ||y + z|| = 2, we get ||ly|| = ||z]| = 1.
This means that z is not an extreme point. Since a strong U-point must be an extreme

QL‘(ZQ) - )\, = io.

point, this is a contradiction.
Let us prove the necessity of condition (2). Otherwise, {(x) = 1 i.e. ppr(Az) = oo for
any A > 1. Since ||| = 1, there exists ig € N such that x(ip) # 0. Put

. 1‘(2), i 7é iOa
y(i) = .
0, 1= 1.
It is obvious that pas(Ay) = oo for any A > 1, whence ||y|| > 1. On the other hand, clearly

lyll < |lz|| = 1. So we have ||y|| = 1. Consequently, 1 > |[3(z+y)|| > ||3(v+ )| = 2,
hence ||z + y|| = 2. But x # y, which contradicts that z is a strong U-point.
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If the condition (i) of (3) does not hold, then there exist i, j € AN such that z() €
SC’J\'Z and z(j) € SC};. . For convenience we may assume ¢ = 1, j = 2 and z(1) = by,

x(2) = az where by € SC’MI, az € SC),, then there exist a; > 0 and by > 0 such that
M;i(u) = Aju+ By for u € [a1, 1]

and Ms(u) = Asu + Bs for u € [ag, bs).
Take e > 0 and €2 > 0 such that by — &1 € (a1,b1), az + €2 € (az,b2) and Aje; = Ases.

Let
y=(x(1) —e1,z(2) + e2,2(3),2(4),...)

Then
par(y) = My(x(1) — e1) + Ma(x (2) + €2) + > M;(a(i))
i>3
= Ay(z(1) —e1) + By + A(x (2) + £2) + Ba + ¥ M;(x(i))
i>3
= My(2(1)) + Ma( (2)) + > M;(a( pu(z) = 1.

>3
So by the definition of the Luxemburg norm, we have ||y|| = 1. Similarly,

pMC‘"‘;y) — M <3;(1) _ %) + M (a: 2) + %) + 37 Mi(a(i))

i>3
= My(z(1)) + Mz (x +ZM ) =pum(z) =1,
>3
ie. HITJ”JH = 1. Since = # y, = is not a strong U-point. A contradiction.

We suppose the condition (ii) of (3) is not true. Then there exists ig € N such that
|z(io)| ¢ SCur,, and j € N, j # ig such that z(j) ¢ SC3, - e x(j) ¢ SCu;, or z(j) €
SCAJ}J or z(j) 6 SC};. . So, we can repeat the procedure from the proof of the necessity
of the condition (i) of (3).

Let us finally prove the necessity of (4). Otherwise, there exists igp € N such that
e(ig) > 0 and z(ip) < e(ip). Let us consider two cases:

CaAse It z(ig) = e(ip). Put

Since x(ig) = e(ig) < B(ip), in virtue of (1) we have pps(x) = 1. Therefore, we have the
following equality

= M;(x( +MZ(

Z;élo
So |ly|| = 1. Similarly,

(x-i—y) ZM ) + M;, <— ) ZM ) + M;, (z(io)) = par(z) = 1,

1o i7#ig
ie. ||z +y|| = 2. But obviously x # y, which contradicts the fact that z is a strong
U-point.

)ZM )+ My (2(i0)) = par(z) = 1.

Z;élo
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CASE II: z(ig) < e(ig). We put

(i x(1), i # 10, ) x(1), 1 # 19,

i) = ; ; 2(i) = ; -

ST o) + tiodgzlel g =, 2(io) — 520 gy,

It is obvious that y + z = 2z and y # 2. In the same way as in case I, it is easy to prove
that ||y|| = ||z|| = 1. Therefore, z is not an extreme point, which leads to a contradiction.
Sufficiency. Let x, y € S(lar) with ||z + y|| = 2, we consider the following two cases:

CaAsE It |z(i)| = B(i) for all i € N. Without loss of generality, we may assume z(i) > 0
and y(i) = 0 (i = 1,2,...). In this case we have [|(B(1), B(2), -..)[|=ll(z(1), 2(2), ...)|
= ||z|| = 1. Using

a(i) +y(i) <2BG)  (i=1,2,...)
and
2= z+yl <2((B(1), B2), ...)[=2
we have the equality x(i) = B(i) (i = 1,2,...). Therefore y(i) = (i) = B(4) for all i € N

ile.z=y.

CASE II: pps(z) = 1. First, we will prove that pM(mﬂ’) 1.

? 14+€(x)
there exists a > 0 such that

For any ¢ € (0, = 5(I)) we have H (1+¢) %ﬂH =14¢and py (}fix) < 00. Hence

1+¢
pu T2 = pm(z) + ae.

1
Therefore
+e€ l—el+e
1 1
<pM<( +e) ) ( 5 vt 1_8x>
1+4¢ 1—8 €
< 5 P (y) ( )
14¢
= LS o) + L our(a) + a2).
Letting ¢ — 0, we get pas(y) = 1. Since ||Z22]| = 1 and the norm |||, is a convex

function, it follows that ||-||,, is an affine function on the segment between z and y.
Therefore

Hence we can get in the same way as above (with 1 (z+y) in place of y) that pa(£52) = 1.
Hence

(3(z+y)+2)
2

—y+ -x|| =1.

