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Abstract. In this paper, a precise projection decomposition in reflexive, smooth and strictly
convex Orlicz-Bochner spaces is given by the representation of the duality mapping. As an ap-
plication, a representation of the metric projection operator on a closed hyperplane is presented.

1. Introduction. It is well known that if K is a closed convex cone (resp. closed linear
subspace) in a Hilbert function space, we have the Moreau (resp. Riesz) decomposition
theorem x = Pk (x) + Pgo(z) (resp. x = Pg(x) + Py (x)), but the decomposition does
not hold in arbitrary Banach function spaces. Many authors have attempted to generalize
it. In 1995, Y. W. Wang and Z. W. Li [15] (resp. in 2001, Y. W. Wang and H. Wang [16])
obtained a decomposition by using the metric projection operator (i.e. projector )

x=mr(x)+ 2, Yz € X,
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where L is a closed convex cone (resp. a Chebyshev subspace) of a real reflexive strictly
convex Banach space (resp. a general Banach space) X, zo € J 'L+ and x5 is not
definite. In 1998, Ya. I. Alber [1] obtained another decomposition in a reflexive strictly
convex smooth Banach space X:

z=J MgoJz +w,

where K is a closed convex cone in X, J : X — X™ is the duality mapping of X, w € K
and w is not definite, so their decompositions are semi-definite. W. Song and Z. J. Cao
[14] investigated this problem in a more precise and general form. The aim of this paper is
to give a precise representation of such a decomposition in Orlicz-Bochner spaces L (X).

2. Definitions and preliminary lemmas. We denote by (G, X, 1) a measure space in
the n-dimensional Euclidean space R with 0 < uG < 0o, by R the set of real numbers, by
(X, |Illx) a reflexive real Banach space, by (X*, ||.||x~) the dual space of X, by (z*, x) the
dual pairing of 2* € X* and x € X and by L°(G, X) the linear space of all u-equivalent
classes of strongly measurable functions = : G — X.

A convex and even function ® : R — Ry is called an Orlicz function if ®(0) = 0,
®(u) > 0 for u # 0, and

1im%=0, limM:oo
2l 25 T
For any Orlicz function ®, we define its complementary function ¥ : R — R, by the
formula

U(v) = sup{ufv| — D(u)}

u>0
for every v € R. The function ¥ is also an Orlicz function (see [8], [4]).
We say that an Orlicz function ® satisfies the Ag-condition (write ® € Ay) if there
exist constants K > 1 and ug > 0 such that
O(2u) < K®(u) for any u > ug.

We say that an Orlicz function ® satisfies the Va-condition (write ® € Vs) if its
complementary function U satisfies the As-condition.

Denote by small letters ¢ and ) the right hand side derivatives of the Orlicz functions
® and U, respectively.

The space

Lo(X) = {ac € L°(G,X): 3k > 0 s.t. po(kz) = / O(k|lx(t)]|x)dt < oo}
G
equipped with the so called Orlicz norm

ol =suw {| [ o) atopat| sy € Laxe) put <1}

or with the Luxemburg norm

|z]lo = inf {k >0 po (i) < 1}
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is said to be an Orlicz-Bochner space (see |7]). In the following Le(X) (resp. L (X))
denotes the Orlicz-Bochner space equipped with the Luxemburg norm (resp. equipped
with the Orlicz norm). If X = R, the Orlicz-Bochner spaces become the classical Orlicz
spaces (see [10] or [17]) and they are denoted by L and Ly respectively.

The following Hoélder inequalities

‘ / dt’ < lzllollylS,

[ wo.aoiar] < el

hold for any x € Ls(X) and y € Lg(X™).

If ® € Ay, then (Lo(X))* = LY (X*), (L$(X))* = Ly(X*) and the spaces Lo(X)
and LY (X) are reflexive if and only if ® € Ay NV (see [4] or [12]).

The Amemiya formula for the Orlicz norm

Il = inf 3 [1+ pa (k)]
holds for every x € Lg(X). Moreover, for every € Ly(X)\{0} there exists k& > 0 such
that
Il = 1 11+ pa(ka)]. (1)
If there exists £ > 0 such that

| #le Glatylxnae = 1.
then )
lolly = | @) lxe (Hlo(®)l1x) de = £41+ pu(ha)}

(see [11]).

Now, we recall some geometric concepts in Banach spaces.

