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Abstract. Criteria for strong U-points, compactly locally uniformly rotund points, weakly com-

pactly locally uniformly rotund points and locally uniformly rotund points in Musielak-Orlicz

sequence spaces equipped with the Luxemburg norm are given.

1. Introduction. Throughout this paper, X denotes a Banach space and X∗ denotes

its dual space. By B(X) and S(X) we denote the closed unit ball and the unit sphere

of X, respectively.

Definition 1. A point x ∈ S(X) is said to be an extreme point if for every y, z ∈ S(X)

with x = y+z

2 , we have y = z = x.

A Banach space X is said to be rotund (X ∈ (R) for short) if every point on S(X) is

an extreme point.

Definition 2. A point x ∈ S(X) is said to be a strong U-point (SU-point for short) if

for any y ∈ S(X) with ‖y + x‖ = 2 we have x = y.
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It is obvious that a Banach space X is rotund if and only if every x ∈ S(X) is a

SU-point.

Definition 3. A point x ∈ S(X) is said to be a locally uniformly rotund point (LUR-

point for short) if for any sequence {xn}
∞
n=1 in S(X) with limn→∞ ‖xn + x‖ = 2, we have

limn→∞ ‖xn − x‖ = 0.

Definition 4. A point x ∈ S(X) is said to be a weakly compactly locally uniformly rotund

point (WCLUR-point for short) if for any sequence {xn}∞n=1 in S(X) with limn→∞‖xn+x‖

=2, there exist an x′ ∈ S(X) and a subsequence {x′
n} of {xn} such that x′

n convergent

to x′ weakly (x′
n →

w x′ for short).

Definition 5. A point x ∈ S(X) is said to be a compactly locally uniform rotund point

(CLUR-point for short) if for any sequence {xn}∞n=1 in S(X) with limn→∞ ‖xn + x‖ = 2,

the sequence {xn} is compact in B(X).

Definition 6. A Banach space X is said to have H-property if the weak convergence

and the convergence in norm coincide in S(X).

For these geometric notions and their role in mathematics we refer to the monographs

[1] and [2].

The function sequence M = (Mi)
∞
i=1 is called a Musielak-Orlicz function provided

that for any i ∈ N, Mi : (−∞, +∞) → [0, +∞) is even, convex, left continuous on

[0, +∞), Mi(0) = 0 and there exists ui > 0 such that Mi (ui) <∞. By N = (Ni)
∞
i=1 we

denote the Musielak-Orlicz function conjugate to M = (Mi) in the sense of Young, i.e.

Ni(u) = sup
v>0
{|u| v −Mi(v)}

for each u ∈ R and i ∈ N. Furthermore, P = (pi) is the right derivative of M = (Mi), i.e.

pi is the right derivative of Mi for every i ∈ N.

By l0 we denote the space of all sequences x = (x (i))
∞
i=1 of reals. For a given Musielak-

Orlicz function M = (Mi) we define the Musielak-Orlicz sequence space lM by

lM = {x ∈ l0 : ρM (λx) <∞ for some λ > 0},

where

ρM (x) =

∞
∑

i=1

Mi(x(i)) for any x = (x (i)) ∈ l0.

This space equipped with the Luxemburg norm

‖x‖ = inf{λ > 0 : ρM (x/λ) ≤ 1}

or with the Orlicz norm

‖x‖0 = sup
{

∑

i

x(i)y(i) : ρN (y) ≤ 1
}

= inf
k>0

1

k
(1 + ρM (kx))

is a Banach space (see [3]).

By hM we denote the subspace of lM defined by

hM =
{

x ∈ lM : ∀ λ > 0, ∃ i0 such that
∑

i>i0

Mi(λx(i)) <∞
}

.
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To simplify notations, we put lM = (lM , ‖·‖) and l0M = (lM , ‖·‖0).

We say that the Musielak-Orlicz function M = (Mi) satisfies the δ2-condition (M ∈ δ2

for short) if there exist a > 0, k > 0, i0 ∈ N and a sequence (ci)
∞
i=i0+1 in [0, +∞) with

∑∞
i>i0

ci <∞ such that

Mi(2u) ≤ kMi(u) + ci

for every i ∈ N and u ∈ R satisfying Mi(u) ≤ a (see [3]).

