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Abstract. In a recent article the authors showed that it is possible to define a Sobolev capacity

in variable exponent Sobolev space. However, this set function was shown to be a Choquet

capacity only under certain assumptions on the variable exponent. In this article we relax these

assumptions.

1. Introduction. In the early 90’s Kováčik and Rákosńık [17] introduced variable expo-

nent Lebesgue and Sobolev spaces. In fact, generalized Lebesgue and Sobolev spaces are

special cases of so-called Orlicz-Musielak spaces, and in this form their investigation goes

back a bit further, to Orlicz [20], Hudzik [15], and Musielak [18], see also Sharapudinov

[23]. During the last couple of years Lebesgue and Sobolev spaces with variable exponent

have been studied at an increasing pace by Diening [4, 5], Edmunds and Rákosńık [6, 7],

Fan, Shen and Zhao [9, 10], Cruz-Uribe, Fiorenze and Neugebauer [3], Kokilasvili and

Samko [16], and Nekvinda [19], among others.

One area where these spaces have found applications is the study of electrorheological

fluids, as described in the book of Růžička [22]. A mathematical application is the study

of variational integrals with non-standard growth, see the papers by Acerbi and Mingione

[1, 2].

Sobolev capacity for fixed exponent spaces has found a great number of uses (e.g. the

monographs by Evans and Gariepy [8] and Heinonen, Kilpeläinen, and Martio [14]). It

was introduced into the study of variable exponent spaces in [12] and has been applied to

the investigation of zero boundary values of Sobolev functions in [13]. In [12] we required
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the assumption 1 < ess inf p ≤ ess sup p < ∞ of the variable exponent p to guarantee that

our set-function is indeed a Choquet capacity. This is unsatisfactory, since there is no

reason to expect this condition to be of relevance in this context. In this paper we show

that the lower inequality needs to hold only locally. In particular we show in Corollary 4.2

that if the exponent p is continuous, then zero capacity sets enjoy the usual subadditivity

property.

2. Sobolev p(·)-capacity. We denote by R
n the Euclidean space of dimension n ≥ 2.

For x ∈ R
n and r > 0 we denote the open ball with center x and radius r by B(x, r) and

by B(r) an open ball with radius r when the center is of no importance. We will next

introduce variable exponent Lebesgue and Sobolev spaces in R
n; note that we nevertheless

use the standard definitions of the spaces Lp(Ω) and W 1,p(Ω) in the fixed exponent case

p ≥ 1 with open Ω ⊂ R
n.

Let p : R
n → [1,∞) be a measurable function (called the variable exponent on R

n).

Throughout this paper the function p denotes a variable exponent; also, we define p+ =

ess supx∈Rn p(x) and p− = ess infx∈Rn p(x). We define the variable exponent Lebesgue

space Lp(·)(Rn) to consist of all measurable functions u : R
n → R such that ̺p(·)(λ u) =

∫

Rn |λ u(x)|p(x) dx < ∞ for some λ > 0. The function ̺p(·) : Lp(·)(Rn) → [0,∞) is called

the modular of the space Lp(·)(Rn). We define a norm, the so-called Luxemburg norm, on

this space by the formula

‖u‖p(·) = inf{λ > 0 : ̺p(·)(u/λ) ≤ 1}.

The variable exponent Sobolev space W 1,p(·)(Rn) is the space of measurable functions

u : R
n → R such that u and the absolute value of the distributional gradient ∇u =

(∂1u, . . . , ∂nu) are in Lp(·)(Rn). The function ̺1,p(·) : W 1,p(·)(Rn) → [0,∞) is defined

by ̺1,p(·)(u) = ̺p(·)(u) + ̺p(·)(|∇u|). The norm ‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·) makes

W 1,p(·)(Rn) a Banach space. For more details on the variable exponent spaces we refer

to [17] or [10].

We recall the definition and basic properties of the Sobolev p(·)-capacity from [12,

Section 3]. For E ⊂ R
n we denote

Sp(·)(E) = {u ∈ W 1,p(·)(Rn) : u ≥ 1 in an open set containing E}.

