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Abstract. We suggest a modification of the Pawlucki and Plesniak method to construct a
continuous linear extension operator by means of interpolation polynomials. As an illustration
we present explicitly the extension operator for the space of Whitney functions given on the
Cantor ternary set.

1. Introduction. Given a compact subset K of R, let £(K') denote the space of Whitney
jets on K with the topology 7 defined by the norms

q £)(k)

151 = 1l s { S oy e o k=01,
q=0,1,..., where |f|, = sup{|f®)(z)| : # € K,k < ¢} and R{ f(z) = f(x) — T f(x)
is the Taylor remainder. Each function f € £(K) is extendable to a C*°-function on the
line.

Whitney’s extension theorem ([8]) gives an extension operator (here and in what
follows it means a continuous linear extension operator) from the space £™(K') of Whitney
jets of m-th order on K to the space of m-times differentiable functions on the whole
space, provided m € N. In the case m = oo such an operator generally does not exist,
and several authors have considered the extension problem in different situations (see
e.g. [4], [5] for the bibliography). We restrict our attention to the approach of Pawtucki
and Plesniak. In [5] (see also [6], [7]) they gave an extension operator in the form of
a telescoping series containing Lagrange interpolation polynomials with the Fekete-Leja
system of knots. The basic assumption for their method was the Markov Property of a
compact set K (see [5]-[7] for the definitions). Here we modify slightly the construction,
namely we interpolate functions locally. This modification permits one to give explicitly
the extension operator for the space of Whitney functions given on the Cantor set (it
satisfies the Markov Property by [2], but we do not know the distribution of the Fekete
points there). Moreover, the modified version can be applied for generalized Cantor-type
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sets without Markov’s Property ([1]). We also hope that the explicit form of the extension
operator will give a hint how to construct a basis in the space of Whitney functions on
Cantor-type sets.

2. Divided differences. Let I denote a closed interval; let |f|,(f) = sup{|fU)(z)| : x €
I,j <k} for feC®()and k=0,1,....

Given a function f, a natural number £ with 1 < k < N and distinct points
(z;)¥ C I, we are looking for the coefficients Agk) in the expansion [x1,...,zN]f =

E;.V:_lk"rl A;k) [@j,...,2j4k—1]f (see e.g. [3] for the definition and properties of divided
differences). Let us fix j,1 < j < N — k + 1. There are (]j:lk) different ways to obtain
[j,...,Tj4k—1]f from [x1,...,2zN]f using the recurrence relation for the divided differ-
ences. Every way corresponds to a certain possible route from [1, ..., N]to [j,...,j+k—1],
that is the chain of truncations of one of the end elements of the interval. We can draw

all possible routes from [1,...,N] to [j,...,j + k — 1] in the form of a parallelogram

containing (N — j — k + 2)j subintervals of [1,..., N] as elements. Using the recurrence
relation Aék) —(xj-1 — xjp-1) A (kA1) 4 (:cj L k) 1A kD) for j > 2,k < N —1
and AgN_l) = AéN D= =(r1 —2N)~ 1, we represent Aj as a fraction with denomina-

tor equal to the product Hm:1(fca(m) — Tp(my) With [a(m),...,b(m)] D [j,...,5 +k —1]
properly. Clearly, the value M is just the number of elements in the parallelogram of
possible routes minus one, that is M = (N —k)j — (5 —1)2. The numerator of the fraction
is the sum of ( ) products, where every product contains M — (N — k) terms. The
last is the number of elements in the parallelogram outside of the fixed route. Moreover,
we have to include in the result the coefficient (—1)7~!, as after any truncation from the
left the sign will change. Thus, A;k) = (—1)j_IZQPi, where Q = Hi\:{:l(xa(m) - Tp(m))
and P, = HMfNJrk(xaz(m) Ty, (m)) corresponds to the complement of the i-th route,

m=1

i=1,... (] 1) From this we get the bound

k) - —
|A( | >~ ( . )maX H |xa1(m mbl(m)| 17

where max is taken over all possible routes from [1,..., N] to [4,...,j+k —1]. Of course,

this formula is valid also when 7 = 1,k < N —1 and in the case k = N, j = 1, if we adopt
the convention that ngzl(' ) =1
Finally,

N—k
I _
o1, - an] 1 < 2V 7R £ max T 12ayom) — 26| 7 (1)
A

where max is taken over all possible routes from [1,..., N] to some [j,...,j + k — 1] with
1<j<N—k+1.