We say that the Musielak-Orlicz function M = (Mi) satisfies the δ2-condition (M ∈ δ2

for short) if its complementary function N = (Ni) satisfies the δ2-condition.

For convenience, we introduce the following notions. For every x ∈ lM and i ∈ N, we

put

ξ(x) = inf
{

λ > 0 : there exists i0 such that
∑

i>i0

Mi(x(i)/λ) <∞
}

,

e(i) = sup{u ≥ 0 : Mi(u) = 0},

B(i) = sup{u > 0 : Mi(u) <∞}.

For every i ∈ N, we say that a point x ∈ R is a strictly convex point of Mi if

Mi(
u+v

2 ) < 1
2 (Mi(u) + Mi(v)) whenever x = u+v

2 and u 6= v. We write then x ∈ SCMi
.

An interval [a, b](i) is called a structurally affine interval for Mi (or simply SAI of Mi)

provided that Mi is affine on [a, b](i) and it is not affine on [a − ε, b](i)or [a, b + ε](i) for

any ε > 0. Let SAI(Mi) = {[an, bn](i)}∞n=1. It is obvious that SCMi
= R\ ∪n [an, bn](i),

where [an, bn](i) ∈ SAI(Mi) for n = 1, 2, . . . .

For every i ∈ N, denote

SC−
Mi

= {u ∈ SCMi
: ∃ ε > 0 such that Mi is affine on [u, u + ε]},

SC+
Mi

= {u ∈ SCMi
: ∃ ε > 0 such that Mi is affine on [u− ε, u]},

SC0
Mi

= SCMi
\(SC+

Mi
∪ SC−

Mi
).

We first formulate several lemmas.

Lemma 1 ([5]). (hM )∗ = l0N , (h0
M )∗ = lN .

Lemma 2 ([5]). hM = lM (or h0
M = l0M ) if and only if M ∈ δ2.

Lemma 3 ([4]). If M /∈ δ2, then there exist a sequence 0 = m0 < m1 < m2 < · · · and

un
i > 0 (i = mn−1 + 1, . . . , mn) such that Mi(u

n
i ) ≤ 1/n and

Mi

(

un
i

2

)

>

(

1−
1

n

)

Mi(u
n
i )

2
,

mn
∑

i=mn−1+1

Mi(u
n
i ) > 1, n = 1, 2, . . . .

Lemma 4 ([4]). M ∈ δ2 if and only if ‖x‖ = 1⇔ ρM (x) = 1.

Lemma 5. If M ∈ δ2, ‖x‖ = 1, ‖xn‖ ≤ 1 and ‖xn + x‖ → 2 (n→∞), then

lim
n→∞

ρM (xn) = lim
n→∞

ρM

(

x + xn

2

)

= 1.
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Proof. We suppose that there exists ε0 > 0 such that ρM (xn) ≤ 1 − ε0 (n = 1, 2, . . .).

Since ‖xn+x‖
2 → 1, for any η > 0 there exists n0 ∈ N such that

(1)

∥

∥

∥

∥

(1 + η)(x + xn)

2

∥

∥

∥

∥

> 1

when n ≥ n0.

For any ε > 0, by M ∈ δ2, there exist λ0 > 1, a > 0 and ci > 0 (i = 1, 2, . . .) such

that
∑∞

i=1 ci <∞ and Mi(λ0u) ≤ (1 + ε)Mi(u) + ci (∀i ∈ N, Mi(u) ≤ a).

Take i0 ∈ N such that
∑

i>i0
ci < ε and Mi(x(i)) ≤ a (i > i0).

Take λ′
0 > 0 with 1 < λ′

0 < λ0 such that
∑i0

i=1(Mi(λx(i))−Mi(x(i))) < ε (1≤λ≤λ′
0).

Therefore when 1 ≤ λ ≤ λ′
0, it follows that

ρM (λx) =

i0
∑

i=1

Mi(λx(i)) +
∑

i>i0

Mi(λx(i))

≤
i0

∑

i=1

Mi(λx(i)) + ε +
∑

i>i0

((1 + ε)Mi(x(i)) + ci)

≤ (1 + ε)ρM (x) + 2ε

i.e.

