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Abstra
t. We suggest a modi�
ation of the Pawªu
ki and Ple±niak method to 
onstru
t a
ontinuous linear extension operator by means of interpolation polynomials. As an illustrationwe present expli
itly the extension operator for the spa
e of Whitney fun
tions given on theCantor ternary set.1. Introdu
tion. Given a 
ompa
t subset K of R, let E(K) denote the spa
e of Whitneyjets on K with the topology τ de�ned by the norms

‖f‖q = |f |q + sup

{

|(Rq
yf)(k)(x)|

|x − y|q−k
: x, y ∈ K, x 6= y, k = 0, 1, . . . , q

}

,

q = 0, 1, . . . , where |f |q = sup{|f (k)(x)| : x ∈ K, k ≤ q} and Rq
yf(x) = f(x) − T q

y f(x)is the Taylor remainder. Ea
h fun
tion f ∈ E(K) is extendable to a C∞-fun
tion on theline.Whitney's extension theorem ([8℄) gives an extension operator (here and in whatfollows it means a 
ontinuous linear extension operator) from the spa
e Em(K) of Whitneyjets of m-th order on K to the spa
e of m-times di�erentiable fun
tions on the wholespa
e, provided m ∈ N. In the 
ase m = ∞ su
h an operator generally does not exist,and several authors have 
onsidered the extension problem in di�erent situations (seee.g. [4℄, [5℄ for the bibliography). We restri
t our attention to the approa
h of Pawªu
kiand Ple±niak. In [5℄ (see also [6℄, [7℄) they gave an extension operator in the form ofa teles
oping series 
ontaining Lagrange interpolation polynomials with the Fekete-Lejasystem of knots. The basi
 assumption for their method was the Markov Property of a
ompa
t set K (see [5℄�[7℄ for the de�nitions). Here we modify slightly the 
onstru
tion,namely we interpolate fun
tions lo
ally. This modi�
ation permits one to give expli
itlythe extension operator for the spa
e of Whitney fun
tions given on the Cantor set (itsatis�es the Markov Property by [2℄, but we do not know the distribution of the Feketepoints there). Moreover, the modi�ed version 
an be applied for generalized Cantor-type2000 Mathemati
s Subje
t Classi�
ation: Primary 46E10; Se
ondary 41A05, 41A10.The paper is in �nal form and no version of it will be published elsewhere.
[43]



44 A. GONCHAROVsets without Markov's Property ([1℄). We also hope that the expli
it form of the extensionoperator will give a hint how to 
onstru
t a basis in the spa
e of Whitney fun
tions onCantor-type sets.2. Divided di�eren
es. Let I denote a 
losed interval; let |f |(I)
k = sup{|f (j)(x)| : x ∈

I, j ≤ k} for f ∈ C∞(I) and k = 0, 1, . . . .Given a fun
tion f , a natural number k with 1 ≤ k ≤ N and distin
t points
(xj)

N
1 ⊂ I, we are looking for the 
oe�
ients A

(k)
j in the expansion [x1, . . . , xN ]f =

∑N−k+1
j=1 A

(k)
j [xj , . . . , xj+k−1]f (see e.g. [3℄ for the de�nition and properties of divideddi�eren
es). Let us �x j, 1 ≤ j ≤ N − k + 1. There are (

N−k
j−1

) di�erent ways to obtain
[xj , . . . , xj+k−1]f from [x1, . . . , xN ]f using the re
urren
e relation for the divided di�er-en
es. Every way 
orresponds to a 
ertain possible route from [1, . . . , N ] to [j, . . . , j+k−1],that is the 
hain of trun
ations of one of the end elements of the interval. We 
an drawall possible routes from [1, . . . , N ] to [j, . . . , j + k − 1] in the form of a parallelogram
ontaining (N − j − k + 2)j subintervals of [1, . . . , N ] as elements. Using the re
urren
erelation A

(k)
j = −(xj−1 − xj+k−1)