For any Banach space X denote by S(X) the unit sphere of X. The multi-valued
mapping Ax : X \{0} — S(X*) defined by the formula

Ax(z) = {z" € S(X7) : (27, 2) = [lz] x}

for any x € X \{0} is called the support mapping of X. The multi-valued mapping Fx :
X — X* defined by the formula

Fx(r) = {z" € X*: (a",x) = "% = |=[%} (2)
for any = € X is called the duality mapping of X. A relationship between the support
mapping Ax and the duality mapping F'y can be expressed by the following formula:

Fx(z) =|z||xAx(z) Vz e X \{0} and Fx(0) = 0. (3)

The properties of the duality mapping are closely related to the geometric properties of
the space. The following results may be found in [3]: Fx is homogeneous; F'x is surjective
iff X is reflexive; F'x is injective iff X is strictly convex; F'x is single-valued iff X is
smooth.

Now, we recall the concepts of the metric projection and the generalized projection.
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Let C be a convex subset of a normed linear space X. The multi-valued mapping
m(C|-) : X — C defined by the formula

m(Cla) = {20 € O |z — zollx = Inf ||z — =[x}

for any x € X is called the metric projection onto C. If w(C|-) is single-valued, then it is
called the metric projection operator or the best approximation operator and it is denoted
by e (see [13]).

In the following we assume that X is a reflexive, strictly convex and smooth Banach
space. Consider the problem of the attainability of

inf {[|z[% — 2(Fx (), y) + lyl% }-
yeC
We know that this problem has a unique solution (see [2]). The operator

Moz :={y, € C: W(z,y,) = min W(z,y)},
yeC

where W (z,y) = ||z||% — 2(Fxz,y) + ||y|% for z, y € X, is said to be the generalized
projection of x on C. Alber ([1]) obtained the following result:

THEOREM A. Let X be a reflexive strictly convex smooth real Banach space, K be a
nonempty closed convezx cone in X (i.e. \K C K for all A\ >0 and K + K = K). Then
for every x € X and x* € X* there exist w € K and x € K°, satisfying

x = Fy'TgoFx(x) +w and (mgoFx(z),w) =0,

r* = FxIgFy'(z*) + x and (x, Fx'(z%)) =0,

where K = {x* € X* : (z*,2) <0 Vz € K} is the polar cone of K.

3. A representation of the duality mapping

THEOREM 1. Let ® € Ay, ¢ be continuous and X be a smooth Banach space. Then the
duality mapping FL%(X) of the Orlicz-Bochner space L} (X) can be represented by the
formula

Fry x)(@)(t) = lzllgAx (@) [kl (t)l|x]

for p-a.e. t € G and for any x € L%(X)7 where k satisfies
[ e tlatoll)ae=1.

Proof. Let Y = L} (X). Then we know that Y* = Ly (X*). Since ® € Ay, ¢ is continuous
and X is smooth, by Th. 4 in [11], Y = L%(X) is a smooth Banach space. Consequently,
Fy : LY(X) — Ly (X*) is a single-valued mapping and, by (3), Fy (z) = ||z||$Ay (x) for
any z € LY (X) \{0}.



By (1) and because of ||Ay(x)|l¢ = 1, there exists & > 0 such that
1
F(1+ [ ale) = el = [ v @0, aton
1
E/ kllz @)l x Ay (@) (0] x-dt
G

%(/G@(k||x(t)||x)dt+/G‘II(HAY(QJ)(t)HX*)dt)

% (/Gq’(’ﬂx(t)lx)dt + 1).

/ W (|| Ay (2)(8)]|x-) db = 1 (4)
G

IN

IN

Hence

and
/G [© (K[l x]]) + ¥ (|Ay (2) (D)l x+) = Ellz@) | x | Ay (2) (8] x-] dt = 0.
It follows from the Young inequality that

@ (kllz(®)llx[) + ¥ (|Ay (2) ()] x+) = Ellz(@)[[ x[[Ay () ()]| x-

for py-a.e. t € G. The fact that ¢ is continuous, and the condition for equality in the
Young inequality yield that

[Ay (@) () llx+ = o (Bllz(8)]]x)
for p-a.e. t € G. Therefore, we have

/ (Ay (2)(8), k(t))dt = / () x| Ay () (1)) x-dt
G G
- / Kl () xo (kllz(0)]x) dt
G
- /G (o (Rl (0) 1) A ((0)), ka(t)) .