3. Extension operator for Cantor-type sets. Let (I5)S2, be a sequence such that
lp=1,0 < 2l441 <ls,s € N. Let K be the Cantor set associated with the sequence (),
that is, K = (.., Es, where Ey = I o = [0, 1], E; is the union of 2° closed basic intervals
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I; s = [a;,s,b; ] of length I; and E,4 is obtained by deleting open concentric subinterval
of length Iy — 2l from each I;,,j =1,2,...,2°
Let us fix s,m € N, let N = 2™ — 1. The interval I; ; covers 2™~1 basic intervals of
length lsy,,,—1. The endpoints of these intervals give us N + 1 points (z). Let Q(z) =
iv:ll(x — x) and wi(x) = % Then Ly(f,z,11s) = Zklel (xg)wg ()
the Lagrange interpolation polynomial, corresponding to the interval I; ;. In case 2" <
N +1 < 2™*! we use the following procedure to include new N +1 —2™ endpoints of the
basic intervals of length [, ., into the interpolation set: the first new point is sy, the
next newcomer is Iy — sy, then 11 —lsim, ls —lsp1+lstms lst2 = lstmy bs — ls+2 +lstm,
etc. In the same manner we choose nodes for polynomials Ly (f,z,I; ), corresponding

—-

S

to other basic intervals.

Let us next fix § > 0, a compact set E and take the C*°-function u(-,d, E) with the
properties: u(-,0, E) =1 on E, u(x,d, E) = 0 for dist(xz, E) > 6 and |u|, < ¢,0~ P, where
the constant ¢, depends only on p (see e.g. [7], L.2.1).

Suppose we have a sequence of natural numbers (n,)3° and a sequence of positive
values (51\;75)?’:0?78:0. Let Ny = 2% —1 and My = 2%1"! —1 for s > 1,M, = 1.
Consider the operator

L(f,x) = Ly, (f, 2, 11 0)u(, dprg41,05 11,0 N K)

0o 2° N

=+ Z < [LN(f7x7]j,s) - LN—l(fa Z‘,Ij7s)]u(l', 5N787Ij78 N K)
s=0  j—1 N=M,+1
25+1

+ Z [LM5+1 (f> x, Ij,s+1) - LNS (fa &€, I[%]ys)]u(x, 5Ns,sa Ij,s+1 N K)>
j=1

Here [%] is the greatest integer in % We see that for fixed j the sum Z%S:MSH e
gives accumulation of degree of interpolation polynomials on the corresponding basic
interval of length [, whereas the term in the last sum is the passage from 2"¢ points on
the basic interval of length I, to 2" ~! points on its subinterval of length I, 1.

Let us rearrange the terms in angular brackets. Suppose that supports of the smooth-
ing functions u, corresponding to different basic intervals of equal length, are disjoint.

os

The sums 5 L, (f, @, Ijs)-[u(z, 0N, s, Lj,s NK) —u(z, 0N, 55 L2j-1,s41 N K) —u(, On_ s,
I5; s+1 N K)] vanish, since the expression in square brackets is 0. Therefore,

Lif.2) = o, (2)
s=0

with
No—1

oo = Z Ln(f, 2z, I 0)[u(z,0n,0, 11,0 N K) — u(z,0n41,0, 11,0 N K)]
N=My+1

2
+ Z L]\/[1 (f, x, ijl)u(x, 5N0,17 Ij,l n K)
j=1
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95
Os = — ZLMs(faxvlj,s)u(ma(sMs+1,svlj,s N K)

Jj=1

2° Ns—1
+3° 3 Ln(foa L), 0n s L N K) = u(, 05416, Lo N K]
j=1 N=M,+1
25+1
+ > Loy (o, I s )u(, 68, 41, s N K.
j=1

In the general case we can only state that L is a linear operator.

4. Cantor set. From now on, we deal with the Cantor set K, that is, [, = 37°. We take

ns = 2,5 <3 and ns; = [log, s] for s >4, 80 Nogm = Nom1 =+ = Nogm+1_1 = 2™ — 1.
Let us show that L is in fact an extension operator. Since the values of interpolation

polynomials on compact sets do not depend on parameters of smoothing functions, we

can specify the sequence (dn )35 . later.

LEMMA 1. For any f € E(K),z € K, we have L(f,z) = f(x).

Proof. We want to show that the series (2) converges for « € K and gives the value f(z).
By telescoping effect summation in (2) will give only the expression in the form of the
last sum in the definition of o,. Moreover, for fixed z € K only one term out of 2571 is
not zero here. Therefore,

L(fvx) = SEH;OLM5+1(fam7Ij,s+1)7 (3)
where j = j(s) is chosen in a such way that « € I o;.