−1A
(k+1)
j−1 + (xj − xj+k)−1A

(k+1)
j for j ≥ 2, k ≤ N − 1and A

(N−1)
1 = −A

(N−1)
2 = (x1 − xN )−1, we represent A

(k)
j as a fra
tion with denomina-tor equal to the produ
t ∏M

m=1(xa(m) − xb(m)) with [a(m), . . . , b(m)] ⊃ [j, . . . , j + k − 1]properly. Clearly, the value M is just the number of elements in the parallelogram ofpossible routes minus one, that is M = (N −k)j− (j−1)2. The numerator of the fra
tionis the sum of (

N−k
j−1

) produ
ts, where every produ
t 
ontains M − (N − k) terms. Thelast is the number of elements in the parallelogram outside of the �xed route. Moreover,we have to in
lude in the result the 
oe�
ient (−1)j−1, as after any trun
ation from theleft the sign will 
hange. Thus, A
(k)
j = (−1)j−1

∑

Pi

Q
, where Q =

∏M
m=1(xa(m) − xb(m))and Pi =

∏M−N+k
m=1 (xai(m) − xbi(m)) 
orresponds to the 
omplement of the i-th route,

i = 1, . . . ,
(

N−k
j−1

). From this we get the bound
|A

(k)
j | ≤

(

N − k

j − 1

)

max
N−k
∏

m=1

|xai(m) − xbi(m)|
−1,where max is taken over all possible routes from [1, . . . , N ] to [j, . . . , j +k−1]. Of 
ourse,this formula is valid also when j = 1, k ≤ N −1 and in the 
ase k = N, j = 1, if we adoptthe 
onvention that ∏0

m=1(· · · ) := 1.Finally,
|[x1, . . . , xN ]f | ≤ 2N−k|f |

(I)
k−1 max

N−k
∏

m=1

|xai(m) − xbi(m)|
−1, (1)where max is taken over all possible routes from [1, . . . , N ] to some [j, . . . , j + k− 1] with

1 ≤ j ≤ N − k + 1.3. Extension operator for Cantor-type sets. Let (ls)
∞
s=0 be a sequen
e su
h that

l0 = 1, 0 < 2ls+1 < ls, s ∈ N. Let K be the Cantor set asso
iated with the sequen
e (ls),that is, K =
⋂∞

s=0 Es, where E0 = I1,0 = [0, 1], Es is the union of 2s 
losed basi
 intervals
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Ij,s = [aj,s, bj,s] of length ls and Es+1 is obtained by deleting open 
on
entri
 subintervalof length ls − 2ls+1 from ea
h Ij,s, j = 1, 2, . . . , 2s.Let us �x s, m ∈ N, let N = 2m − 1. The interval I1,s 
overs 2m−1 basi
 intervals oflength ls+m−1. The endpoints of these intervals give us N + 1 points (xk). Let Ω(x) =
∏N+1

k=1 (x − xk) and ωk(x) = Ω(x)
(x−xk)Ω′(xk) . Then LN (f, x, I1,s) =

∑N+1
k=1 f(xk)ωk(x) isthe Lagrange interpolation polynomial, 
orresponding to the interval I1,s. In 
ase 2m <

N +1 < 2m+1 we use the following pro
edure to in
lude new N +1−2m endpoints of thebasi
 intervals of length ls+m into the interpolation set: the �rst new point is ls+m, thenext new
omer is ls− ls+m, then ls+1− ls+m, ls− ls+1 + ls+m, ls+2− ls+m, ls− ls+2 + ls+m,et
. In the same manner we 
hoose nodes for polynomials LN (f, x, Ij,s), 
orrespondingto other basi
 intervals.Let us next �x δ > 0, a 
ompa
t set E and take the C∞-fun
tion u(·, δ, E) with theproperties: u(·, δ, E) ≡ 1 on E, u(x, δ, E) = 0 for dist(x, E) > δ and |u|p ≤ cpδ
−p, wherethe 
onstant cp depends only on p (see e.g. [7℄, L.2.1).Suppose we have a sequen
e of natural numbers (ns)

∞
0 and a sequen
e of positivevalues (δN,s)