Since the map x — Ay (x) is single-valued, we obtain

Ay (2)(t) = ¢ (kllz(@)] x) Ax (z()) (5)
for p-a.e. t € G. Combining (4) and (5), we get

/ W (i (klz(t)]| x)) dt = 1,
G

and from (5) and the relationship between the duality mapping and the support mapping,
we have

Fro x)(@)(t) = llzllgw [kllet) 1 x 1] Ax (x(t)
for p-ae. t€ G. m

THEOREM 2. Let ® € Ay, ¢ be continuous and X be a smooth Banach space. Then the
duality mapping Fr,(x) of the Orlicz-Bochner space Lgs(X) can be represented by the
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formula

[l [EXOI
Fraco (@) = ¥ Ax(a(t)
- Jolz@®)llxe (” ”( ﬁ” ) dt ( lz]le )

for u-a.e. t € G and for every x € Lg(X) \{0}.

Proof. Let Y = Lg(X). Then Y* = L3 (X*). Since ® € Ay, ¢ is continuous, and X is
smooth, by Th. 3 in [11], the space Y = Lg(X) is a smooth Banach space. Consequently,
the duality mapping Fy (-) = || - ||o Ay (+) is single-valued.

Let # € Ly(X) \{0}. Then Ay (z) € S(LY) and

Hw¢=LMﬂ@ww@Mt
By (1), there is k > 0 such that

1= (14 [ v 01ar@@ ) (6)

[ o

‘/kwh%man*”“”Xm
G

(E41e8

([ wisv@isyas [ o505 a)
(1+ [ viar s ar).

l=@lx _
]le

for p-a.e. t € G and hence, by the continuity of ¢ and by the condition for equality in

1Ay ()15

IN

IN
= = =

IN

It follows that

Rl Ay () (8) || x ==

<WM«xnua+¢Cﬁﬁk)

the Young inequality, we obtain

Ay (2) (1)) x- = %(p(lx(t)b{)

lz]le

for p-a.e. t € G. By (6), we have

1= [ (. e g

/nmu nmﬁﬁ”ﬁ

_ le(@)1x ) [2(0)]x
‘1;@<nw@>mmdt

1
k
= [ (o (500 vt 70 Yo
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Hence, it follows that

Ar(o)e) = o (1) Axtato)

(E41e8

for pu-a.e. t € G. From (7), we see that

1 / [l ()|l x
- ool ( .
lzlle Jo (E4IPY
Therefore, we obtain

FLq,(x)( ) ||mH<I>

e
I l2(t) (H I(t)Hx) dt ]|

llzlle

) Axta(o)
for pu-a.e. t € G. m

4. A generalized projection decomposition

THEOREM 3. Let ® € Ay N Va, ¢ and Y be continuous, X be a reflexive strictly convex

smooth Banach space, K be a nonempty closed convex cone in the Orlicz-Bochner space
Le(X), K° ={y € LL(X™) : [, (y( t))dt <0Vz € K}. Then for anyz € Lo(X)\ K,
we have the unique decomposition

w(t) = mr () (8) + |y lly Axc- (y() D (Elly(8)]|x-)
for p-a.e. t € G, where k > 0 and y € LY (X*) satisfy the conditions
| ot @ lxde =1

and

y(t) = Hgo

|3 lz()]x
<IG z(t)]| x (M) i ( [EF

for p-a.e. t € G, where Tk is the metric projection operator from Lg onto K and ko is

) Axta) )@

the generalized projection operator from LY, (X*) onto K°.

Proof. Let Y = Lg(X). Then Y* = L% (X*) and both Ly (X) and LY (X*) are reflexive,
strictly convex and smooth spaces. For any © € Y \ K, by Theorem A, there exists a
function w € K such that

r=w+ Fy ' MgoFy (x) and (ITgo Fy (z),w) = 0. (8)
Hence, we have
Fy(x —w) = MgoFy(z) € K°,
(Fy(z —w),w) =0 and (Fy(z —w),w) <0
for any w € K. By Theorem 2, we obtain

/G <¢(M)AX(:U(7§) (), wlt) — w(t)>dt -

[z = wlle

for any w € K. Tt follows from Theorem 6 in [11] that
w=T7g(T). (9)
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By Theorem 2, we get

S I3 2 Ollx 4
P = (lwlwlx)dﬁ( ) Axato)

llz|le

=113 ()l x
<fc lz(t)||xe (Hl(t)\lx) dt@ ( ||| o ) AX(x(')))(t)

for p-a.e. t € G. The fact that Y and Y* are reflexive, strictly convex and smooth Banach
spaces implies that F;l = Fy -+ and hence, by Theorem 1, we have