(2) lim
λ→1

ρM (λx) = ρM (x).

Combining (1) with (2) we have

1 < ρM

(

(1 + η)(x + xn)

2

)

= ρM

(

1 + η

2
xn +

1− η

2

1 + η

1− η
x

)

≤
1 + η

2
ρM (xn) +

1− η

2
ρM

(

1 + η

1− η
x

)

≤
1 + η

2
(1− ε0) +

1− η

2
(1 + o(η)).

Let η → 0 to get 1 ≤ 1−ε0

2 + 1
2 . This is a contradiction. So ρM (xn)→ 1 (n→∞).

Using
∥

∥

x+ x+xn
2

2

∥

∥ =
∥

∥

3
4x + 1

4xn

∥

∥ → 1, by the same argument as above we have

ρM (x+xn

2 )→ 1 (n→∞).

Lemma 6. If M ∈ δ2 and xn(i)→ 0 (i = 1, 2 . . .), then ‖xn‖ → 0⇔ ρM (xn)→ 0.

Proof. Since it is obvious that ‖xn‖ → 0 implies ρM (xn)→ 0, we only need to prove that

ρM (xn) → 0 implies ‖xn‖ → 0 (n → ∞). For any ε > 0, by M ∈ δ2, there exist k > 0,

a > 0, i0 ∈ N and {ci}∞i=i0+1 with
∑∞

i=i0+1 ci <∞ which satisfy

Mi(u/ε) ≤ kMi(u) + ci (i > i0, Mi(u) ≤ a).

Since
∑∞

i=i0+1 ci < ∞, there exists i1 ∈ N such that
∑∞

i=i1+1 ci < 1/3. By xn(i) →

0 (i = 1, 2, . . . , i1), there exists n0 ∈ N such that
∑i1

i=1 Mi(xn(i)/ε) < 1/3 when n ≥ n0.

Moreover, since ρM (xn)→ 0, there exists n1 ∈ N such that ρM (xn) < min{1/3k, a} when
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n ≥ n1. Therefore, when n ≥ max{n0, n1}, we have

∞
∑

i=1

Mi

(

xn(i)

ε

)

=

i1
∑

i=1

Mi

(

xn(i)

ε

)

+
∞
∑

i=i1+1

Mi

(

xn(i)

ε

)

≤
1

3
+

∞
∑

i=i1+1

(kMi(xn(i)) + ci)

≤
1

3
+ k ·

1

3k
+

1

3
= 1.

It follows that ‖xn‖ < ε, i.e. ‖xn‖ → 0 (n→∞).

Lemma 7 ([1]). If M ∈ δ2, then B(i) =∞.

2. Results

Theorem 1. A point x ∈ S(lM ) is a strongly U-point if and only if

(1) |x(i)| = B(i) (i ∈ N) or ρM (x) = 1,

(2) ξ(x) < 1,

(3) (i) If for any i ∈ N, |x(i)| ∈ SCMi
, then there do not exist i, j ∈ N with i 6= j

such that |x(i)| ∈ SC+
Mi

and |x(j)| ∈ SC−
Mj

,

(ii) If there exists i0 ∈ N such that |x(i0)| /∈ SCMi0
, then |x(j)| ∈ SC0

Mj
for any

j ∈ N with j 6= i0,

(4) If e(i) > 0, then e(i) < |x(i)| (i = 1, 2, . . .).

Proof. Without loss of generality, we may assume that x(i) ≥ 0 (i ∈ N).

We suppose (1) does not hold, then there exists i0 ∈ N such that x(i0) < B(i0) and

ρM (x) < 1. Furthermore, we can find a real number λ > 0 such that

Mi0(x(i0) + λ) ≤ 1−
∑

i 6=i0

Mi(x(i)).

Put

y(i) =

{

x(i), i 6= i0,

x(i0) + λ, i = i0,
z(i) =

{

x(i), i 6= i0,

x(i0)− λ, i = i0.