The Sobolev p(·)-capacity of E is defined by

Cp(·)(E) = inf
u∈Sp(·)(E)

̺1,p(·)(u)

In case Sp(·)(E) = ∅, we set Cp(·)(E) = ∞. For arbitrary measurable exponents p : R
n →

[1,∞) the set function E 7→ Cp(·)(E) has the following properties, [12, Theorem 3.1]:

(i) Cp(·)(∅) = 0.

(ii) [Monotonicity] If E1 ⊂ E2, then Cp(·)(E1) ≤ Cp(·)(E2).

(iii) If E is a subset of R
n, then

Cp(·)(E) = inf
E⊂U

U open

Cp(·)(U).
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(iv) If E1 and E2 are subsets of R
n, then

Cp(·)(E1 ∪ E2) + Cp(·)(E1 ∩ E2) ≤ Cp(·)(E1) + Cp(·)(E2).

(v) If K1 ⊃ K2 ⊃ . . . are compact, then

lim
i→∞

Cp(·)(Ki) = Cp(·)

(

∞
⋂

i=1

Ki

)

.

If 1 < p− ≤ p+ < ∞, then the following additional properties hold, [12, Theorem 3.2]:

(vi) If E1 ⊂ E2 ⊂ . . . are subsets of R
n, then

lim
i→∞

Cp(·)(Ei) = Cp(·)

(

∞
⋃

i=1

Ei

)

.

(vii) [Subadditivity] If Ei ⊂ R
n for i = 1, 2, . . ., then

Cp(·)

(

∞
⋃

i=1

Ei

)

≤
∞
∑

i=1

Cp(·)(Ei).

This means that if 1 < p− ≤ p+ < ∞, then the set function E 7→ Cp(·)(E), E ⊂ R
n,

is a Choquet capacity, see [12, Corollary 3.4]. Note that if (vi) holds, then it and (iv)

imply that (vii) holds as well. For the proof we refer to [12, Theorem 3.2].

3. Relaxing the condition 1 < p−. We denote by χG the characteristic function of

the set G ⊂ R
n.

Proposition 3.1. Let E ⊂ R
n. If p+ < ∞, then

(3.2) lim
R→∞

Cp(·)(E ∩ B(R)) = Cp(·)(E).

Proof. Since E ∩B(R) ⊂ E for all R, it follows from (ii) that the right-hand side of (3.2)

is greater than or equal to the left-hand side. To prove the opposite inequality, suppose

first that E is a set with finite p(·)-capacity. Note that

Cp(·)(E \ B(R)) + Cp(·)(E ∩ B(R)) ≥ Cp(·)(E) + Cp(·)(∅) = Cp(·)(E)

by property (iv). We will show that the first term on the left-hand side goes to zero as

R → ∞, from which the desired inequality follows.

Let us choose an open set O containing E and a function u ∈ W 1,p(·)(Rn) with u(x) ≥

1 for all x ∈ O such that ρ1,p(·)(u) ≤ 2Cp(·)(E). It is clear that ‖χRn\B(R)u‖p(·) → 0 and

‖χRn\B(R)∇u‖p(·) → 0 as R → ∞. For R > 2 let φ be a 1-Lipschitz function with

0 ≤ φ ≤ 1, φ(x) = 0 for x ∈ B(R) and φ(x) = 1 for x ∈ R
n \B(2R). It is easy to calculate

that

‖φu‖1,p(·) ≤ 2‖χRn\B(R)u‖p(·) + ‖χRn\B(R)∇u‖p(·),

and so ‖φu‖1,p(·) → 0 as R → ∞. It is clear that φu is a function which is at least one

on the open set O \ B(2R) which contains E \ B(2R), so that φu is a test function for

Cp(·)(E \ B(2R)). Since p+ < ∞ the norm and the modular tend to zero simultaneously

[17, Theorem 2.4], and it follows that Cp(·)(E \B(R)) → 0, which completes the proof in

the case that Cp(·)(E) < ∞.
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Suppose then that Cp(·)(E) = ∞ but that

lim
R→∞

Cp(·)(E ∩ B(R)) < ∞.

Let M > 1 be a finite upper bound of Cp(·)(E ∩ B(R)). We denote Ai = B(i + 1) \ B(i)

for i = 1, 2, . . ., A0 = B(1), and Ci = Cp(·)(E ∩ Ai). Define the function φi : R
n → [0, 1]

by φi(x) = φ(|x| − i) where

φ(s) =























1 + s, for − 1 ≤ s ≤ 0,

1, for 0 ≤ s ≤ 1,

2 − s, for 1 ≤ s ≤ 2,

0, otherwise.