Now, for N = 2" — 1, let us consider the difference Ly(f,z,I1 ) — f(z). Since
Z; wi(z) =1 and Ef (x—zk)'wi(z) =0,i=1,2,..., N, we get LNg]:,x,ILS)—f(x) =
St lf (@)= f (@)= [/ (@) (=) = - = [ (2) (1 —2)1 qlwn (2) = X4 2y REf (wr)w ().
Then for ¢ < N

2’71

1Ln(fra, Ls) = F(@)] < NIfllg Y 1o = zalYwn(@)]. (4)
k=1

For the denominator of |wy ()| since 1 — 2{;41/l; = 1/3, we get the bound
we — 21| ok — ap—a| - |oe — Tl ok — 2|
> ln+3—1 ' (ln+s—2 - 2ln+s—1)2 T (ls - 213+1)2n7

_ 37n75+1 .32(,n75+2) . 32”’1(75) . (1/3)2+4+...+2”*1 _ 3*#4’

1

where = 2"(s+2) — (n+ s) — 3, as is easy to check.
On the other hand, the numerator of |wy(z)| multiplied by |x — x|? gives the bound

N+1 L
-1 -1 2 2"~ -2
E I | | — @] U s lngsm1 - lye oIy =3
1

with A=2"(s+ 1)+ (¢—1)s— 1.
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Hence, the sum in (4) may be estimated from above by 2732"~"~95=2  which ap-
proaches the limit 0 for ¢ > 1 because 2" < s. The same arguments are valid for
Las, ., (f, 2, g41). In fact, Myyq +1 = 2771 < s < s 4 1. Thus the limit in (3)
equals f(x). =m

5. Estimation for the model case. It remains to prove that the operator L is well-
defined and continuous. First let us consider the situation when the number of interpo-
lation points is just 2”.

LEMMA 2. Let N =2" —1,0 = %ln+s_1. Enumerate the endpoints (xk)JlV"'l of first basic
intervals of length lsy,,_1 in increasing order. Suppose two natural numbers p, (p < N),
and ¢ = 2" — 1 with v < N are given. Then for f € £(K) and x € R we have the bound

q+1
{ILn(f. 2, 116) = Lvoa(fy 2, Lo)u(e, 6, s N K)YP | < C2VNPa— T ael £1001,
k=2

where the constant C depends only on p and f € C*°[0,1] is any extension of f on [0,1].

Proof. By Newton’s form of the interpolation operator we deduce the representation
. N

LN(fa 1'7[1,5) - LN—l(faxa Il,s) = [mla e axN—I-l]f : Q(aj) with Q(Z) = Hk:l(m 79316)' The

i-th derivative of {2 represents the sum of % products, where every product contains

N — i terms of the type (z — z). Hence for any z with dist(x,[1 s N K) < 0 we get

|Q(i) (z)| < (NL_'”' Hg=i+1(5 + z). Then for some constant C,, we get

P N N
(Q- )< (f) ;’%N I] G+an) <Cpo? ]+ aw) max B;,
- 1=p
=0 k=i+1 k=1

with By = 1,B; = W%W. In our case xy = Dy0d, where the sequence (Dg)g=1 =

(0,2,4,6,12,14,16, 18, 36, . . . ) is defined by the structure of the Cantor set. Clearly, Dj, +

1 > k. For this reason, B; = m < N%/i!,max B; < NP.

On the other hand, 0+ < x41, because 29 is a mesh of the net (xk)f[*l. Therefore,

N+1
sup |(Q - u) P (z)| < C,NP§~P H Tk (5)
z€eR =2
To complete the proof we return to (1):
} 2" —2v =
|[x17 s 71"N+1}f| < 2N7q|f‘((1[0,1]) (mln H |mai(m) - xbl(m)‘) )
m=1
where min is taken over all possible routes from [1,..., N + 1] to some [j,...,j + ¢q] with
1<j<N+1-g.
Let us consider ¢ + 1 points in succession from (xk){vﬂ. We see that in order to
minimize the product above, one has to include intervals containing large gaps of the
Cantor set in the chain [z;,...,2j44] C --- C [21,...,2n41] as late as possible, that is,

all ¢ + 1 points must belong to the same basic interval of length lsy,,_,_1. And what is
more, the position of ¢ + 1 successive points is not important, since all intervals in the
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chain will contain a gap of length l,4,_y_1 — 2151 n—,. Therefore,
2m_9v

min H |Ta,(m) = To,(m)| = Tqy2 - TNy1-
m=1
Combining this with (5) we get the desired result. =

6. Boundedness of the operator. A slight change of the proof of Lemma 2 can be
applied for any term in the sum representing the operator L. Let us fix d s to be half of
the shortest distance between the points of interpolation for the polynomial Ly (f,z,I; s).