It is obvious that y+z = 2x and y 6= z. But ρM (y) =
∑

i 6=i0
Mi(x(i))+Mi0(x(i0)+λ) ≤ 1,

hence ‖y‖ ≤ 1. Similarly, we also have ‖z‖ ≤ 1. Using ‖y + z‖ = 2, we get ‖y‖ = ‖z‖ = 1.

This means that x is not an extreme point. Since a strong U-point must be an extreme

point, this is a contradiction.

Let us prove the necessity of condition (2). Otherwise, ξ(x) = 1 i.e. ρM (λx) =∞ for

any λ > 1. Since ‖x‖ = 1, there exists i0 ∈ N such that x(i0) 6= 0. Put

y(i) =

{

x(i), i 6= i0,

0, i = i0.

It is obvious that ρM (λy) =∞ for any λ > 1, whence ‖y‖ ≥ 1. On the other hand, clearly

‖y‖ ≤ ‖x‖ = 1. So we have ‖y‖ = 1. Consequently, 1 ≥
∥

∥

1
2 (x + y)

∥

∥ ≥
∥

∥

1
2 (y + y)

∥

∥ = 2,

hence ‖x + y‖ = 2. But x 6= y, which contradicts that x is a strong U-point.
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If the condition (i) of (3) does not hold, then there exist i, j ∈ N such that x(i) ∈

SC+
Mi

and x(j) ∈ SC−
Mj

. For convenience we may assume i = 1, j = 2 and x(1) = b1,

x(2) = a2 where b1 ∈ SC+
M1

, a2 ∈ SC−
M2

, then there exist a1 > 0 and b2 > 0 such that

M1(u) = A1u + B1 for u ∈ [a1, b1]

and
M2(u) = A2u + B2 for u ∈ [a2, b2].

Take ε1 > 0 and ε2 > 0 such that b1 − ε1 ∈ (a1, b1), a2 + ε2 ∈ (a2, b2) and A1ε1 = A2ε2.

Let
y = (x(1)− ε1, x (2) + ε2, x(3), x(4), . . .)

Then
ρM (y) = M1(x(1)− ε1) + M2(x (2) + ε2) +

∑

i≥3

Mi(x(i))

= A1(x(1)− ε1) + B1 + A2(x (2) + ε2) + B2 +
∑

i≥3

Mi(x(i))

= M1(x(1)) + M2(x (2)) +
∑

i≥3

Mi(x(i)) = ρM (x) = 1.

So by the definition of the Luxemburg norm, we have ‖y‖ = 1. Similarly,

ρM

(

x + y

2

)

= M1

(

x(1)−
ε1

2

)

+ M2

(

x (2) +
ε2

2

)

+
∑

i≥3

Mi(x(i))

= M1(x(1)) + M2(x (2)) +
∑

i≥3

Mi(x(i)) = ρM (x) = 1,

i.e.
∥

∥

x+y

2

∥

∥ = 1. Since x 6= y, x is not a strong U-point. A contradiction.

We suppose the condition (ii) of (3) is not true. Then there exists i0 ∈ N such that

|x(i0)| /∈ SCMi0
and j ∈ N, j 6= i0 such that x(j) /∈ SC0

Mj
. i.e. x(j) /∈ SCMj

or x(j) ∈

SC+
Mj

or x(j) ∈ SC−
Mj

. So, we can repeat the procedure from the proof of the necessity

of the condition (i) of (3).

Let us finally prove the necessity of (4). Otherwise, there exists i0 ∈ N such that

e(i0) > 0 and x(i0) ≤ e(i0). Let us consider two cases:

Case I: x(i0) = e(i0). Put

y(i) =

{

x(i), i 6= i0,
x(i0)

2 , i = i0.

Since x(i0) = e(i0) < B(i0), in virtue of (1) we have ρM (x) = 1. Therefore, we have the

following equality

ρM (y) =
∑

i 6=i0

Mi(x(i)) + Mi0

(

x(i0)

2

)

=
∑

i 6=i0

Mi(x(i)) + Mi0(x(i0)) = ρM (x) = 1.