Note that φi(x) is 1-Lipschitz.

Fix an integer k ≥ 0 and j = 0, 1, 2. Let u ∈ Sp(·)(E ∩ B(3k + j)) be such that

ρ1,p(·)(u) < 2M . Denote A3
3i+j = A3i+j−1 ∪ A3i+j ∪ A3i+j+1. Since the support of φ3i+j

lies in A3
3i+j , we have

k
∑

i=1

ρ1,p(·) (φ3i+ju) =
k

∑

i=1

∫

Rn

|φ3i+ju|
p(x) + |∇(φ3i+ju)|p(x)dx

≤
k

∑

i=1

∫

A3
3i+j

2p+

(|u|p(x) + |∇u|p(x))dx

= 2p+

ρ1,p(·)(u) ≤ 2p++1M.

Since uφ3i+j ∈ Sp(·)(E ∩ A3i+j), this gives

k
∑

i=1

C3i+j ≤
k

∑

i=1

ρ1,p(·)(uφ3i+j) ≤ 2p++1M.

Adding these inequalities for j = 0, 1, 2 gives C1 + . . . + C3k ≤ 6 · 2p+

M . Since the upper

bound does not depend on k, we further get
∞
∑

i=1

Ci ≤ 6 · 2p+

M.

Let us then choose for every integer i ≥ 0 a function ui ∈ Sp(·)(E ∩ Ai) such that

ρ1,p(·)(ui) ≤ 2Ci. Then uiφi ∈ Sp(·)(E ∩ Ai) and

ρ1,p(·)(φui) ≤ 2p+

ρ1,p(·)(ui).

It is easy to see that w =
∑∞

i=0 uiφi is in Sp(·)(E). With the convention φ−1u−1 ≡ 0 we

find that

ρ1,p(·)(w) =
∞
∑

i=0

∫

Ai

|φi−1ui−1 + φiui + φi+1ui+1|
p(x)

+ |∇(φi−1ui−1 + φiui + φi+1ui+1)|
p(x)dx

≤ 3p+
∞
∑

i=0

ρ1,p(·)(φui) ≤ 6p+
∞
∑

i=0

Ci ≤ 6 · 12p+

M < ∞,
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contrary to the assumption that Cp(·)(E) = ∞. This contradiction shows that the as-

sumption limR→∞ Cp(·)(E ∩ B(R)) < ∞ was false, which concludes the proof.

Lemma 3.3. Let p+ < ∞ and E ⊂ B(1). Define Ar = B(r + 1) \ B(r) and

Ar(u) =

∫

Ar

|u|p(x) + |∇u|p(x)dx

for u ∈ W 1,p(·)(Rn). If u ∈ Sp(·)(E) and ρ1,p(·)(u) ≤ Cp(·)(E) + ε for ε > 0, then

Ak(u) ≤ 2ε for every

k ≥ 22p+

(

Cp(·)(E)

ε
+ 1

)

+ 2.

Proof. Define a Lipschitz function φr : R
n → [0, 1] by

φr(x) =















1 for |x| ≤ r,

1 − (|x| − r) for r ≤ |x| ≤ r + 1,

0 for |x| ≥ r + 1.

Fix ε > 0 and let u ∈ Sp(·)(E) with ρ1,p(·)(u) ≤ Cp(·)(E) + ε. Then uφr ∈ Sp(·)(E) for

r ≥ 1 and so ρ1,p(·)(uφr) ≥ Cp(·)(E) ≥ ρ1,p(·)(u) − ε. This gives
∫

Ar

|uφr|
p(x) + |∇(uφr)|

p(x)dx + ε ≥

∫

Rn\B(r)

|u|p(x) + |∇u|p(x)dx.

Since |uφr| ≤ |u| and |∇(uφr)| ≤ |φr∇u| + |u∇φr| ≤ |∇u| + |u|, we further get

2p+

∫

Ar

|u|p(x) + |∇u|p(x)dx + ε ≥

∫

Ar

|u|p(x) + (|∇u| + |u|)p(x)dx + ε

≥

∫

Rn\B(r)

|u|p(x) + |∇u|p(x)dx.