THEOREM 1. Let ng = 2,5 < 3 and ns = [logys] for s > 4,0y, = %ls+[log2 N]- Then
L:E(K) — C*(R), given in Section 3, is a continuous linear extension operator.

Proof. Lemma 1 implies that L is a linear extension operator. In order to get its conti-
nuity, let us fix any natural number p and take ¢ =2V —1 > p+ 1. Given z € R, we will
estimate |(L(f,z))®)|. Fix s > 4. First, we examine the accumulation sums. We specify
0n,s in a such way that for given x only one term of the sum with respect to j does not
vanish. Let us fix the corresponding value of j = j(s, z).

Represent the term

gn(z) = [Ln(f,z,1;s) — Lnv—1(f,z, I; s)|u(z, 0N, I s N K)
in the form [z1,...,2y41]f - Qn(2)u(x). Here 2™ < N < 2™F! for some m with ns_; <
m+1<ng, 500 :=0n, = %ls_i_m = %B_S_m. Arguing as in the proof of Lemma 2, we
get the bound |(Qy - u)P)| < CNP§—P sz\f:-s-; xy. Here and in what follows we denote by
C any constant that depends only on p and q.

Similarly, |[21,...,2n41)f| < C2N (zg42--- mN+1)71|f|¢(I[O’1D. The vector space E(K)
can be identified with the quotient space C*°[0,1]/Z, where Z = {f € C*[0,1] : f|x =
0}. The quotient topology 7¢ is given by the norms (mf|f\((1[0’1]))g°=0, where the infimum
is taken for all possible extensions of f to f Clearly, this topology is complete. Using the
Lagrange form of the Taylor remainder, we see that 7 = 7. Hence, by the open mapping
theorem 7o ~ 7 and for given ¢ there exists » € N, C > 0 such that inf \f|¢(l[o’1]) < fll»
for any f € £(K). Therefore,

q+1
9% (@) < 2V NP T @il 1]
k=2

But N < 2" < s and the number of terms in the sum is N; — M, which is less than
s. Therefore we get

N q+1
ST 198 @) < c2o s I T | £
N=M.,+1 k=2

The condition 2™ < N implies that all endpoints of the basic subintervals of length
ls4+m—1 = 60 on I; , are included in the interpolation set. Therefore we can estimate the
product above roughly: [[¢53 21, < Do(68)- D3(65) - - - Dyy1(66) = C59. Since 2°sP+159-P
< 8p+1(%)5 we see that the part of the general series, corresponding to the accumulation
sums, is convergent.
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We now turn to the difference

[Lates (s 25 Lsr) = L, (f, 2 Ly )@, 0w, s, L sa N K.
Without loss of generality we can assume j = 1. We will apply Lemma 2 again. To this
end, let us write the expression above in the telescoping form

2ms 1

- Z (Ln(f,z, 1s) = Lv—a(fy 2, D) u(@, Lsyn, —1/2, T s41 0 K. (6)
N=2ns—1

Here the interpolation set for the polynomial Ly (f,x,I; ) consists of all endpoints of
the basic subintervals of length ls4,,_1 on I 441 and some (from 0 for N = sl 1
to all for N = 2"+ — 1) endpoints of the basic subintervals of the same length on I ;1.
Given N we again represent the term of the sum (6) in the form

[xl, . ,.’ENJrl]f . QN(LU)U(.’E, ls+n571/27 ILSJrl M K)
We note that x is rather close to I; 441 MNK. For this reason, in order to maximize the value
|Q%) (z)|, we have to, by differentiation, remove from Hszl(x — xi) the terms (z — xy)
for ), € I1 s41; and save the terms corresponding to the second part of I; 5. Therefore
we have the same bound of ||Qy - ul|, as in (5). Finally, let us consider [z1,...,zn11]f.
As in the proof of Lemma 2, we want to minimize the product of lengths of intervals,

corresponding to the chain [z;,...,zj14] C--- C [21,...,2Nn+1]. Clearly, we have to take
Zj,...,Tjyq in the interval Iy sy1. Thus we can repeat all previous arguments and obtain
the bound

21, .. onvgal f] - 1(Qn - w) P < C28 NPGTP||f|],..

Taking into account the value of ¢ and the number of terms in the sum (6), we see that
the second part of the general series representing L converges as well. Thus the operator
L is well-defined and bounded. =
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