∞,∞
N=1,s=0. Let Ns = 2ns − 1 and Ms = 2ns−1−1 − 1 for s ≥ 1, M0 = 1.Consider the operator

L(f, x) = LM0
(f, x, I1,0)u(x, δM0+1,0, I1,0 ∩ K)

+

∞
∑

s=0

〈

2s

∑

j=1

Ns
∑

N=Ms+1

[LN (f, x, Ij,s) − LN−1(f, x, Ij,s)]u(x, δN,s, Ij,s ∩ K)

+

2s+1

∑

j=1

[LMs+1
(f, x, Ij,s+1) − LNs

(f, x, I[ j+1

2
],s)]u(x, δNs,s, Ij,s+1 ∩ K)

〉

.

Here [ j+1
2 ] is the greatest integer in j+1

2 . We see that for �xed j the sum ∑Ns

N=Ms+1 · · ·gives a

umulation of degree of interpolation polynomials on the 
orresponding basi
interval of length ls, whereas the term in the last sum is the passage from 2ns points onthe basi
 interval of length ls to 2ns−1 points on its subinterval of length ls+1.Let us rearrange the terms in angular bra
kets. Suppose that supports of the smooth-ing fun
tions u, 
orresponding to di�erent basi
 intervals of equal length, are disjoint.The sums ∑2s

j=1 LNs
(f, x, Ij,s)·[u(x, δNs,s, Ij,s∩K)−u(x, δNs,s, I2j−1,s+1∩K)−u(x, δNs,s,

I2j,s+1 ∩ K)] vanish, sin
e the expression in square bra
kets is 0. Therefore,
L(f, x) =

∞
∑

s=0

σs (2)with
σ0 =

N0−1
∑

N=M0+1

LN (f, x, I1,0)[u(x, δN,0, I1,0 ∩ K) − u(x, δN+1,0, I1,0 ∩ K)]

+

2
∑

j=1

LM1
(f, x, Ij,1)u(x, δN0,1, Ij,1 ∩ K)



46 A. GONCHAROVand for s ∈ N

σs = −

2s

∑

j=1

LMs
(f, x, Ij,s)u(x, δMs+1,s, Ij,s ∩ K)

+
2s

∑

j=1

Ns−1
∑

N=Ms+1

LN (f, x, Ij,s)[u(x, δN,s, Ij,s ∩ K) − u(x, δN+1,s, Ij,s ∩ K)]

+

2s+1

∑

j=1

LMs+1
(f, x, Ij,s+1)u(x, δNs,s+1, Ij,s+1 ∩ K).In the general 
ase we 
an only state that L is a linear operator.4. Cantor set. From now on, we deal with the Cantor set K, that is, ls = 3−s. We take

ns = 2, s ≤ 3 and ns = [log2 s] for s ≥ 4, so N2m = N2m+1 = · · · = N2m+1−1 = 2m − 1.Let us show that L is in fa
t an extension operator. Sin
e the values of interpolationpolynomials on 
ompa
t sets do not depend on parameters of smoothing fun
tions, we
an spe
ify the sequen
e (δN,s)
∞,∞
N=1,s=0 later.Lemma 1. For any f ∈ E(K), x ∈ K, we have L(f, x) = f(x).Proof. We want to show that the series (2) 
onverges for x ∈ K and gives the value f(x).By teles
oping e�e
t summation in (2) will give only the expression in the form of thelast sum in the de�nition of σs. Moreover, for �xed x ∈ K only one term out of 2s+1 isnot zero here. Therefore,

L(f, x) = lim
s→∞

LMs+1
(f, x, Ij,s+1), (3)where j = j(s) is 
hosen in a su
h way that x ∈ Ij,s+1.Now, for N = 2n − 1, let us 
onsider the di�eren
e LN (f, x, I1,s) − f(x). Sin
e