So ‖y‖ = 1. Similarly,

ρM

(

x + y

2

)

=
∑

i 6=i0

Mi(x(i)) + Mi0

(

3

4
x(i0)

)

=
∑

i 6=i0

Mi(x(i)) + Mi0(x(i0)) = ρM (x) = 1,

i.e. ‖x + y‖ = 2. But obviously x 6= y, which contradicts the fact that x is a strong

U-point.
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Case II: x(i0) < e(i0). We put

y(i) =

{

x(i), i 6= i0,

x(i0) + e(i0)−x(i0)
2 , i = i0,

z(i) =

{

x(i), i 6= i0,

x(i0)−
e(i0)−x(i0)

2 , i = i0.

It is obvious that y + z = 2x and y 6= z. In the same way as in case I, it is easy to prove

that ‖y‖ = ‖z‖ = 1. Therefore, x is not an extreme point, which leads to a contradiction.

Sufficiency. Let x, y ∈ S(lM ) with ‖x + y‖ = 2, we consider the following two cases:

Case I: |x(i)| = B(i) for all i ∈ N. Without loss of generality, we may assume x(i) ≥ 0

and y(i) ≥ 0 (i = 1, 2, . . .). In this case we have ‖(B(1), B(2), . . .)‖=‖(x(1), x(2), . . .)‖

= ‖x‖ = 1. Using

x(i) + y(i) ≤ 2B(i) (i = 1, 2, . . .)

and

2 = ‖x + y‖ ≤ 2 ‖(B(1), B(2), . . .)‖ = 2

we have the equality x(i) = B(i) (i = 1, 2, . . .). Therefore y(i) = x(i) = B(i) for all i ∈ N

i.e. x = y.

Case II: ρM (x) = 1. First, we will prove that ρM (x+y

2 ) = 1.

For any ε ∈ (0, 1−ξ(x)
1+ξ(x) ) we have

∥

∥(1 + ε)x+y

2

∥

∥ = 1 + ε and ρM

(

1+ε
1−ε

x
)

< ∞. Hence

there exists α > 0 such that

ρM

(

1 + ε

1− ε
x

)

= ρM (x) + αε.

Therefore

1 < ρM

(

(1 + ε)
x + y

2

)

= ρM

(

1 + ε

2
y +

1− ε

2

1 + ε

1− ε
x

)

≤
1 + ε

2
ρM (y) +

1− ε

2
ρM

(

1 + ε

1− ε
x

)

=
1 + ε

2
ρM (y) +

1− ε

2
(ρM (x) + αε).

Letting ε → 0, we get ρM (y) = 1. Since
∥

∥

x+y

2

∥

∥ = 1 and the norm ‖·‖M is a convex

function, it follows that ‖·‖M is an affine function on the segment between x and y.

Therefore
∥

∥

∥

∥

( 1
2 (x + y) + x)

2

∥

∥

∥

∥

=

∥

∥

∥

∥

1

4
y +

3

4
x

∥

∥

∥

∥

= 1.

Hence we can get in the same way as above (with 1
2 (x+y) in place of y) that ρM (x+y

2 ) = 1.

Hence

0 =
ρM (x) + ρM (y)

2
− ρM

(

x + y

2

)

=
∞
∑

i=1

[(

Mi(x(i) + MI(Y (i)

2

)

−Mi

(

x(i) + y(i)

2

)]

≥ 0.
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Thus we have

Mi(x(i)) + Mi(y(i))

2
= Mi

(

x(i) + y(i)

2

)

, i = 1, 2, 3, . . . .

This means that x(i) = y(i) or x(i) and y(i) belong to the same intervals of SAI(Mi) for

all i ∈ N.

If the condition (i) of (3) holds true, we may assume without loss of generality that

x, y ≥ 0 and either x(i) ∈ SC+
Mi

or x(i) ∈ SC0
Mi

for all i ∈ N. Define

N1 = {i ∈ N : x(i) ∈ SC+
Mi
}.

In view of condition (4), we get, for any i ∈ N, that there exist Ai > 0, Bi ∈ R and εi > 0

such that Mi(u) = Aiu+Bi for all u ∈ [x(i)−εi, x(i)]. Therefore by the above properties

of x and y, we have

y(i) = x(i) (∀i ∈ N\N1),

y(i) ≤ x(i) (∀i ∈ N1).