Fy 'Mgo Fy (2)(t) = Fy- (y)(8) = lyl§Ax- ()0 (klly@)lx-) (10)
for p-a.e. t € G and

and

y(t) = Tgo Fy (2)(t) = I

[ oW @yl de= 1.
G

Combining (8), (9) and (10), we finish the proof. m
COROLLARY 1 (Moreau decomposition theorem). Let X be a Hilbert space, K C L?(X)

be a closed convex cone, K C L*(X) be its polar cone. Then for every x € L?(X)\ K,
there is a unique decomposition

z = () + 7o (2),
where T and To are the metric projection operators.
Proof. Let ®(u) = |ul?/2. Then ¥(v) = |v|?/2. Since X is a Hilbert space, Y =
Le(X) = L*(X) and Y* = LY (X*) = L?(X). Moreover, for any z € Lg(X) and for
any y € LY (X*), we have ||z]¢ = [|z]2 /v2 and ||y[|% = v2|y[|2. Consequently, for any
x € Le(X) \ K, we have

. =13 =@l 4
Ao = = ('Tg@x)dt*p( ) Aot
Hxllz VBlells IOy = Lo xe ) = Leto
T Jole®IZdt 2va T Jall Y g XX 2

for u-a.e. t € G. Since in any Hilbert space, the generalized projection operator IIgo
coincides with the metric projection operator mxo,

1
y(t) = o Fy (2)(t) = 5mro(2)(?)
for pu-a.e. t € G. On the other hand, we also have

Iyl klly(@)llx-] Ax- (y(2) = V20yllzkly(@) 1 x Ax (y(2) = V2]lyll2ky().

From the condition
k}2
1= /G & [ (]ly(6) | x-)] / ly ()% dt

we get that k|y|l2 = v/2, and so
159 (klly () llx-] Ax- (y(1)) = 2y(t) = w0 (2)(2).
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Hence and from Theorem 3, we get
(t) = mi (2)(t) + mro () (¢)
for p-ae. t e G. n
By Corollary 1, we obtain immediately the following

CoROLLARY 2 (Riesz orthogonal decomposition theorem). Let X be a Hilbert space,
L C L*(X) be a closed linear subspace, L+ C L*(X) be its orthogonal complement. Then
for every x € L?(X)\L there is a unique decomposition

z = Pp(z) + Pr.(z),
where P;, and Pr. are the orthogonal projection operators.

Now we will give an application of Theorem 3. Namely, we have the representation of
the metric projection operator onto a closed hyperplane in Orlicz-Bochner spaces.

THEOREM 4. Let & € Ay NV, ¢ and ¢ be continuous, X be a reflexive, strictly convex
and smooth Banach space. Let L = {x € Lo(X) : [ (x5(t),z(t))dt = 0} be a closed
hyperplane in Lo(X), where zf; € LY (X*)\{0}. Then for every x € Lo(X)\L, we have

mu(2)(t) = (1) - W

for p-a.e. t € G, where Ax+ is the support mapping of X*.

U [Kllxg ()]l x-] Ax- (5 (1)),

Proof. By the assumptions, we have that the Orlicz-Bochner space Y = Lg(X) is a
reflexive, strictly convex and smooth Banach space. For the closed hyperplane L, we
know that

LO=Lt={\x}: AN€ R} C Ly, (X*) =YY"
For any x € Lg(X)\ L, by Theorem 3, we have

T (2)(t) = 2(t) — Fy-(y)(t),
where y = Az € L+ for some A # 0. Note that the duality mapping Fy~ is homogeneous,
so we obtain

1 (2)(t) = o(t) — AFy ™ (25)(8). (11)
Taking the value of the functional zj(¢) at the elements from both sides of (11) for every
t € G and then integrating them over G with respect to t € G, we get

0= /G (i (1), 2(t))dt — A /G (w3 (1), Fy () () dt = / (i (6), 2(0))dt — A(|251%)>

G
Hence, it follows that

Jolai(®). a(0)dt

A= 12
(D% 2

On the other hand, by Theorem 1, we also have
Fy(25)(8) = Fy«(25)(t) = llag 99 [kllzg (0| x-] Ax- (25(£)) (13)

Combining (11), (12) and (13), we complete the proof. m
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