∑2n

1 ωk(x) ≡ 1 and ∑2n

1 (x−xk)iωk(x) ≡ 0, i = 1, 2, . . . , N , we get LN (f, x, I1,s)−f(x) =
∑2n

k=1[f(xk)−f(x)−f ′(x)(xk−x)−· · ·−f (q)(x)(xk−x)q/q!]ωk(x) =
∑2n

k=1 Rq
xf(xk)ωk(x).Then for q ≤ N

|LN (f, x, I1,s) − f(x)| ≤ ||f ||q

2n

∑

k=1

|x − xk|
q|ωk(x)|. (4)For the denominator of |ωk(x)| sin
e 1 − 2li+1/li = 1/3, we get the bound

|xk − x1| · · · |xk − xk−1| · |xk − xk+1| · · · |xk − xN+1|

≥ ln+s−1 · (ln+s−2 − 2ln+s−1)
2 · · · (ls − 2ls+1)

2n−1

= 3−n−s+1 · 32(−n−s+2) · · · 32n−1(−s) · (1/3)2+4+···+2n−1

= 3−µ,where µ = 2n(s + 2) − (n + s) − 3, as is easy to 
he
k.On the other hand, the numerator of |ωk(x)| multiplied by |x − xk|
q gives the bound

|x − xk|
q−1

N+1
∏

1

|x − xk| ≤ lq−1
s · ln+s · ln+s−1 · l

2
n+s−2 · · · l

2n−1

s = 3−λwith λ = 2n(s + 1) + (q − 1)s − 1.
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e, the sum in (4) may be estimated from above by 2n32n−n−qs−2, whi
h ap-proa
hes the limit 0 for q ≥ 1 be
ause 2n ≤ s. The same arguments are valid for
LMs+1

(f, x, Ij,s+1). In fa
t, Ms+1 + 1 = 2ns−1 ≤ 1
2s < s + 1. Thus the limit in (3)equals f(x).5. Estimation for the model 
ase. It remains to prove that the operator L is well-de�ned and 
ontinuous. First let us 
onsider the situation when the number of interpo-lation points is just 2n.Lemma 2. Let N = 2n − 1, δ = 1

2 ln+s−1. Enumerate the endpoints (xk)N+1
1 of �rst basi
intervals of length ls+n−1 in in
reasing order. Suppose two natural numbers p, (p < N),and q = 2v − 1 with v < N are given. Then for f ∈ E(K) and x ∈ R we have the bound

|{[LN (f, x, I1,s) − LN−1(f, x, I1,s)]u(x, δ, I1,s ∩ K)}(p)| ≤ C2NNpδ−p

q+1
∏

k=2

xk|f̃ |
([0,1])
q ,where the 
onstant C depends only on p and f̃ ∈ C∞[0, 1] is any extension of f on [0, 1].Proof. By Newton's form of the interpolation operator we dedu
e the representation

LN (f, x, I1,s)−LN−1(f, x, I1,s) = [x1, . . . , xN+1]f ·Ω(x) with Ω(x) =
∏N

k=1(x−xk). The
i-th derivative of Ω represents the sum of N !

(N−i)! produ
ts, where every produ
t 
ontains
N − i terms of the type (x − xk). Hen
e for any x with dist(x, I1,s ∩ K) ≤ δ we get
|Ω(i)(x)| ≤ N !

(N−i)!

∏N
k=i+1(δ + xk). Then for some 
onstant Cp we get

|(Ω · u)(p)| ≤

p
∑

i=0

(

p

i

)

cp−i

δp−i
N i

N
∏

k=i+1

(δ + xk) ≤ Cpδ
−p

N
∏

k=1

(δ + xk) max
i≤p

Bi,with B0 = 1, Bi = (Nδ)i

(δ+x1)···(δ+xi)
. In our 
ase xk = Dkδ, where the sequen
e (Dk)k=1 =

(0, 2, 4, 6, 12, 14, 16, 18, 36, . . . ) is de�ned by the stru
ture of the Cantor set. Clearly, Dk +