The equality ρM (x+y
2 ) = ρM (x) implies that

∑

i∈N1

Mi

(

x(i) + y(i)

2

)

=
∑

i∈N1

Mi(x(i)),

i.e.
∑

i∈N1

(

Ai

x(i) + y(i)

2
+ Bi

)

=
∑

i∈N1

(Aix(i) + Bi),

Hence
∑

i∈N1

Ai

(

y(i)− x(i)

2

)

= 0.

Consequently, y(i) = x(i) for all i ∈ N, i.e. x = y.

If (ii) of (3) holds, then x(i) = y(i) for i 6= i0. Moreover, by condition (4), there exist

A0 > 0, B0 ∈ R and ε0 > 0 such that

Mi0(u) = A0u + B0, u ∈ [x(i0)− ε0, x(i0) + ε0].

The equality ρM (x+y
2 ) = ρM (x) implies Mi0(

x(i0)+y(i0)
2 ) = Mi0(x(i0)), i.e.

A0

(

x(i0) + y(i0)

2

)

+ B0 = A0(x(i0)) + B0.

Hence x(i0) = y(i0) and so x = y. This finishes the proof of the theorem.

Theorem 2. If x ∈ S(lM ), then the following statements are equivalent:

1. x is a CLUR-point,

2. x is a WCLUR-point,

3. (i) M ∈ δ2

(ii) M ∈ δ2 or {i ∈ N : |x(i)| ∈ (a, b]} = ∅ where [a, b] ∈ SAI(Mi).

Proof. The implication 1⇒2 is obvious.
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2⇒3. We suppose (i) does not hold, i.e. M /∈ δ2. By Lemma 2, there exist z ∈ lM and

a singular function Φ with ρM (z) <∞ and Φ(x− z) 6= 0. Set

xn = (x(1), . . . , x(n), z(n + 1), z(n + 2), . . .) (n = 1, 2, . . .).

Then

ρM (xn) ≤ ρM (x) +

∞
∑

i=n+1

Mi(z(i))→ ρM (x) ≤ 1,

so lim supn→∞ ‖xn‖ ≤ 1. Notice ‖xn + x‖ ≥ 2 ‖(x(1), . . . , x(n), 0, . . .)‖ → 2, we have

lim infn→∞ ‖xn + x‖ ≥ 2. Hence ‖xn‖ → 1 and ‖xn + x‖ → 2 (n → ∞). Since xn → x

coordinatewise, we may assume without loss of generality that xn
w
→ x (passing to a

subsequence if necessary). But Φ(x − xn) = Φ(x − z) 6= 0, which contradicts xn
w
→ x.

This contradiction shows that M ∈ δ2.

Without loss of generality, we assume x(i) ≥ 0 for all i ∈ N.

If the condition (ii) of (3) does not hold, then there exists j ∈ N such that x(j) ∈ (a, b],

without loss of generality we may assume j = 1 and M /∈ δ2 where [a, b] ∈ SAI(M1)

satisfies M1(u) = Au + B for u ∈ [a, b]. Take ε > 0, such that x(1) − ε ∈ (a, b]. Since

M /∈ δ2, by Lemma 3, there exist un
i > 0 satisfying

Mi(u
n
i ) ≤

1

n
, Mi

(

un
i

2

)

>

(

1−
1

n

)

Mi(u
n
i )

2
(i = mn−1 + 1, . . . , mn)

and
mn
∑

i=mn−1+1

Mi(u
n
i ) > 1.

Without loss of generality, we may assume Aε < 1. For every sufficiently large n, take

mn−1 < m′
n ≤ mn such that

Aε−
1

2n
≤

m′

n
∑

i=mn−1+1

Mi(u
n
i ) < Aε, n = 1, 2, . . . .