4 4

=l

0:

P () ;rpM(y) 3 pM<x + y)

:iK 0+ My >2) - (H0)] 5

i=1
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Thus we have
A 0) L I0) _yy ($02U0) g

2

This means that x(i) = y(i) or 2(¢) and y(¢) belong to the same intervals of SAT(M;) for
all 7 € N.
If the condition (i) of (3) holds true, we may assume without loss of generality that
z, y > 0 and either z(i) € SC}; Lor x(i) € SCY,, for all i € N. Define
Ny ={i e N:z(i) € SCy, }.

In view of condition (4), we get, for any 7 € N, that there exist A; > 0, B; € Rand ¢; > 0
such that M;(u) = A;u+ B; for all u € [z(i) —e;, 2(7)]. Therefore by the above properties
of x and y, we have

y(i) = 2(1) (Vi € N\I\V),

y(i) <z(x)  (Vie N).

The equality pas(“5%) = pas(z) implies that

. ;V: ( ) X (1)),
ie. i;\;l (Aix( + Bz) ZeNl z(i) + B;),
Hence Z A, <3/(Z)233(Z)> =0.

i€N,
Consequently, y(i) = x(¢) for all i € N, i.e. x = y.
If (ii) of (3) holds, then x(i) = y(i) for ¢ # iy, Moreover, by condition (4), there exist
Ay > 0,Bg € R and gy > 0 such that
Mio(u) :AOU+Bo, u e [x(’L()) 780,1’(2‘0) +60].
The equality pas(252) = par(z) implies MZO(W) = M;,(x(ip)), i-e.

Ao (f(io) +y(io)

9 ) + Bo = Ao(x(lo)) + Bo.

Hence (i) = y(io) and so & = y. This finishes the proof of the theorem.

THEOREM 2. If x € S(ly), then the following statements are equivalent:
1. ¢ is a CLUR-point,
2. x is a WCLUR-point,
3. (i) M €4,
(ii) M € 02 or {i € N: |z(i)| € (a,b]} = 0 where [a,b] € SAI(M;).

Proof. The implication 1=-2 is obvious.
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2=-3. We suppose (i) does not hold, i.e. M ¢ d5. By Lemma 2, there exist z € [y and
a singular function ® with pys(z) < oo and ®(x — z) # 0. Set

Zn = (2(1),...,2(n),z(n+1),2(n+2),...) (n=1,2,...).

Then
pr(xn) < par(x) + Y Mi(=(0) = par(x) < 1,
1=n—+1
so limsup,, ., [|zn]] < 1. Notice ||z, + x| > 2||(z(1),...,2(n),0,...)|]| — 2, we have

liminf, o ||zn + z|| > 2. Hence ||z,| — 1 and ||z, + z|| — 2 (n — o). Since x,, — x
coordinatewise, we may assume without loss of generality that z, — z (passing to a
subsequence if necessary). But ®(z — x,) = ®(z — z) # 0, which contradicts z, — .
This contradiction shows that M € ds.

Without loss of generality, we assume z(i) > 0 for all ¢ € N.

If the condition (ii) of (3) does not hold, then there exists j € N such that z(j) € (a, b],
without loss of generality we may assume j = 1 and M ¢ &, where [a,b] € SAI(M;)
satisfies M;(u) = Au+ B for u € [a,b]. Take € > 0, such that z(1) — ¢ € (a,b]. Since
M ¢ Jo, by Lemma 3, there exist uy’ > 0 satisfying

1 ur 1 Mi(u”) .
Mi ny < = MZ = 1—— — - n— 17"'7 mn
(uz) n’ < 2 ) - ( n) 2 (Z m ! m )

and

i=mp_1+1

Without loss of generality, we may assume Ae < 1. For every sufficiently large n, take
Mp—1 < m,, < m, such that

’
m

1 "
Ae—oo < > Mi(uf) <Ae,  n=12,...

i=Mp_1+1

Let {e,}, be the natural basis of I' and {p,}, the projections p,(z) = >, z(i)e; for
xz = (x(7)); € lp. Put

Tp = Pox — Piz+ (z(1) —e)ey + Z ure;

=My _1+1

Then
pailen) = Mi(a(D) =)+ S M)+ Y M(u?)
1=2 =My —1+1

’
my,

= azx(1) ,a5+6+ZMi(x(i))+ Z M;(ug')

1=2 i=mg,_1+1
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= Mi(z(1)) — ae + Z M;(x(i)) + Z M;(uj')

i=mp_1+1
< Xn:Mi(a:(i)) — Ae + Ae = zn: M;(z(i)) < 1.

So limsup,, . ||zn|| < 1. Moreover,

> 3 Miali) - Ty | ((1 _ %)%)
1=mMp_1+
)

(Aa_Qin)_n(n_)oo).