1 ≥ k. For this reason, Bi = Ni

(D1+1)···(Di+1) ≤ N i/i!, max Bi ≤ Np.On the other hand, δ+xk ≤ xk+1, be
ause 2δ is a mesh of the net (xk)N+1
1 . Therefore,

sup
x∈R

|(Ω · u)(p)(x)| ≤ CpN
pδ−p

N+1
∏

k=2

xk. (5)To 
omplete the proof we return to (1):
|[x1, . . . , xN+1]f | ≤ 2N−q|f̃ |([0,1])

q

(

min

2n−2v

∏

m=1

|xai(m) − xbi(m)|
)−1

,where min is taken over all possible routes from [1, . . . , N + 1] to some [j, . . . , j + q] with
1 ≤ j ≤ N + 1 − q.Let us 
onsider q + 1 points in su

ession from (xk)N+1

1 . We see that in order tominimize the produ
t above, one has to in
lude intervals 
ontaining large gaps of theCantor set in the 
hain [xj , . . . , xj+q] ⊂ · · · ⊂ [x1, . . . , xN+1] as late as possible, that is,all q + 1 points must belong to the same basi
 interval of length ls+n−v−1. And what ismore, the position of q + 1 su

essive points is not important, sin
e all intervals in the
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hain will 
ontain a gap of length ls+n−v−1 − 2ls+n−v. Therefore,
min

2n−2v

∏

m=1

|xai(m) − xbi(m)| = xq+2 · · ·xN+1.Combining this with (5) we get the desired result.6. Boundedness of the operator. A slight 
hange of the proof of Lemma 2 
an beapplied for any term in the sum representing the operator L. Let us �x δN,s to be half ofthe shortest distan
e between the points of interpolation for the polynomial LN (f, x, Ij,s).Theorem 1. Let ns = 2, s ≤ 3 and ns = [log2 s] for s ≥ 4, δN,s = 1
2 ls+[log2 N ]. Then

L : E(K) → C∞(R), given in Se
tion 3, is a 
ontinuous linear extension operator.Proof. Lemma 1 implies that L is a linear extension operator. In order to get its 
onti-nuity, let us �x any natural number p and take q = 2v − 1 > p + 1. Given x ∈ R, we willestimate |(L(f, x))(p)|. Fix s ≥ 4. First, we examine the a

umulation sums. We spe
ify
δN,s in a su
h way that for given x only one term of the sum with respe
t to j does notvanish. Let us �x the 
orresponding value of j = j(s, x).Represent the term

gN (x) := [LN (f, x, Ij,s) − LN−1(f, x, Ij,s)]u(x, δN,s, Ij,s ∩ K)in the form [x1, . . . , xN+1]f · ΩN (x)u(x). Here 2m ≤ N < 2m+1 for some m with ns−1 ≤

m + 1 ≤ ns, so δ := δN,s = 1
2 ls+m = 1

23−s−m. Arguing as in the proof of Lemma 2, weget the bound |(ΩN · u)(p)| ≤ CNpδ−p
∏N+1

k=2 xk. Here and in what follows we denote by
C any 
onstant that depends only on p and q.Similarly, ∣

∣[x1, . . . , xN+1]f
∣

∣ ≤ C2N (xq+2 · · ·xN+1)
−1|f̃ |

([0,1])
q . The ve
tor spa
e E(K)
an be identi�ed with the quotient spa
e C∞[0, 1]/Z, where Z = {f ∈ C∞[0, 1] : f |K =

0}. The quotient topology τQ is given by the norms (inf |f̃ |
([0,1])
q )∞q=0, where the in�mumis taken for all possible extensions of f to f̃ . Clearly, this topology is 
omplete. Using theLagrange form of the Taylor remainder, we see that τQ � τ. Hen
e, by the open mappingtheorem τQ ∼ τ and for given q there exists r ∈ N, C > 0 su
h that inf |f̃ |

([0,1])
q ≤ C||f ||rfor any f ∈ E(K). Therefore,

|g
(p)
N (x)| ≤ C2NNpδ−p

q+1
∏

k=2

xk||f ||r.But N < 2ns ≤ s and the number of terms in the sum is Ns −Ms, whi
h is less than
s. Therefore we get

Ns
∑

N=Ms+1

|g
(p)
N (x)| ≤ C2ssp+1δ−p

q+1
∏

k=2

xk||f ||r.The 
ondition 2m ≤ N implies that all endpoints of the basi
 subintervals of length
ls+m−1 = 6δ on Ij,s are in
luded in the interpolation set. Therefore we 
an estimate theprodu
t above roughly: ∏q+1

k=2 xk ≤ D2(6δ) ·D3(6δ) · · ·Dq+1(6δ) = Cδq. Sin
e 2ssp+1δq−p

< sp+1( 2
3 )s we see that the part of the general series, 
orresponding to the a

umulationsums, is 
onvergent.