Let {en}n be the natural basis of l1 and {pn}n the projections pn(x) =
∑n

i=1 x(i)ei for

x = (x(i))i ∈ lM . Put

xn = Pnx− P1x + (x(1)− ε)e1 +

m′

n
∑

i=mn−1+1

un
i ei

Then

ρM (xn) = M1(x(1)− ε) +
n

∑

i=2

Mi(x(i)) +

m′

n
∑

i=mn−1+1

Mi(u
n
i )

= αx(1)− αε + β +
n

∑

i=2

Mi(x(i)) +

m′

n
∑

i=mn−1+1

Mi(u
n
i )
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= M1(x(1))− αε +

n
∑

i=2

Mi(x(i)) +

m′

n
∑

i=mn−1+1

Mi(u
n
i )

<
n

∑

i=1

Mi(x(i))−Aε + Aε =
n

∑

i=1

Mi(x(i)) ≤ 1.

So lim supn→∞ ‖xn‖ ≤ 1. Moreover,

ρM

(

x + xn

2

)

≥ M1

(

x(1)−
ε

2

)

+

n
∑

i=2

Mi(x(i)) +

m′

n
∑

i=mn−1+1

Mi

(

x(i) + un
i

2

)

≥
n

∑

i=1

Mi(x(i))−
Aε

2
+

m′

n
∑

i=mn−1+1

((

1−
1

n

)

Mi(u
n
i )

2

)

≥
n

∑

i=1

Mi(x(i))−
Aε

2
+

1

2

(

1−
1

n

)(

Aε−
1

2n

)

→ 1 (n→∞).

Hence lim infn→∞

∥

∥

x+xn

2

∥

∥ ≥ 1. Thus we have ‖xn‖ → 1 and ‖xn + x‖ → 2 (n→∞).

Since limn→∞(Aε− 1/2n) = Aε > Aε/2, there exists n0 such that Aε− 1/2n > Aε/2

when n ≥ n0. Therefore

‖xm − xn‖ ≥

∥

∥

∥

∥

∥

∥

m′

m
∑

i=mm−1+1

um
i ei

∥

∥

∥

∥

∥

∥

≥

m′

m
∑

i=mm−1+1

Mi(u
m
i ) > Aε−

1

2m
>

Aε

2

when m > n ≥ n0.

This means that {xn} is not compact in S(lM ), hence x is not a CLUR-point. But,

by M ∈ δ2 and Theorem 2 in [7], we can get that lM has H-property. Therefore x is not

a WCLUR-point. This is a contradiction.

3 ⇒ 1. Suppose x ∈ S(lM ), {xn}
∞
n=1 ⊂ S(lM ) and ‖xn + x‖ → 2 (n → ∞). In order

to complete this proof we distinguish two cases.

(I) M ∈ δ2 ∩ δ2. In this case, by Lemma 1 and Lemma 2, we take {fn} ⊂ S(l0N ) such

that fn(xn + x) = ‖xn + x‖ → 2 (n→∞). Then

fn(x)→ 1 and fn(xn)→ 1 (n→∞).

In virtue of [6], l0N is reflexive. Then there is a subsequence {fni
} of {fn} and f ∈ l0N

such that fn →w f. It is obvious that in virtue of limn→∞ fn(x) = 1 this yields f(x) = 1.

Hence ‖f‖0 = 1. By Theorem 1 in [7], we get that l0N has H-property. Hence ‖fn − f‖0

→ 0 (n→∞). So

f(xni
) = (f − fni

)(xni
) + fni

(xni
)→ 1 (n→∞).

Using now the reflexivity of lM , we can find a subsequence {x′
ni
} ⊂ {xni

} and x′ ∈ lM
such that x′

ni
→w x′ (n→∞). Obviously f(x′) = 1, whence ‖x′‖ = 1. By the property

H for lM , we have limn→∞

∥

∥x′
ni
− x′

∥

∥ = 0, i.e. {xn} is compact in S(lM ), which implies

that x is a CLUR-point.
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(II) M ∈ δ2 and {i ∈ N : |x(i)| ∈ (a, b]} = ∅ where [a, b] ∈ SAI(Mi). First, we will

prove that xn(i)→ x(i) for all i ∈ N. We first show

(1) lim inf
n

xn(j) ≥ x(j), j = 1, 2, . . . .

If not, there exist j0 ∈ N, ε0 > 0 and a subsequence of {xn}, denoted again by {xn},

such that

xn(j0) ≤ x(j0)− ε.