4Ty
2

Hence liminf, o || > 1. Thus we have ||z,|| — 1 and ||z, + z|| — 2 (n — o).
Since lim,, o (Ae —1/2™) = Ae > Ae/2, there exists ng such that Ae —1/2™ > Ae/2
when n > ng. Therefore

’

m/ m
= = 1 As
|Zm — zal| > 4 E ui'e; || > 4 E M;(ul) > Ae — o > 5>
i=Mpm—1+1 i=Mmmpm—1+1

when m > n > ng.

This means that {x,} is not compact in S(I5r), hence z is not a CLUR-point. But,
by M € §; and Theorem 2 in [7], we can get that [, has H-property. Therefore z is not
a WCLUR-point. This is a contradiction.

3 = 1. Suppose = € S(lp), {zn}52, C S(lp) and ||z, + || — 2 (R — 00). In order
to complete this proof we distinguish two cases.

(I) M € 52N 62. In this case, by Lemma 1 and Lemma 2, we take {f,,} C S(I%) such
that fn(zn, + ) = ||zn + 2| — 2 (n — o0). Then

folz) =1 and fo(z,) —1 (n— o).

In virtue of [6], I3, is reflexive. Then there is a subsequence {f,,} of {f.} and f € %
such that f,, =% f. It is obvious that in virtue of lim,,_, f, () = 1 this yields f(z) = 1.
Hence | f]|° = 1. By Theorem 1 in [7], we get that {§, has H-property. Hence || f,, — f]|°
— 0 (n — 00). So

Using now the reflexivity of 57, we can find a subsequence {z, } C {z,,} and 2’ € Iy
such that 2], —" 2’ (n — oo). Obviously f(z') = 1, whence ||2'|| = 1. By the property

H for I, we have lim, . ||z}, — 2/|| = 0, i.e. {2,,} is compact in S(l5r), which implies
that z is a CLUR-point.
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(II) M € 62 and {i € N: |z(i)] € (a,b]} =0 where [a,b] € SAI(M;). First, we will
prove that x,, (i) — x(4) for all : € N. We first show

(1) hmlnfa:n( ) >x(j), j=12,....

If not, there exist jo € N, g9 > 0 and a subsequence of {z,}, denoted again by {x,},
such that

zn(Jo) < x(jo) — &
Since z(jo) ¢ (a,b], there exists § > 0 such that

(w(JO) + xn(]‘))) < (1 _ 5) Mjo(x(.jO» + Mjo(mn(jo)) )

M.
2 2

Jo

Then by Lemma 4 and Lemma 5, we get

o Par(®) + par () _pM<xn+x)

2
S [P (e ﬂ
 Malzalio) + Mafr( ( i) +2(1)
Zdeom(jo));M]( SR >>O

This contradiction shows that condition (1) holds.
Now, we will show that

(2) limsupz,(j) < 2(j), j=12.....

n

Otherwise, there exist jo € N and € > 0 such that limsup,, z,,(jo) > z(jo) + €. Then
limsup,, Mj, (z,,(jo)) = M;,(z(jo)) + ¢’ for some ¢’ > 0. Hence

1= hmsuppM(:cn) = lim sup Z M;(x,(3)) + My, (2n(jo))
" i#jo
>ZM )+ M, (z(jo)) + &' = pu(z)+' =1+¢".
i#jo
This is a contradiction. So lim, o ,(7) = z(2) (¢ € N) thanks to (1) and (2).
Next, we will show that pas(¥25=) — 0 (n — o0). In fact, for any € > 0, there exist
1o and ng such that

S Mol < £, fzf)Mi<xn<z‘>2x<z’>> <
and

Z\M xn(i) — M;(x(i))| <e  when n > ng.
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Hence when n > ny,
D~ Mifen()) = parlen) = 3 Mien(i) <137 Mi(a(i)) +e

>0 i=1

<1- (1 -> Mi(x(i))) +e< Zs.

>0
Therefore

pM(xn2—x> _ (:cn(i);x(i)) . ZMi(Jcn(i)Q—x(i))

>0

=

< S an (B ) L S anGan ) + Y o)

1>10 >0
LY IO
o\1° 7)) ™%

ie. pul( ) — 0 (n — 00). So by limy, e (i) = (i) (i € N) and Lemma 6, we get
|xn — || = 0 (n — c0). This means x is a CLUR~point. Thus, the proof is finished.

N
N

Tp—T
2

It is obvious that a point € S(X) is a LUR-point if and only if it is a CLUR-point
and a SU-point. So, in view of Lemma 7, Theorem 1 and Theorem 2, we easily obtain
the following criteria for LUR-point of S(Ias).

THEOREM 3. A point x € S(lpr) is a LUR-point if and only if:

1. M € do,

2. If for anyi €N, |z(i)] € SChy, then
(i) {i eN:lz(i)| € SCy.} =0;
(ii) if {i € N : |z(i)| € SC{.} # 0, then {Vi € N : |z(i)] € SC;;.} = 0 and
M e gg.

3. If there exists ig € N such that |x(io)| ¢ SChw,,, then |x(j)| € SC’R@ (j € N,

j# ’io) and M € gg,
4. Ife(i) >0, then e(i) < |z(i)| for alli e N.
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