Expressing this in terms of Ar(u) gives

(3.4) 2p+

Ar(u) + ε ≥
∞
∑

i=r

Ai(u).

Suppose then that Ak(u) ≥ 2ε. It follows from (3.4) that 2p+

Ai(u)+ε ≥
∑∞

j=i Aj(u) ≥

Ak(u) for i ≤ k. Using this in (3.4) gives

2p+

A1(u) + ε ≥
∞
∑

i=1

Ai(u) ≥ (k − 1)
Ak(u) − ε

2p+ + Ak(u) ≥ (k − 1)
ε

2p+ + 2ε.

Since A1(u) ≤ ρ1,p(·)(u) ≤ Cp(·)(E) + ε this gives

2p+

(Cp(·)(E) + ε) ≥ (k − 1)
ε

2p+ ,

so that 22p+

(Cp(·)(E)/ε + 1) + 1 ≥ k. This means that if 22p+

(Cp(·)(E)/ε + 1) + 2 ≤ k

then Ak(u) ≤ 2ε, which was to be shown.

We say that p is locally bounded away from 1 if ess infx∈K p(x) > 1 for every compact

K ⊂ R
n.
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Theorem 3.5. Let Ei be a sequence of increasing sets. Suppose that p+ < ∞ and p is

locally bounded away from 1. Then the capacity has property (vi).

Proof. Let us denote E =
⋃∞

i=1 Ei. It follows from property (ii) that

lim
i→∞

Cp(·)(Ei) ≤ Cp(·) (E) .

It remains to prove the opposite inequality. It suffices to consider the case where Cp(·)(Ei)

< M < ∞ for every i.

Let us first assume that E is bounded. We choose the coordinate system so that

E ⊂ B(1). Fix ε > 0 and choose ui ∈ Sp(·)(Ei) such that ρ1,p(·)(ui) ≤ Cp(·)(Ei)+ε < M+ε

for every i. Let

k = 22p+

(

M

ε
+ 1

)

+ 2

and let the operators Ai be defined as in Lemma 3.3. It follows from the lemma that

Ak(ui) ≤ 2ε for every i. Define φ : R
n → [0, 1] by

φ(x) =















1 for |x| ≤ k,

1 − (|x| − k) for k ≤ |x| ≤ k + 1,

0 for |x| ≥ k + 1.

Since spt φ = B(k + 1), we have

ρ1,p(·)(φui) =
k−1
∑

j=0

Aj(ui) + Ak(φui).

As in the proof of Lemma 3.3, we find that Ak(φui) ≤ 2p+

Ak(ui), and since Ak(ui) ≤ 2ε

we get

ρ1,p(·)(φui) ≤
k−1
∑

j=0

Aj(ui) + 2p++1ε ≤ ρ1,p(·)(ui) + 2p++1ε ≤ Cp(·)(Ei) + (2p++1 + 1)ε.

Let us define q0 = infy∈B(k+1) p(y) and a new variable exponent by q(x) =

max{p(x), q0} for every x ∈ R
n. It is clear that φui ∈ W 1,q(·)(Rn) for all i, and so

we can use the reflexivity of the space W 1,q(·)(Rn) and proceed as in the proof of Theo-

rem 3.2, [12] and find a sequence of functions wj in W 1,q(·)(Rn) each of which equals 1

in an open set containing E with ρ1,p(·)(wj) → ρ1,p(·)(φui) as j → ∞. Since every wj is

the sum of φui’s, it is also easy to see that every wj is supported in B(k + 1). Therefore

we may use the wj as test functions for the set E in the space W 1,p(·)(Rn), as well, and

we conclude that

Cp(·)(E) ≤ lim
i→∞

Cp(·)(Ei) + (2p++1 + 1)ε.

Taking ε → 0 completes the proof in the case of a bounded set E.

Suppose then that E is unbounded. By what was just proved we have

lim
i→∞

Cp(·)(Ei ∩ B(r)) = Cp(·)(E ∩ B(r))

for every r > 0. But it follows from Proposition 3.1 that

lim
i→∞

Cp(·)(Ei) = lim
i→∞

lim
r→∞

Cp(·)(Ei ∩ B(r)) = lim
r→∞

Cp(·)(E ∩ B(r)) = Cp(·)(E),
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where the swap of limit-taking order is permissible in the second equality since (i, r) 7→

Cp(·)(Ei∩B(r)) is increasing in both variables. This completes the proof of the unbounded

case.