Since x(j0) /∈ (a, b], there exists δ > 0 such that

Mj0

(

x(j0) + xn(j0)

2

)

≤ (1− δ)
Mj0(x(j0)) + Mj0(xn(j0))

2
.

Then by Lemma 4 and Lemma 5, we get

0 ←
ρM (x) + ρM (xn)

2
− ρM

(

xn + x

2

)

=
∞
∑

i=1

[

Mi(xn(i)) + Mi(x(i))

2
−Mi

(

xn(i) + x(i)

2

)]

≥
Mj0(xn(j0)) + Mj0(x(j0))

2
−Mj0

(

xn(j0) + x(j0)

2

)

≥ δ
Mj0(xn(j0)) + Mj0(x(j0))

2
≥

δ

2
M

(

ε

2

)

> 0.

This contradiction shows that condition (1) holds.

Now, we will show that

(2) lim sup
n

xn(j) ≤ x(j), j = 1, 2, . . . .

Otherwise, there exist j0 ∈ N and ε > 0 such that lim supn xn(j0) ≥ x(j0) + ε. Then

lim supn Mj0(xn(j0)) ≥Mj0(x(j0)) + ε′ for some ε′ > 0. Hence

1 = lim sup
n

ρM (xn) = lim sup
n

∑

i 6=j0

Mi(xn(i)) + Mj0(xn(j0))

≥
∑

i 6=j0

Mi(x(i)) + Mj0(x(j0)) + ε′ = ρM (x) + ε′ = 1 + ε′.

This is a contradiction. So limn→∞ xn(i) = x(i) (i ∈ N) thanks to (1) and (2).

Next, we will show that ρM (xn−x
2 ) → 0 (n → ∞). In fact, for any ε > 0, there exist

i0 and n0 such that

∑

i>i0

Mi(x(i)) <
ε

4
,

i0
∑

i=1

Mi

(

xn(i)− x(i)

2

)

<
ε

4

and
i0

∑

i=1

|Mi(xn(i)−Mi(x(i))| < ε when n ≥ n0.
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Hence when n ≥ n0,

∑

i>i0

Mi(xn(i)) = ρM (xn)−
i0

∑

i=1

Mi(xn(i) ≤ 1−
i0

∑

i=1

Mi(x(i)) + ε

≤ 1−

(

1−
∑

i>i0

Mi(x(i))

)

+ ε <
5

4
ε.

Therefore

ρM

(

xn − x

2

)

=

i0
∑

i=1

Mi

(

xn(i)− x(i)

2

)

+
∑

i>i0

Mi

(

xn(i)− x(i)

2

)

≤
i0

∑

i=1

Mi

(

xn(i)− x(i)

2

)

+
1

2

[

∑

i>i0

Mi(xn(i)) +
∑

i>i0

Mi(x(i))
]

<
ε

4
+

1

2

(

5

4
ε +

ε

4

)

= ε,

i.e. ρM (xn−x
2 ) → 0 (n → ∞). So by limn→∞ xn(i) = x(i) (i ∈ N) and Lemma 6, we get

‖xn − x‖ → 0 (n→∞). This means x is a CLUR-point. Thus, the proof is finished.

It is obvious that a point x ∈ S(X) is a LUR-point if and only if it is a CLUR-point

and a SU-point. So, in view of Lemma 7, Theorem 1 and Theorem 2, we easily obtain

the following criteria for LUR-point of S(lM ).

Theorem 3. A point x ∈ S(lM ) is a LUR-point if and only if:

1. M ∈ δ2,

2. If for any i ∈ N, |x(i)| ∈ SCMi
, then

(i) {i ∈ N : |x(i)| ∈ SC+
Mi
} = ∅;

(ii) if {i ∈ N : |x(i)| ∈ SC+
Mi
} 6= ∅, then {∀i ∈ N : |x(i)| ∈ SC−

Mi
} = ∅ and

M ∈ δ2.

3. If there exists i0 ∈ N such that |x(i0)| /∈ SCMi0
, then |x(j)| ∈ SC0

Mj
(j ∈ N,

j 6= i0) and M ∈ δ2,

4. If e(i) > 0, then e(i) < |x(i)| for all i ∈ N.
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