EXTENSION VIA INTERPOLATION 49We now turn to the di�eren
e
[LMs+1

(f, x, Ij,s+1) − LNs
(f, x, I[ j+1

2
],s)]u(x, δNs,s, Ij,s+1 ∩ K).Without loss of generality we 
an assume j = 1. We will apply Lemma 2 again. To thisend, let us write the expression above in the teles
oping form

−

2ns−1
∑

N=2ns−1

[LN (f, x, I1,s) − LN−1(f, x, I1,s)]u(x, ls+ns−1/2, I1,s+1 ∩ K). (6)Here the interpolation set for the polynomial LN (f, x, I1,s) 
onsists of all endpoints ofthe basi
 subintervals of length ls+ns−1 on I1,s+1 and some (from 0 for N = 2ns−1 − 1to all for N = 2ns − 1) endpoints of the basi
 subintervals of the same length on I2,s+1.Given N we again represent the term of the sum (6) in the form
[x1, . . . , xN+1]f · ΩN (x)u(x, ls+ns−1/2, I1,s+1 ∩ K).We note that x is rather 
lose to I1,s+1∩K. For this reason, in order to maximize the value

|Ω
(i)
N (x)|, we have to, by di�erentiation, remove from ∏N

k=1(x − xk) the terms (x − xk)for xk ∈ I1,s+1; and save the terms 
orresponding to the se
ond part of I1,s. Thereforewe have the same bound of ||ΩN · u||p as in (5). Finally, let us 
onsider [x1, . . . , xN+1]f .As in the proof of Lemma 2, we want to minimize the produ
t of lengths of intervals,
orresponding to the 
hain [xj , . . . , xj+q] ⊂ · · · ⊂ [x1, . . . , xN+1]. Clearly, we have to take
xj , . . . , xj+q in the interval I1,s+1. Thus we 
an repeat all previous arguments and obtainthe bound

∣

∣[x1, . . . , xN+1]f
∣

∣ · |(ΩN · u)(p)| ≤ C2NNpδq−p||f ||r.Taking into a

ount the value of δ and the number of terms in the sum (6), we see thatthe se
ond part of the general series representing L 
onverges as well. Thus the operator
L is well-de�ned and bounded.

Referen
es[1℄ M. Altun and A. Gon
harov, A lo
al version of the Pawªu
ki-Ple±niak extension operator,J. Approx. Theory 132 (2005), 34�41.[2℄ L. Biaªas and A. Volberg, Markov's property of the Cantor ternary set, Studia Math. 104(1993), 259�268.[3℄ R. A. DeVore and G. G. Lorentz, Constru
tive Approximation, Springer-Verlag (1993).[4℄ A. Gon
harov,On the expli
it form of an extension operator for C
∞-fun
tions, East Journalon Approximation 7 (2001), 179�193.[5℄ W. Pawªu
ki and W. Ple±niak, Extension of C

∞ fun
tions from sets with polynomial 
usps,Studia Math. 88 (1988), 279�287.[6℄ W. Ple±niak, Markov's inequality and the existen
e of an extension operator for C
∞ fun
-tions, J. Approx. Th. 61 (1990), 106�117.[7℄ W. Ple±niak, Re
ent progress in multivariate Markov inequality, in: Approximation Theory:in memory of A. K. Varma, edited by N. K. Govil, Mar
el Dekker, New York, 1998, 449�464.[8℄ H. Whitney, Analyti
 extension of di�erentiable fun
tions de�ned in 
losed sets, Trans.Amer. Math. So
. 36 (1934), 63�89.