Remark 3.6. If p is continuous, then it is locally bounded away from 1 if and only if it

is strictly greater than 1.

The previous theorem allows us to improve our result from [12, Corollary 3.4].

Corollary 3.7. Suppose that p is bounded and locally bounded away from 1. Then

Cp(·)(·) is a Choquet capacity and an outer measure.

4. Zero capacity sets. Sets of zero capacity are of particular importance when dealing

with any capacity. For instance it was shown in [13, Theorem 3.9] that zero boundary

value spaces defined on Ω and Ω \ N concur if and only if N has zero capacity.

In this section we prove that the regularity properties from the previous section hold

for capacity zero sets under much fewer conditions than for arbitrary sets.

Theorem 4.1. Suppose that p is locally bounded and that Ei ⊂ R
n are zero capacity sets

for i ∈ N. Then Cp(·)(∪Ei) = 0.

Proof. Let us denote E = ∪Ei and define pR = supx∈B(R+2) p(x).

Suppose first that E is bounded, say E ⊂ B(R). Let φ be an 1-Lipschitz continuous

cut-off function supported in B(2R) with φ|B(R) = 1. Fix a positive ε < 2−p2R . For every

i choose a function ui ∈ Sp(·)(Ei) such that ρ1,p(·)(ui) ≤ ε2−i. Since the function φui is

supported in B(2R) it is clear that the values of the exponent p outside B(2R) do not

effect ρ1,p(·)(φui). Therefore we conclude that ρ1,p(·)(φui) ≤ 2p2Rρ1,p(·)(ui) ≤ ε2p2R−i. It

follows from [10, Theorem 1.3] (since we need not consider B(2R)c) that

‖φui‖1,p(·) ≤ ρ1,p(·)(φui)
1/p2R ≤ 2ε1/p2R2−i/p2R .

Thus, by the triangle inequality,

∥

∥

∥
φ

∞
∑

i=1

ui

∥

∥

∥

1,p(·)
≤ 2ε1/p2R

∞
∑

i=1

2−i/p2R = 2ε1/p2R
1

1 − 2−1/p2R
.

Since φ
∑∞

i=1 ui ∈ Sp(·)(E) it follows that

Cp(·)(E) ≤
2ε1/p2R

1 − 2−1/p2R
,

and so Cp(·)(E) = 0, since ε can be arbitrarily small.

Suppose then that E is unbounded. By monotonicity it follows that Cp(·)(Ei∩B(R)) =

0 for any R > 0. Thus, it follows from the first part of the proof that Cp(·)(E∩B(R)) = 0

for any R > 0. Next we show that this implies that Cp(·)(E) = 0. Let us denote A∗
R =

B(R + 2) \ B(R − 1) and AR = B(R + 1) \ B(R).

By monotonicity of the capacity we have Cp(·)(E ∩ AR) = 0 for every R > 0. Let us

choose for every positive integer i a function ui ∈ Sp(·)(E ∩ Ai) such that ρ1,p(·)(ui) ≤

6−pRε2−i. Let φi denote a 1-Lipschitz function supported in A∗
i with φi|Ai

= 1. We find
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that

ρ1,p(·)

(

∞
∑

i=0

φiui

)

≤
∞
∑

i=0

∫

Ai

|ui−1 + ui + ui+1|
p(x)

+ |ui−1 + ui + ui+1 + ∇(ui−1 + ui + ui+1)|
p(x)dx

≤
∞
∑

i=0

∫

Ai

(3pR−1 + 6pR−1)(|ui−1|
p(x) + |ui|

p(x) + |ui+1|
p(x))

+ 6pR−1(|∇ui−1|
p(x) + |∇ui|

p(x) + |∇ui+1|
p(x))dx

≤ 6pR

∞
∑

i=0

ρ1,p(·)(ui) ≤
∞
∑

i=0

ε2−i = ε.

Since
∑∞

i=0 φiui ∈ Sp(·)(E), this means that Cp(·)(E) = 0, as was to be shown.

Corollary 4.2. Suppose that the variable exponent p is continuous. Then the countable

union of zero p(·)-capacity sets has p(·)-capacity equal to zero, as well.
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